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ON THE QUASI–UNIFORM CONVERGENCE OF

TRANSFINITE SEQUENCES OF FUNCTIONS

J. EWERT

Transfinite sequences of functions form some special type of nets. For instance,

under some simple assumptions on spaces, the pointwise convergence of such nets

suffices to the preservation of continuity, quasi-continuity and other generalized

forms of them [3, 7, 8]. In this note we investigate the quasi-uniform convergence

of transfinite sequences of functions. We formulate certain sufficient conditions

for equality of various types of convergence, connections between convergence of

functions fξ to f and convergence in some sense of sets of continuity points C(fξ)

to C(f) and cluster sets L(fξ, x) to L(f, x). In the last part it is shown that the

quasi-uniform convergence is preserved under superpositions.

Let X be a topological space. For a net {As : s ∈ S} of sets As ⊂ X by

lim inf As and lim supAs we denote the sets given by

lim inf As =
⋃
p∈S

⋂
s≥p

As ,

lim supAs =
⋂
p∈S

⋃
s≥p

As .

We will use the symbol limAs if lim inf As = lim supAs. Moreover, Li As and

Ls As are sets consisting of all points x ∈ X each neighbourhood of which meets

{As : s ∈ S} eventually or frequently, respectively. If Li As = Ls As, then this set

is denoted as Lt As, [5, 6].

Now let (Y, d) be a metric space. For any y ∈ Y , a set A ⊂ Y and r > 0 we

will write B(y, r) = {z ∈ Y : d(y, z) < r} and B(A, r) = ∪{B(y, r) : y ∈ A}.
A net {fs : s ∈ S} of functions fs : X → Y is called quasi-uniformly convergent

to a function f : X → Y if for each x ∈ X and ε > 0 there exists s0 ∈ S such

that for each s ∈ S, s ≥ s0 there is a neighbourhood U of x with the property

d(fs(z), f(z)) < ε for z ∈ U , [9].
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In the sequel we will use the following properties (they are proved in [9] for

functions with values in uniform spaces):

(1) If functions fs : X → Y , s ∈ S, are continuous at a point x ∈ X and the

net {fs : s ∈ S} converges to f quasi-uniformly, then f is continuous at x.

(2) If fs, f : X → Y , s ∈ S, are continuous functions and the net {fs : s ∈ S}
is pointwise convergent to f , then the convergence is quasi-uniform.

Through this paper the smallest uncountable ordinal number is denoted by ω1

and a net {fξ : ξ < ω1} is called a transfinite sequence of functions. If (Y, d) is

a metric space and f, fξ : X → Y , ξ < ω1 are any functions, then the transfinite

sequence {fξ : ξ < ω1} converges to f :

(3) pointwise if and only if for each x ∈ X there exists αx such that fξ(x) =

f(x) for any ξ, αx ≤ ξ < ω1;

(4) uniformly if and only if there exists α < ω1 such that fξ(x) = f(x) for

each x ∈ X and ξ, α ≤ ξ < ω1, [4].

Let X be a topological space and (Y, d) a metric one. A net {fs : s ∈ S} of

functions fs : X → Y is called almost uniformly convergent to a function f : X →
Y if for each x ∈ X, ε > 0 there exists a neighbourhood U of x and so ∈ S with

d(fs(z), f(z)) < ε for any z ∈ U , s ≥ s0, [1].

If X is a compact space, then the almost uniform convergence coincides with

the uniform one, [1]. Thus we have

uniform convergence =⇒ almost uniform =⇒ quasi-uniform

convergence convergence

⇓ ⇓
uniform on compact sets =⇒ pointwise

convergence convergence

and none of implications in this diagram is invertible.

Theorem 1. Let X be a separable topological space and (Y, d) a metric one.

If fξ : X → Y , ξ < ω1, are continuous functions and the sequence {fξ : ξ < ω1}is
quasi-uniformly convergent to a function f : X → Y , then this sequence converges

to f uniformly.

Proof. Let {xn : n ≥ 1} be a dense subset of X. According to (3) and from the

properties of ordinal numbers we can choose an α < ω1 such that fξ(xn) = f(xn)

for each n ≥ 1 and ξ with α ≤ ξ < ω1. The quasi-uniform convergence implies

the continuity of f . Continuous functions with values in a metric space which are

equal on a dense subset are equal; so we have fξ(x) = f(x) for each ξ, α ≤ ξ < ω1

and x ∈ X. In virtue of (4) it means the uniform convergence. �

Using analogous arguments can be shown the following:
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Theorem 2. Let X be a locally compact metric space and Y a metric one.

If fξ : X → Y , ξ < ω1, are continuous functions and the sequence {fξ : ξ < ω1}
quasi-uniformly converges to a function f : X → Y , then it converges to f almost

uniformly.

Corollary 1. Let X be a first countable separable space and Y a metric one. If

{fξ : ξ < ω1} is a transfinite sequence of continuous functions fξ : X → Y which

is pointwise convergent to a function f : X → Y , then this sequence uniformly

converges to f .

Proof. Since X is first countable, it follows from [8, Th. 1] that f is continu-

ous. Thus the convergence is quasi-uniform and the conclusion is an immediate

consequence of Theorem 1. �

Denoting by C(X,Y ) the set of all continuous functions from X into Y our

results can be expressed as the following:

Corollary 2. If X is a first countable separable space and Y is a metric one,

then for transfinite sequences in C(X,Y ) all forms of convergence: uniform, almost

uniform, quasi-uniform, uniform on compact sets and pointwise are equivalent.

For a function f the set of all points at which f is continuous is denoted by

C(f). Then we have:

Theorem 3. Let X be a topological space and (Y, d) a metric one. If {fξ :

ξ < ω1} is a transfinite sequence of functions fξ : X → Y which is quasi-uniformly

convergent to a function f : X → Y , then C(f) = limC(fξ).

Proof. For a point x0 ∈ lim supC(fξ) we put S1 = {ξ < ω1 : x0 ∈ C(fξ)}.
Then {fξ : ξ ∈ S1} is a net quasi-uniformly convergent to f . Now, applying (1)

we have x0 ∈ C(f). Thus it is shown that lim supC(fξ) ⊆ C(f).

Conversely, let x0 ∈ C(f). From the quasi-uniform convergence for each n ≥ 1

there exists ξn < ω1 such that for any ξ with ξn ≤ ξ < ω1 there is a neighbourhood

U = U(ξ, n) of x0 with the property d(fξ(x), f(x)) < 1
n for x ∈ U(ξ, n). We choose

α < ω1 satisfying ξn ≤ α for each n ≥ 1. Now we establish ξ with α ≤ ξ < ω1,

ε > 0 and a natural number m ≥ 1 for which 3
m < ε. Then using the fact

x0 ∈ C(f) we take a neighbourhood W of x0 such that

d(f(x), f(x0)) <
1

m
and d(fξ(x), f(x)) <

1

m
for x ∈W .

Hence we obtain d(fξ(x), fξ(x0) < ε for x ∈ W . It implies x0 ∈ C(fξ) for each

ξ with α ≤ ξ < ω1: so we have shown C(f) ⊂ lim inf C(fξ) which completes the

proof. �
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Corollary 3 [4, Th. 2.1]. Let X be a locally compact space and (Y, d) a metric

one. If a transfinite sequence {fξ : ξ < ω1} of functions fξ : X → Y converges to

a function f : X → Y uniformly on compact sets, then C(f) = limC(fξ).

Proof. If X is a locally compact space, then the uniform convergence on com-

pact sets coincides with the almost uniform convergence [1, Th. 2.5]. Thus the

conclusion follows from Theorem 3. �

Let us remark that Theorem 3 is not true for usual sequences. For instance,

let R be the space of real numbers with the natural topology and Q the set od

rationals. We take functions fn, f : R→ R given by f(x) = 0 for each x ∈ R,

fn(x) =

{ 1
n
, if x ∈ Q;

− 1
n
, if x ∈ R \Q.

Then the sequence {fn : n ≥ 1} uniformly converges to f but limC(fn) = ∅ 6=
R = C(f).

Let f : X → Y be a function and x ∈ X. The cluster set of f at x, denoted by

L(f, x), is defined as the set of all points y ∈ Y such that there exists a net {xσ :

σ ∈ Σ} in X with xσ → x and f(xσ)→ y. Equivalently, L(f, x) = ∩{f(U) : U is a

neighbourhood of x}. The inverse cluster set of f at y ∈ Y is the set L−1(f, y) of all

x ∈ X such that y ∈ L(f, x). It can be expressed also as L−1(f, y) = ∩{f−1(V ) : V

is a neighbourhood of y}, [2]. The graph of f we denote by G(f). Then

(5) The graph G(f) of a function f is closed if and only if L(f, x) = {f(x)}
for each x ∈ X, [2, Th. I.1.3].

Theorem 4. Let X be a topological space and (Y, d) a metric one. If a transfi-

nite sequence {fξ : ξ < ω1} of functions fξ : X → Y is quasi-uniformly convergent

to f , then:

L(f, x) = limL(fξ, x) = Lt L(fξ, x) for each x ∈ X,

and L−1(f, y) = limL−1(fξ, y) for each y ∈ Y .

Moreover, if the convergence is almost uniform, then L−1(f, y) = Lt L−1(fξ, y)

for each y ∈ Y .

Proof. Let x0 ∈ X, ε > 0 and let k ≥ 1 be such that 3
k
< ε. For a point

y0 ∈ L(f, x0) there exists a net {xσ : σ ∈ Σ} in X such that xσ → x0 and f(xσ)→
y0. Using the quasi-uniform convergence and properties of ordinal numbers we

can choose α < ω1 such that for each n ≥ 1 and each ξ with α ≤ ξ < ω1 there

exists a neighbourhood U of x0 with d(fξ(x), f(x)) < 1
n

for x ∈ U . Let ξ be

established with α ≤ ξ < ω1 and let U be a neighbourhood of x0 for which we

have d(fξ(x), f(x)) < 1
k

if x ∈ U . Then σ0 ∈ Σ can be taken such that xσ ∈ U
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and d(f(xσ), y0) <
1
k for σ ≥ σ0. It implies d(fξ(xσ), y0) ≤

2
k < ε, so fξ(xσ)→ y0

for each ξ, α ≤ ξ < ω1. Thus we have shown

(∗) L(f, x0) ⊂ lim inf L(fξ, x0) ⊂ Li L(fξ, x0) .

Now, if y0 ∈ Ls L(fξ, x0), then we can choose ξ < ω1 and a neighbourhood W of

x0 such that d(fξ(x), f(x)) < 1
k

for x ∈W and B
(
y0,

1
k

)
∩ L(fξ, x0) 6= ∅.

Let y1 ∈ B
(
y0,

1
k

)
∩ L(fξ, x0); then there exists a net {xσ : σ ∈ Σ} in X

such that xσ → x0 and fξ(xσ) → y1. So we can take σ0 ∈ Σ with xσ ∈ W and

d(fξ(xσ), y1) <
1
k

for every σ ≥ σ0. Hence

d(f(xσ), y0) ≤ d(f(xσ), fξ(xσ)) + d(fξ(xσ), y1) + d(y1, y0) < ε for σ ≥ σ0.

It implies f(xσ)→ y0 and in the consequence y0 ∈ L(f, x0). Thus we obtain

lim supL(fξ, x0) ⊂ Ls L(fξ, x0) ⊂ L(f, x0) .

Assume x ∈ L−1(f, y); it is equivalent to the condition y ∈ L(f, x). Following to

(∗) there exists β < ω1 such that y ∈ L(fξ, x) for each ξ with β ≤ ξ < ω1. But

then x ∈ L−1(fξ, y) for each ξ, β ≤ ξ < ω1 which gives

L−1(f, y) ⊂ lim inf L−1(fξ, y) .

Let now x ∈ lim supL−1(fξ, y). Then for each ξ < ω1 there is γ, ξ ≤ γ < ω1 with

x ∈ L−1(fγ , y) or equivalently y ∈ L(fγ , x). Then y ∈ lim supL(fξ, x) ⊂ L(f, x),

so x ∈ L−1(f, y) and we obtain

lim supL−1(fξ, y) ⊂ L
−1(f, y) .

Finally we suppose that the transfinite sequence {fξ : ξ < ω1} converges to

f almost uniformly; to complete the proof it remains to show Ls L−1(fξ, y) ⊂
L−1(f, y). To contrary, if x /∈ L−1(f, y), then there exists r > 0 and a neighbour-

hood U of x such that B(y, 2r) ∩ f(U) = ∅. According to the almost uniform

convergence there exists ξ0 < ω1 and a neighbourhood W of x, W ⊂ U such that

d(fξ(x
′), f(x′)) < r for x′ ∈W . Thus for each ξ, ξ0 ≤ ξ < ω1 we have

fξ(W ) ⊂ B(f(W ), r) ⊂ B(f(U), r) .

From this it follows fξ(W ) ∩B(y, r) = ∅, so

W ∩ f−1
ξ (B(y, r)) = ∅ .

This leads to the condition W ∩ L−1(fξ, y) = ∅ for each ξ, ξ0 ≤ ξ < ω1, and then

x /∈ Ls L−1(fξ, y), which finishes the proof. �
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Theorem 5. Let X be a topological space and Y a metric one. If for each

ξ < ω1, fξ : X → Y is a function with closed graph and the transfinite sequence

{fξ : ξ < ω1} is quasi-uniformly convergent to a function f : X → Y , then the

graph of f is closed.

Proof. According to (5) and Theorem 4 we have L(f, x) = Lt L(fξ, x) =

Lt {fξ(x)} = {f(x)} for each x ∈ X, so G(f) is closed. �

In the last part of this note we will show that for two quasi-uniformly convergent

transfinite sequences the net of superpositions is quasi-uniformly convergent. To

begin with we consider the following example showing that in a general case this

is not true.

Example 1. Let R be the space of real numbers with the usual metric. We

define functions fn, f, gn, g : R→ R assuming

f(x) = 0 = g(x) for each x ∈ R,

fn(x) =
1

n
for x ∈ R, n ≥ 1,

gn(x) =

{
1 , if x = 1

n
;

0 , if x ∈ R \
{

1
n

}
.

Then the sequences {fn : n ≥ 1} and {gn : n ≥ 1} quasi-uniformly converge to f

and g respectively. But gf(x) = 0 for each x ∈ R and gnfn(x) = 1 for each x ∈ R,

n ≥ 1, so {gnfn : n ≥ 1} does not converge to gf even pointwise.

Given two directed sets (S1,≤ (1)) and (S2,≤ (2)) we will consider S1 × S2

with the relation “≤” defined by: (s1, s2) ≤ (p1, p2) if and only if s1 ≤ (1)p1 and

s2 ≤ (2)p2. For transfinite sequences {fξ : ξ < ω1}, {gξ : ξ < ω1} of functions

fξ : X → Y and gξ : Y → Z we have the net of superpositions {gξfα : (ξ, α) <

(ω1, ω1)}.

Theorem 6. Let X be a topological space, (Y, d), (Z, ρ) metric ones and let

{fξ : ξ < ω1}, {gξ : ξ < ω1} be transfinite sequences of functions fξ : X → Y and

gξ : Y → Z. If these sequences quasi-uniformly converge to continuous functions

f : X → Y and g : Y → Z respectively, then the net {gξfβ : (ξ, β) < (ω1, ω1)} is

quasi-uniformly convergent to the function gf .

Proof. The statement (3) and Theorem 3 imply that for each x ∈ X there is

α < ω1 such that for any ξ, β with (α,α) ≤ (ξ, β) < (ω1, ω1) we have x ∈ C(fβ),

f(x) ∈ C(gξ) and gξfβ(x) = gf(x). Thus x ∈ C(gξfβ) for any ξ, β with (α,α) ≤
(ξ, β) < (ω1, ω1). Now, using (1) we obtain the quasi-uniform convergence of

{gξfβ : (ξ, β) < (ω1, ω1)} to gf . �
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