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OSCILLATION OF VOLTERRA INTEGRAL EQUATIONS AND

FORCED FUNCTIONAL DIFFERENTIAL EQUATIONS

YUMEI WU

1. Introduction

We provide some sufficient conditions under which oscillation phenomenon oc-

curs for the linear Volterra integral equation of convolution type with delays

(1.1) x(t) = f(t) +

∫ t

0

n∑
i=1

ai(t− s)x(s− ri) ds, t ≥ 0,

and the difference-integral equation

(1.2) x(t)−
m∑
j=1

pjx(t− σj) = f(t) +

∫ t

0

n∑
i=1

ai(t− s)x(s− ri) ds, t ≥ 0,

where f ∈ C(R+,R), ai(·) ∈ L1
loc(R+), ri ∈ R, for i = 1, 2, 3, . . . , n, pj ∈ R,

σj ∈ R, for j = 1, 2, 3, . . . ,m.

We also study oscillation of the following neutral differential equation with the

forcing term f ,

(1.3)
d

dt

x(t) +
m∑
j=1

pjx(t− σj)

+
n∑
i=1

qix(t− ri) = f(t), for t ≥ 0,

where f ∈ C(R+,R), pj ∈ R, σj ∈ R, for j = 1, 2, 3, . . . ,m, qi ∈ R, ri ∈ R, for

i = 1, 2, 3, . . . , n.

Our approach bases on the method of Laplace transform which has been used

to study oscillation of delay differential equations [1, 16], oscillations of neu-

tral differential equations without forcing terms [24–26] and oscillations of linear

integro-differential equations [10, 11].
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To facilitate our discussions, let us first introduce the following notations and

conventions.

Let r : = max{r1, r2, . . . , rn} and T : = max{σ1, σ2, . . . , σm, r}.
We say that x is a solution of (1.1) with initial function ϕ ∈ C([−r, 0],R)

provided that x is continuous on [0,∞), satisfies (1.1) and f(0) = ϕ(0), x(s) =

ϕ(s), for s ∈ [−r, 0].

The results concerning existence, uniqueness and continuous dependence of (1.1)

can be found in [2, 3, 6] and the asymptotic behavior of the solutions has been

studied elsewhere, see, e.g., [30] and the references cited there.

The function x is said to be a solution of (1.2) with initial function ϕ ∈
C([−T, 0],R) if x is continuous on [0,+∞], satisfies (1.2) and ϕ(0)−

∑m
j=1 pjϕ(−σj)

= f(0), x(s) = ϕ(s) for s ∈ [−T, 0].

As we can see from Chapter 12 in [17, pp. 273–274], neutral differential equa-

tions defined there include difference equations. Thus, some basic properties of

(1.2) can be found in [17].

Let C1([−r, 0] ,R) denote the set of all continuously differentiable functions

mapping [−r, 0] into R.

The function x is said to be a solution of (1.3) with initial function ϕ ∈
C1([−T, 0] ,R) if x(t) +

∑m
j=1 pjx(t − σj) is continuously differentiable for t ≥ 0

and x satisfies (1.3) for t ≥ 0, and x(s) = ϕ(s), for s ∈ [−T, 0].

The fundamental theory of (1.3) is studied in [4, 17].

The following definitions of oscillation are used in this paper [19, 20].

A function x is said to be oscillatory if for any t1 ≥ 0, we have

inf
[t1,+∞)

x(t) < 0 < sup
[t1,+∞)

x(t) .

A function x is said to be strongly oscillatory if we have

lim inf
t→+∞

x(t) < 0 < lim sup
t→+∞

x(t) .

2. Preliminaries

In this section, we establish some results needed in the proofs of our main

theorems.

To guarantee the existence of Laplace transforms of solutions of (1.1), (1.2) and

(1.3), we assume that for the function f , there exist two real numbers M ∈ R+

and b ∈ R such that

|f(t)| ≤Mebt, for t ≥ 0.

To begin with, let us start from (1.3). By Theorem 7.3 in [17, p. 26], we see

that every solution x of (1.3) satisfies

|x(t)| ≤M1e
b1t, for t ≥ 0,
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where M1 ∈ R+, b1 ∈ R, which implies the existence of the Laplace transform of

every solution x of (1.3).

For equation (1.2), let H(s) denote the Heaviside function, defined as,

H(s) :=

{
1, s ≥ 0,

0, s < 0,
and H(s) := 1−H(s).

Let U := {j ∈ {1, 2, . . . ,m}; σj = 0} and V : = {1, 2, . . . ,m} \ U . Then we have

m∑
j=1

pjx(t− σj) = −
∑
j∈U

pj

∫ t

0

x(t− s) dH(s)

+
∑
j∈V

pj

∫ t

0

x(t− s) dH(s− σj) for t > 0.

As we know, the Laplace transform of the derivate of H(s) exists. So we can

write (1.2) in the form (1.1). Therefore, we only need to prove the existence of the

Laplace transforms of solutions of (1.1). When r = 0, the existence of the Laplace

transform of every solution of (1.1) has been proved in [7, 13]. So here we assume

that r 6= 0.

The following conditions are used throughout this chapter.

There exist real numbers b ∈ R and M ∈ R+ such that

|f(t)| ≤Mebt, for t ≥ 0(2.1)

|ai(t)| ≤Mebt, for t ≥ 0, i = 1, 2, . . . , n.(2.2)

Lemma 2.1. Assume that (2.1) and (2.2) hold. Then every solution of (1.1)

has Laplace transform.

Proof. Take a solution x of (1.1) with initial function ϕ ∈ C([−r, 0] ,R); by

(1.1) and (2.1), we have

|x(t)| ≤Mebt +
n∑
i=1

∫ 0

−ri

|ai(t− s− ri)| |ϕ(s)| ds

+
n∑
i=1

∫ t

0

|ai(t− s− ri)| |x(s)| ds, t ≥ 0 .

Multiplying both sides of this inequality by e−bt, and taking into account (2.1)

and (2.2), we obtain

e−bt|x(t)| ≤M +M

n∑
i=1

e−bri
∫ 0

−ri

e−bs|ϕ(s)| ds

+M

n∑
i=1

e−bri
∫ t

0

e−bs|x(s)| ds, for t ≥ 0.
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By Gronwall’s inequality, it follows

|x(t)| ≤ ζ1e
(b+ζ2)t, t > 0,

where

ζ1 : = M

(
1 +

n∑
i=1

e−bri
∫ 0

−ri

e−bs|ϕ(s)| ds

)
,

ζ2 : = M

n∑
i=1

e−bri ,

which is a sufficient condition for the existence of the Laplace transform of x. �

As we will see in the procedure of the proofs of our main theorems, the central

role is played by an abscissa of convergence of Laplace transform, which is defined

by

b : = inf{σ ∈ R; X(σ) exists},

where X(λ) is the Laplace transform of x(t).

If b is the abscissa of convergence of X(λ), then X(λ) is analytic on Reλ > b

in the complex plane C. This can be found in [32, p. 347]. If ẋ(t) exists, and b1
is the abscissa of convergence of the Laplace transform of ẋ(t), then

L [ẋ(t)] = −x(0) + λL [x(t)] ,

and b1 ≤ b.

Now we will present some results which are needed below.

Lemma 2.2. Assume that b is the abscissa of convergence of the Laplace trans-

form X(λ). Then for any ε > 0, X(λ) has singular points in the region Dε of the

complex plane C defined by

Dε : = {λ = λ1 + iλ2; λ1 ∈ (b− ε, b], λ2 ∈ R}.

The proof of the lemma is implied by the definition of abscissa of convergence.

In fact, if the lemma is not true, then there exists an ε > 0, such that X(λ) is

analytic in Dε. Thus X(λ) exists in Reλ > b− ε. This is a contradiction with the

definition of abscissa of convergence.

Lemma 2.3. If X(λ) is the Laplace transform of a nonnegative function x and

has the abscissa of convergence b > −∞, then X(λ) has a singularity at the point

λ = b on the complex plane C [31, p. 58].
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3. Oscillation of a Volterra Integral Equation

In this section, we shall present the main results for oscillation of the Volterra

integral equation (1.1) via the method of Laplace transform.

Let xc(t) denote x(t + c), where c ∈ R. Then the Laplace transform Xc(λ)

of xc(t) exists and has the same abscissa of convergence as X(λ) by noting the

following formula

Xc(λ) = eλc
[
X(λ)−

∫ c

0

e−λtx(t) dt

]
.

The last integral defines an entire function of the complex variable λ ∈ C. It

is clear that X(λ) and Xc(λ) have their singularities at the same points on the

complex plane.

On the other hand, the translation of (1.1) along a solution x by c ∈ R is the

following equation

x(t+ c) = f(t+ c) +

∫ t+c

0

n∑
i=1

ai(t+ c− s)x(s− ri) ds, t ≥ 0 .

Multiplying the factor e−λt in both sides of this equation, and integrating it from

0 to +∞, we obtain

Xc(λ) = Fc(λ) +

∫ +∞

0

e−λt
∫ t+c

0

n∑
i=1

ai(t+ c− s)x(s− ri) ds dt ,

where Fc(λ) denotes the Laplace transform of f(t+ c). Then, we find∫ +∞

0

∫ t+c

0

e−λtai(t+ c− s)x(s− ri) ds dt

=

∫ c

0

x(s− ri)

∫ +∞

0

e−λtai(t+ c− s) ds dt

+

∫ +∞

0

∫ t

0

e−λtai(t− s)xc(s− ri) ds dt

: = I1 + I2 .

It is easy to see that

I1 = ζi(λ) +mi(λ)Ai(λ), I2 = Ai(λ)[µi(λ) + e−λriXc(λ)]

where

ζi(λ) :=

∫ c

0

x(s− ri)e
−λ(s−c)

∫ 0

c−s
e−λtai(t) dt ds ,

mi(λ) :=

∫ c

0

x(s− ri)e
−λ(s−c) ds ,

µi(λ) :=

∫ 0

−ri

e−λ(s+ri)ϕc(s) ds
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and Ai(λ) is the Laplace transform of ai(t). The functions ζi(·), mi(·) and µi(·)
are entire functions of the complex variable λ ∈ C. Therefore we have

Xc(λ) = Fc(λ) +
n∑
i=1

ζi(λ) +
n∑
i=1

(mi(λ) + µi(λ))Ai(λ) +
n∑
i=1

e−λriAi(λ)Xc(λ) .

Define H(λ) := 1−
∑n
i=1 e

−λriAi(λ). If H(λ) = 0 has no real roots, then we have

(3.1) Xc(λ) =

Fc(λ) +
n∑
i=1

ζi(λ) +
n∑
i=1

(mi(λ) + µi(λ))Ai(λ)

H(λ)
.

As mentioned previously, the authors [16] have used the method of Laplace

transform to study oscillation of delay differential equations. Here we will apply

their method to study oscillation of (1.1).

Theorem 3.1. Assume that the following conditions are satisfied:

(3.2)


a, a1, a2, . . . , an are abscissas of convergence of F (λ), A1(λ),

A2(λ), . . . , An(λ), respectively, and a > max{a1, a2, . . . , an}.
F (λ) has a singularity on Reλ = a, but is analytic at λ = a.

(3.3) H(λ) has no real roots on [a,+∞).

Then every solution of (1.1) is oscillatory.

Proof. Take a solution x of (1.1); for the sake of contradiction, we assume that

x is not oscillatory. Then there exists a sufficiently large T > 0 such that either

x(t) ≥ 0 or x(t) ≤ 0 for t > T .

Consider the case x(t) ≥ 0 for t > T . (The case x(t) ≤ 0 for t > T can be

treated in a similar way). Let us take a number c > T such that xc(t) ≥ 0 for

t > 0, namely, the function xc(t) is a nonnegative function. Assume that b is the

abscissa of convergence of X(λ), so Xc(λ) is analytic on the half-plane Reλ > b.

By Lemma 2.3, Xc(λ) can not be analytically continued to the point λ = b from

the right side, namely, there is no complex neighborhood of b on which we can

find an analytic function which agrees with Xc(λ) for Reλ > b. By assumptions

(3.2) and (3.3), we see that the function on the right side of (3.1) is analytic for

Reλ > max(a, b).

If a > b, in view of (3.2), F (λ) has a singularity on Reλ = a, and Ai(λ),

i = 1, 2, 3, . . . , n, are analytic in Reλ ≥ a. Taking (3.3) into account, we see

that Xc(λ) has a singularity Reλ = a, which contradicts that Xc(λ) is analytic in

Reλ > b.

If a < b, by (3.2) and (3.3), the function on the right side of (3.1) is analytic in

the region Reλ > a and at λ = a. This implies that Xc(λ) is analytic even in the

strip a < Reλ ≤ b. This is a contradiction.



VOLTERRA INTEGRAL EQUATIONS 93

If a = b, by the assumptions (3.2) and (3.3), we see that the function on the right

side of (3.1) is analytic in Reλ = a, but Xc(λ) has a singularity at Reλ = b = a,

which is a contradiction.

The proof is complete. �

Theorem 3.2. Assume that the following conditions are satisfied:

(3.4)


a, a1, a2, . . . , an are the abscissas of convergence of F (λ), A1(λ),

A2(λ), . . . , An(λ), respectively. There is an i ∈ {1, 2, . . . , n} such

that

ai > max{a, a1, ai−1, ai+1, . . . , an}.
Ai(λ) has a singularity on Reλ = ai, but is analytic at λ = ai.

(3.5) H(λ) has no real roots on [ai,+∞).

Then every solution of (1.1) is oscillatory.

The proof of it is similar to the one of Theorem 3.1.

Note that in (1.1), if ai(t) = ciw(t), i = 1, 2, . . . , n, ci are real numbers, then

ai(t), (i = 1, 2, . . . , n), have the same abscissa d. If d > a, where a is the abscissa

of convergence of F (λ), then we can not apply Theorems 3.1 and 3.2. To cover

the latter case, we have the following.

Theorem 3.3. Assume that the following conditions are satisfied:

(3.6)


a and d are the abscissas of convergence of F (λ) and D(λ), and

d > a where D(λ) is the Laplace transform of w(t). D(λ) has a

singularity on Reλ = d, but is analytic at λ = d.

(3.7) H(λ) has no real roots on [d,+∞).

Then every solution of the Volterra integral equation

(3.8) x(t) = f(t) +

∫ t

0

w(t − s)
n∑
i=1

cix(s− ri) ds, t ≥ 0,

is oscillatory.

Proof. Since ai(t) = ciw(t), we see that (3.1) has the form

Xc(λ) =

Fc(λ) +
n∑
i=1

ζi(λ) +D(λ)
n∑
i=1

ci(mi(λ) + µi(λ))

H(λ)
.

where H(λ) := 1−D(λ)
∑n

i=1 cie
−λri .

The rest of the proof is similar to the one of Theorem 3.1. �

By the following example we show that for some Volterra integral equations,

if (3.6) or (3.7), or both, are not true then not all solutions of the equation are

oscillatory.
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Example 3.1. Consider the Volterra integral equation

x(t) = 1 +

∫ t

0

2x(s− 1) ds, t ≥ 0 .

The abscissas of convergence of F (λ) and D(λ) are 0, namely, a = b = 0. Note

that D(λ) = 2/λ is singular at λ = 0. This means that (3.6) is not satisfied.

Furthermore

H(λ) := 1−
2e−λ

λ
=
λ− 2e−λ

λ
,

the function L(λ) := λ− 2e−λ has one real root λ ∈ [0,+∞). So (3.7) does not

hold.

On the other hand, if we only consider the solutions of the delay differential

equation

ẋ(t)− 2x(t− 1) = 0

with the initial functions ϕ ∈ C([−1, 0] ,R) and ϕ(0) = x(0) = 1, these solutions

are also the solutions of the above Volterra integral equation. But it is clear that

x(t) = eλt is a nonoscillatory solution of this delay differential equation. So the

Volterra integral equation has a nonoscillatory solution.

The following example shows that the conditions in Theorem 3.1 are not nec-

essary for (1.1) to have oscillatory solution.

Example 3.2. Consider the following Volterra integral equation

x(t) =
cos t− sin t+ e−t

2
+

∫ t

0

e−(t−s)x(s − 2π) ds, t ≥ 0 .

The Laplace transform of f(t) and a(t) are, respectively,

F (λ) =
1

2(1 + λ)
+

λ− 1

2(1 + λ2)
, A(λ) =

1

1 + λ
.

The abscissas of convergence of F (λ) and A(λ) are a = 0 and b = −1, respectively.

Thus, condition (3.2) is satisfied. Moreover, the corresponding characteristic equa-

tion is

H(λ) =
1

1 + λ

(
(1 + λ)− e−2πλ

)
which has a real root λ = 0 ∈ [0,+∞). That is, condition (3.3) is not satisfied.

However, x(t) = cos t is an oscillatory solution of the equation.
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Example 3.3. Consider the Volterra integral equation

x(t) = cos t−
e−1(cos t+ sin t)− e−(1+t)

2
+

∫ t

0

e−(t−s+1)x(s− 2π) ds, t ≥ 0 .

It is easy to see that (3.2) and (3.3) are satisfied. By Theorem 3.1, we know

that every solution of this Volterra integral equation is oscillatory, for example,

x(t) = cos t is an oscillatory solution.

Generally speaking, it is not an easy task to check that the characteristic equa-

tion has no real roots in an interval. It is natural to ask: when does H(λ) = 0

have no real roots on [α,+∞)? where α ∈ R. In order to get an answer we restrict

ourselves to the Volterra integral equation

(3.9) x(t) = f(t) +

∫ t

0

a(t− s)x(s− r) ds, t ≥ 0 .

The corresponding characteristic equation is

H(λ) := 1−A(λ)e−λr = 0 .

The following result is obvious.

Lemma 3.1. Assume that there exist two real numbers ζ and M > 0 such that

|a(t)| ≤Meζt, for t ≥ 0,(3.10)

ζ < α and (α− ζ)eαr > M.(3.11)

Then H(λ) has no real roots on [α,+∞).

The following result is a combination of Theorem 3.1 and Lemma 3.1, in which

the more explicit conditions are provided.

Corollary 3.1. Assume that the following conditions hold:

(3.12)


a and b are the abscissas of convergence of F (λ) and A(λ), re-

spectively, and a > b. F (λ) has a singularity on Reλ = a, but is

analytic at λ = a.

(3.13) All conditions of Lemma (3.1) hold.

Then every solution of (3.9) is oscillatory.

An illustrative example of Corollary 3.1 is the following.
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Example 3.4. Consider the Volterra integral equation

x(t) = sin t+

∫ t

0

e−2(t−s) cos(t− s)x(s− 1) ds, t ≥ 0 .

It follows that

f(t) = sin t, and a(t) = e−2t cos t .

We can see easily that all the conditions in Corollary 3.1 hold. Thus every solution

of this Volterra integral equation is oscillatory.

Now we shall consider some specific cases of (1.1), especially some forced delay

differential equations. To do this, assume that the function f in (3.8) is continu-

ously differentiable and the function w(t) in (3.8) has the form

w(t) = ebt ,

where b is a real number. Then for n = 1, equation (3.8) has the following form

(3.14) ẋ(t)− bx(t) + px(t− r) = ḟ(t)− bf(t), t ≥ 0,

where p is a real number.

Since L[ḟ ] = λF (λ) + f(0), the abscissa of convergence of L[ḟ ] is less than or

equal to the one of F (λ). So the abscissa of convergence of the Laplace transform

of ḟ(t)− bf(t) is less than or equal to the one of F (λ).

Corollary 3.2. Consider equation (3.14) where assuming that the following

conditions are satisfied.

(i) a is the abscissa of convergence of F (λ). F (λ) has a singularity on Reλ =

a, but F (λ) is analytic at λ = a. And a > b.

(ii) (a− b)ear > p.

Then every solution of (3.14) with x(0) = f(0) is oscillatory.

Proof. Clearly the condition (3.2) is satisfied (for n = 1). So we only need to

prove that the characteristic equation has no real roots in [a,+∞). Since

H(λ) =
e−λr

λ− b
((λ− b)eλr − p) ,

it is easy to prove that the function L(λ) := (λ−b)eλr−p is an increasing function

of λ (∈ R). Also by (ii), we obtain that L(a) > 0. So L(λ) > 0 for real λ > a.

This means that

H(λ) = L(λ)
e−λr

λ− b
has no real roots on [a,+∞). Thus by Theorem 3.1, every solution of the Volterra

integral equation

x(t) = f(t) + p

∫ t

0

eb(t−s)x(s− r) ds, t ≥ 0 ,

is oscillatory. This is equivalent to saying that every solution of (3.14) with the

condition x(0) = f(0) is oscillatory. �
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Example 3.5. Consider the delay differential equation

ẋ(t) + x(t) +
1

2
x(t − π) = 2 cos t+ sin t, t ≥ 0.

Corresponding to (3.14), we have that b = −1, p = 1
2 , r = π,

f(t) =
1

2
(cos t+ 3 sin t)−

e−t

2
,

and the Laplace transform F (λ) of f has the abscissa of convergence λ = 0. Also

F (λ) has singularities on Reλ = 0, but F (λ) is analytic at λ = 0. By Corollary 3.2,

we know that every solution of this delay differential equation with forcing term

is oscillatory provided that x(0) = f(0) = 0. For example, x(t) = 2 sin t is an

oscillatory solution.

Having finished the study of the oscillation of (1.1), now let us turn to (1.2). In

this case, (3.1) has the form

X(λ) =

F (λ) +
m∑
j=1

pj

∫ 0

−σj

e−λ(s+σj)ϕ(s) ds+
n∑
i=1

Ai(λ)

∫ 0

−ri

e−λ(s+ri)ϕ(s) ds

H(λ)

where H(λ) = 1−
∑m
j=1 pje

−λσj −
∑n
i=1Ai(λ)e

−λri .

Following the same way as we have done in Theorems 3.1, 3.2 and 3.3, we have

the following results without further proving.

Theorem 3.4. Assume that the following conditions hold.

(i) a, a1, a2, . . . , an are the abscissas of convergence of F (λ), A1(λ), A2(λ),

. . . , An(λ), respectively, and a > max{a1, a2, . . . , an}. F (λ) has a singu-

larity on Reλ = a, but is analytic at λ = a.

(ii) H(λ) has no real roots on [a,+∞).

Then every solution of (1.2) is oscillatory.

Theorem 3.5. Assume that the following conditions hold.

(i) a, a1, a2, . . . , an are the abscissas of convergence of F (λ), A1(λ), A2(λ),

. . . , An(λ), respectively. There is an i ∈ {1, 2, . . . , n} such that

ai > max{a, a1, . . . , ai−1, ai+1, . . . , an} .

Ai(λ) has a singularity on Reλ = ai, but is analytic at λ = ai.

(ii) H(λ) has no real roots on [ai,+∞).

Then every solution of (1.2) is oscillatory.
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Theorem 3.6. Assume that the following conditions hold.

(i) a and b are the abscissas of convergence of F (λ) and A(λ), respectively,

where b > a. A(λ) has a singularity on Reλ = b, but A(λ) is analytic at

λ = b.

(ii) H(λ) has no real roots on [b,+∞), where

H(λ) := 1−
m∑
j=1

pje
−λσj −A(λ)

n∑
i=1

e−λri .

Then every solution of the difference-integral equation

(3.15) x(t)−
m∑
j=1

pjx(t− σj) = f(t) +
n∑
i=1

ci

∫ t

0

a(t− s)x(s− ri) ds, t ≥ 0.

is oscillatory.

As a special case of (3.15) we consider the following equation

(3.16) x(t) − px(t− σ) = f(t) +

∫ t

0

a(t− s)x(s − r) ds, t ≥ 0,

where p, σ, r ∈ R+.

The characteristic equation of (3.16) is

H(λ) := 1− pe−λσ −A(λ)e−λr = 0 .

Corollary 3.3. Assume that the following conditions hold.

(i) a and b are the abscissas of convergence of F (λ) and A(λ), respectively,

where a > b. F (λ) has a singularity on Reλ = a, but is analytic at λ = a.

(ii) There are two real numbers ζ < a and M > 0 such that

|a(t)| ≤Meζt, t > 0 .

(iii) p ≤ eaσ, and (a− ζ)(1− pe−aσ) > Me−ar.

Then every solution of (3.16) is oscillatory.

Proof. In view of the conditions of Theorem 3.4 (when n = 1), we need only to

prove that H(λ) = 0 has no real roots in [a,+∞). Since by (ii) we know that

H(λ) ≥
1

λ− ζ

[
(λ− ζ)(1− pe−λσ)−Me−λr

]
, for λ > ζ .

Let ∆(λ) := (λ− ζ)(1− pe−λσ)−Me−λr. It is easy to see from (ii) and (iii) that

the function ∆(λ) is increasing and ∆(a) > 0. Therefore, H(λ) = 0 has no real

roots in [a,+∞). �
As an application of Theorem 3.4, we discuss oscillation of the following neutral

differential equation

(3.17) ẋ(t)− pẋ(t− σ)− bx(t) + bpx(t− σ)− cx(t− r) = ḟ(t)− pf(t) ,

where p, σ, r, c ∈ R+ and f is continuously differentiable. As a matter of fact,

setting a(t) := cebt in (3.16), we can easily get (3.17).
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Corollary 3.4. Suppose that

(i) a is the abscissa of convergence of F (λ). F (λ) has a singularity on Reλ =

a, but F (λ) is analytic at λ = a.

(ii) The inequalities b < a, p < eaσ and (a− b)(1− pe−aσ) > |c|e−ar hold.

Then every solution of (3.17) with the condition x(0) = f(0) is oscillatory.

Proof. Since a(t) = cebt, we have A(λ) = c/(λ− b). The rest of the proof can

be fulfilled by following a similar way as for the proof of Corollary 3.3. �
Example 3.6. Consider the neutral differential equation

ẋ(t)− ẋ(t− π)− x(t) + x(t− π) = sin t+ cos t .

It is clear that the condition (ii) in Corollary 3.4 is not satisfied. Moreover, it is

easy to see that

x(t) = −
1 + cos t

2
is a nonoscillatory solution with the property x(0) = f(0) = −1.

4. Oscillation of Nonhomogeneous Neutral Differential Equations

In this section we study oscillation of the neutral differential equation (1.3).

For the homogeneous neutral differential equations, necessary and sufficient

conditions (in terms of their characteristic equations) for oscillation of all solutions

have been obtained in [8, 9, 12, 13, 15, 21, 27, 28]. Also necessary and sufficient

conditions for oscillation of homogeneous neutral differential equations of higher-

order have been obtained in [5, 23, 29].

In [16] a method has been developed to study oscillation of nonhomogeneous

delay differential equations. This method has been applied in [24–26] to get

necessary and sufficient conditions of oscillation of some homogeneous neutral

differential equations.

As we know, the characteristic equation of (1.3) is

(4.1) H(λ) := λ+ λ

m∑
j=1

pje
−λσj +

n∑
i=1

qie
−λri = 0

and the Laplace transform X(λ) of a solution of (1.3) is given by

(4.2) X(λ) =
F (λ) + P (λ)

H(λ)
,

where F (λ) is the Laplace transform of the function f ,

P (λ) :=
m∑
j=1

pjϕ(−σj)− λ
m∑
j=1

pj

∫ 0

−σj

e−λ(s+σj)ϕ(s) ds

−
n∑
i=1

qi

∫ 0

−ri

e−λ(s+ri)ϕ(s) ds,
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and ϕ is the initial function for the solution. It is obvious that P (λ) is an entire

function on the complex plane C.

Theorem 4.1. Assume that the following conditions hold.

(i) a is the abscissa of convergence of F (λ). F (λ) has a singularity on Reλ =

a, but is analytic at λ = a.

(ii) H(λ) has no real roots on [a,+∞).

Then every solution of (1.3) is oscillatory.

The proof of it follows the one for Theorem 3.1.

Example 4.1. It is easy to see that the nonhomogeneous neutral differential

equation

ẋ(t) + 2ẋ(t− 2π) + x(t− π) = 3(cos t− sin t)

has only oscillatory solutions. For example, x(t) = sin t is a solution. Indeed

the conditions (i) and (ii) in Theorem 4.1 are satisfied, where the characteristic

equation is as follows

H(λ) := λ+ 2λe−2πλ + 3e−πλ = 0 ,

which has obviously no real roots on [0,+∞). In fact H(λ) > 0 for λ ≥ 0.

Note that if pj ≥ 0, qi ≥ 0 and σj ≥, ri ≥ 0, (i = 1, 2, . . . , n, j = 1, 2, . . . ,m),

and F (λ) has λ = 0 as the abscissa of convergence of the Laplace transform, has

a singularity on Reλ = 0 and is analytic at λ = 0, then the neutral differential

equation (1.3) has only oscillatory solutions. Indeed its characteristic equation

H(λ) := λ+ λ

m∑
j=1

pje
−λσj +

n∑
i=1

qie
−λri = 0

has no real roots on [0,+∞).

The previous results hold under the condition that the abscissa of convergence

of F (λ) is a real number. The case where a = −∞ is covered by the following

theorem.

We also assume that σ := min{r1, r2, . . . , rn, σ1, σ2, . . . , σm} > 0, and without

loss of generality, we also assume that r1 : = max{r1, r2, . . . , rn}.

Theorem 4.2. Assume that the following conditions hold.

(4.3) max{r1, r2, . . . , rn} > max{σ1, σ2, . . . , σm}.

(4.4)


The abscissa of convergence of F (λ) is −∞, and for some ε > 0

with the property that ε < min{σ, r1 − max{r2, . . . , rn, σ1, σ2,

. . . , σm}}, it holds F (λ) = o(e−λ(σj−ε)) and F (λ) = o(e−λ(ri−ε))

as λ→ −∞, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
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(4.5) H(λ) has no real roots on R.

Then every nontrivial solution of (1.3) is oscillatory.

Proof. For the contrary assume that (1.3) has a nonoscillatory solution x. That

is, there exists a T > 0, such that x(t) ≥ 0 (or x(t) ≤ 0) and x(t) 6≡ 0 for t > T .

So we can always find a real number c > T such that xc(t) ≥ 0 and xc(t) 6≡ 0 on

[−r, 0]. The translation xc(t) of x(t) is a nonpositive (or a nonnegative) solution

of the equation

d

dt

x(t) +
m∑
j=1

pjx(t− σj)

+
n∑
i=1

qix(t− ri) = f(t+ c), for t ≥ 0 .

Fix such a c > T . Then for the Laplace transform Fc(λ) of fc(t) = f(t + c), we

have

Fc(λ) = eλc
[
F (λ) −

∫ c

0

e−λtf(t) dt

]
.

Hence we have

(4.6)
Fc(λ)

e−λ(τi−ε)
= eλc

F (λ)

e−λ(τi−ε)
− eλc

∫ c

0

e−λtf(t) dt

e−λ(τi−ε)
,

i = 1, 2, . . . , n + m, where τi = ri if i ∈ {1, 2, . . . , n} and τi = σi−n, if i ∈
{n+ 1, n+ 2, . . . , n+m}. We can see that

(4.7) lim
λ→−∞

eλc = 0 ,

and, by (4.4), we have

(4.8) lim
λ→−∞

F (λ)

e−λ(τi−e)
= 0 .

Since f ∈ C(R+,R), so there exists a positive number M such that

|f(t)| ≤M on [0, c].

Thus ∣∣∣∣∫ c

0

e−λtf(t) dt

∣∣∣∣ ≤ ∫ c

0

Me−λt dt =
M

λ
(1− e−λc) .

Therefore

(4.9) lim
λ→−∞

∣∣∣∣∣eλc
∫ c
0
e−λtf(t) dt

e−λ(τi−ε)

∣∣∣∣∣ ≤ lim
λ→−∞

∣∣∣∣M(eλc − 1)

λe−λ(τi−ε)

∣∣∣∣ = 0 .
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Now taking into account (4.6)–(4.9), we obtain the conclusion that Fc(λ) also

satisfies (4.4).

From the assumption and the above discussion, one can see that it is enough

to assume that x(t) ≥ 0 for t > −r1. Furthermore, we know, from (4.2), (4.4) and

(4.5), that X(λ) has the abscissa of convergence −∞ and X(λ) > 0, for λ ∈ R.

By (4.1), we have

H(λ) = e−λr1

λeλr1 + λ

m∑
j=1

pje
−λ(σj−r1) + q1 +

n∑
i=2

qie
−λ(ri−r1)

 .

It is clear that

lim
λ→−∞

λeλr1 = 0 , lim
λ→−∞

m∑
j=1

pje
−λ(σj−r1) = 0 ,

and

lim
λ→−∞

n∑
i=2

qie
−λ(ri−r1) = 0 .

So the sign of H(λ) depends eventually on the sign of q1. Thus we have two cases:

q1 > 0 and q1 < 0. In the following we shall discuss only the case q1 > 0. The

case q1 < 0 can be treated in a similar way. Thus we have H(λ) > 0 eventually

for λ < 0.

Let

Φj(λ) := λpj

∫ 0

−σj

e−λ(s+σj)ϕ(s) ds and Ψi(λ) := qi

∫ 0

−ri

e−λ(s+ri)ϕ(s) ds ,

for j = 1, 2, . . . ,m and i = 1, 2, . . . , n. Then we observe that

Ψ1(λ) := q1

∫ 0

−r1

e−λ(s+r1)ϕ(s) ds = q1ϕ(ξ0)e
−λr1

∫ 0

−r1

e−λs ds

= q1ϕ(ξ0)e
−λ(r1−ε) e

λ(r1−ε) − e−λε

λ
,

holds for some ξ0 ∈ [−r1, 0], where ε satisfies the conditions in (4.4). Since ϕ(t) ≥ 0

and ϕ(t) 6≡ 0 on [−r1, 0], so Ψ1(λ) > 0. This implies that ϕ(ξ0) 6= 0, so we have

that ϕ(ξ0) > 0.

On the other hand, it is clear

lim
λ→−∞

eλ(r1−ε) − e−λε

λ
= +∞ .
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Thus there exists a large number N > 0 such that

q1ϕ(ξ0)
eλ(r1−ε) − e−λε

λ
> 1, for λ < −N .

Therefore, we have

(4.10) Ψ1(λ) > e−λ(r1−ε), for λ < −N .

On the other hand, we also have

Φj(λ) = λpj

∫ 0

−σj

e−λ(s+σj)ϕ(s) ds = λpjσje
−λ(−ξj+σj)ϕ(−ξj) ,

where ξj ∈ (0, σj), j = 1, 2, . . . ,m, and

Ψi(λ) := qiϕ(−ηi)rie
−λ(−ηi+ri),

where ηi ∈ (0, ri), i = 2, 3, . . . , n.

So we have

|Φj(λ)|

Ψ1(λ)
<
|λpj |ϕ(−ξj)σje−λ(σj−ξj)

e−λ(r1−ε)
= |λpj |ϕ(−ξj)σje

λ(r1−ε−σj+ξj),

for λ < −N , j = 1, 2, . . . ,m.

Since r1 − ε > σj > σj − ξj , we find

lim
λ→−∞

eλ(r1−ε−σj+ξj) = 0, for j = 1, 2, . . . ,m.

Similarly,

|Ψi(λ)|

Ψ1(λ)
<
|qi|ϕ(−ηi)rieλ(−ηj+ri)

e−λ(r1−ε)
= |qi| riϕ(−ηi)σje

λ(r1−ε−ηj+ri),

for i = 2, 3, . . . , n.

From r1 − ε > ri > ri − ηi, we have

lim
λ→−∞

eλ(r1−ε−ηj+ri) = 0, for i = 2, 3, . . . , n.

Therefore we obtain

(4.11) lim
λ→−∞

|Φj(λ)|

Ψ1(λ)
= lim
λ→−∞

|Ψi(λ)|

Ψ1(λ)
= 0 ,

for i = 2, 3, . . . , n and j = 1, 2, 3, . . . ,m.
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On the other hand,

F (λ) + P (λ) = F (λ) +
m∑
j=1

pjϕ(−σj)−
m∑
j=1

Φj(λ) −
n∑
i=2

Ψi(λ)−Ψ1(λ)

= Ψ1(λ)

 F (λ)

Ψ1(λ)
+

m∑
j=1

pjϕ(−σj)

Ψ1(λ)
− 1−

m∑
j=1

Φj(λ) +
n∑
i=2

Ψi(λ)

Ψ1(λ)

 .
By (4.4) and (4.10), we know that

lim
λ→−∞

F (λ)

Ψ1(λ)
= 0 .

Since
∑m
j=1 pjϕ(−σj) is a real constant, so

lim
λ→−∞

m∑
j=1

pjϕ(−σj)

Ψ1(λ)
= 0 .

Then taking (4.11) into account, we obtain

lim
λ→−∞

(F (λ) + P (λ)) = −∞ .

Since H(λ) > 0, X(λ) > 0, so H(λ)X(λ) > 0, for −λ (∈ R+) large enough. Then

from (4.2), we have,

0 < H(λ)X(λ) = F (λ) + P (λ) < 0 ,

for such a λ, a contradiction. So x is oscillatory. The proof is complete. �
Using Corollaries 1 and 2 in [18] we can obtain some explicit sufficient conditions

under which the solutions of forced neutral differential equations of the form

(4.12)
d

dt
[x(t)− px(t− σ)] + qx(t− r) = f(t), t ≥ 0

are oscillatory.

Corollary 4.1. Assume that the following conditions hold.

(i) r > σ, 0 < p < 1, σ > 0, q > 0.

(ii) The abscissa of convergence of F (λ) is −∞, and, for some ε > 0 with

ε < min{σ, r − σ}, it holds F (λ) = o(e−λ(σ−ε)) as λ→ −∞.

(iii)
q

1− p

[
r +

p

1− p
σ

]
>

1

e
.

Then every nontrivial solution of the neutral differential equation (4.12) is oscil-

latory.
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Corollary 4.2. Assume that the conditions (i) and (ii) in Corollary (4.1) hold

and p > 1, σ > 0, q > 0 and

p1−kq

p− 1

[(
k +

1

p− 1

)
σ − r

]
>

1

e
,

where k is the least positive integer such that kσ − r > 0. Then every nontrivial

solution of the neutral differential equation (4.12) is oscillatory.

As an application of Corollary 4.2, let us consider the neutral differential equa-

tion

(4.13) ẋ(t)− 2ẋ(t− 5π) + 3x(t− 6π) = f(t)

where

f(t) :=

{
sin t, t ∈ [2π, 3π] ,

0, t ∈ [0, 2π) ∪ (3π,−∞) .

First, we see that the Laplace transform of f is

F (λ) =
e−3πλ + e−2πλ

1 + λ2
.

Note that at the complex points λ = ±i, where i =
√
−1, the function F is

bounded, and the derivate of F at the points λ = ±i exists. Therefore F is

analytic on the complex plane C. So the abscissa of convergence of F is equal to

−∞, namely, b = −∞.

We observe that p = 2, q = 3, σ = 5π, r = 6π, so the number k = 2 is the least

positive integer such that 5πk − 6π > 0. Now take ε ∈ (0, π), then we have

0 < ε < min{5π, 6π − 5π} = π,

lim
λ→−∞

F (λ)

e−λ(σ−ε)
= lim
λ→−∞

e−3πλ + e−2πλ

(1 + λ2)e−λ(5π−ε)
= 0 ,

lim
λ→−∞

F (λ)

e−λ(r−ε)
= lim
λ→−∞

e−3πλ + e−2πλ

(1 + λ2)e−λ(6π−ε)
= 0 ,

and
p1−kq

p− 1

[(
k +

1

p− 1

)
σ − r

]
=

3

2
9π >

1

e
.

So all conditions of Corollary 4.2 hold.

On the other hand, x ≡ 0 is not a solution of (4.13). By Corollary 4.2, we know

that every solution of (4.13) is oscillatory.
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