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AFFINE COMPLETE ALGEBRAS ABSTRACTING
KLEENE AND STONE ALGEBRAS

M. HAVIAR

Abstract. Boolean algebras are a [nekomplete by a well-known result of G. Grat-
zer. Various generalizations of this result have been obtained. Among them, a char-
acterization of a [nelcomplete Stone algebras having a smallest dense element was
given by R. Beazer. In this paper, generalizations of Beazer’s result are presented
for algebras abstracting simultaneously Kleene and Stone algebras.

1. Introduction

G. Gratzer in [6] proved that all finitary functions on a Boolean algebra B
preserving the congruences of B (he called such functions “Boolean”, we shall
use the usual term “compatible) are polynomials. Later on, in [7] he character-
ized bounded distributive lattices in which all compatible functions are polynomi-
als. These were the first results leading to the study of a Cnelcomplete algebras.
H. Werner [16] calls an algebra A a [nelcomplete if all finitary compatible func-
tions on A are polynomials. Further, an (infinite) algebra A is said to be locally
a [nelcomplete, if for every n = 1, every n-ary compatible function on A can
be interpolated on any finite subset F [AI' by a polynomial of A. For various
generalizations of Gratzer’s results see [11]-[15] and [1], [2], [9].

R. Beazer in [1] characterized a Cnelcomplete Stone algebras having a smallest
dense element. This result is partially generalized to the class of all distributive
p-algebras in [9]. Since Stone algebras form a subvariety of the MS-algebras in-
troduced by T. S. Blyth and J. C. Varlet (see [3], [4]), it is natural to ask for a
generalization of Beazer’s result to MS-algebras. In this paper, investigations in
this direction are presented.

We deal with the subvariety K, of MS-algebras whose members (Kz-algebras)
include Kleene algebras and Stone algebras. We first establish a characterization of
locally a [nelcomplete K,-algebras (Theorem 1). We show that this characteriza-
tion can be essentially simplified if L is an infinite Stone algebra (Theorem 2).
Theorem 2 can be considered as an a [rmhtive answer to the “local version”
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of a question of R. Beazer (see Remark 3). For the class of so-called principal
K,-algebras (which contains the class of Stone algebras having a smallest dense
element investigated in [1]), an analogous characterization of a Cnekomplete mem-
bers can be established (Theorem 3). Beazer’s result in [1] immediately follows
from this characterization (Corollary 6). Furthermore, several other consequences
are presented, one of which asserts that finite Boolean algebras are the only a [nel
complete finite K,-algebras.

2. Preliminaries

An MS-algebra is an algebra [M; [ 1710, 10where [MO; L 1L 0l 10k a bounded
distributive lattice and “ is a unary operation such that for all x,y [T]
(1) x=x°,

(2) (xyY =x" 0y,

3 1°=0.
One can show that the following rules of computation hold in L:
(x )" =x" [y,
X% = x°,
0" =1.

The class of all MS-algebras is equational. The subvariety K, of MS-algebras,
which we deal with, is defined by the two additional identities,
(4) x[Xx1=x [x1 and
(G) (x X7) yILyl =y [yd,

and the lattice of its subvarieties is drawn on Figure 1.

K>

T

Figure 1.

The subvarieties of K, denoted by T, B, S, K are the classes of all trivial,
Boolean, Stone and Kleene algebras, respectively and are characterized in K, by
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the identities T : x =y, B : x Xt =1, S : x [Xt =0and K : x = X°°,
respectively.
Let L be an algebra from the subvariety K,. Then

(i) L°° ={x IO x=x""}is a Kleene subalgebra of L;
(i) L5= {x [x1; x L} is an ideal of L;
(i) L™= {x [x1; x L1} is a filter of L.
If L is a Stone algebra, then the operation ° is that of pseudocomplementation,
L == {0}, L°° is the Boolean algebra B(L) of all closed elements of L and L ™}
the filter D(L) of all dense elements of L (see [8] or [1]).
By a function on an algebra L we always mean a finitary function. Functions on
L preserving the congruences of L are called compatible. Furthermore, a partial
function on an algebra L is said to be compatible, if it preserves the congruences
of L where defined. The set of all total compatible (order-preserving) functions
on a lattice L will be denoted by C(L) (OF(L)).
The members of the variety K, are called K,-algebras. We shall say that
a Ky-algebra L is principal, if the filter L% principal, i.e. L™= [d) for some
element d 1 A simple construction of principal Kz-algebras is presented in [10].
For other basic results on MS-algebras we refer the reader to [3] and [4].

3. Affine Completeness

We start with some preliminary results.

Proposition 1 ([7; Corollaries 1, 3]). Let L be a bounded distributive lattice.
Then the following conditions are equivalent:
() L is a [Cnelcomplete;
(ii) C(L) CAF(L);
(iii) L contains no proper Boolean interval.

Proposition 2 ([5; Theorem 4, Corollary 1]). For any distributive lattice L
the following conditions are equivalent:

() L is locally a Cnelcomplete;
(i) C(L) CQAF(L);
(iii) L contains no proper Boolean interval.

Lemma 1. Let (D; CI,0} 1) be a bounded distributive lattice. Let f5/g" D" -
D be partial compatible functions on D with domains F and G (F,G [0O"),
respectively and let S = F n G. Let S n {0,1}" & [amd h(S n {0, 1}™) = h(S)*
for every 0, 1-homomorphism h from D onto a 2-element lattice. Then fH= g
identically on S i CH"= g identically on S n {0, 1}".

1Here h(S) denotes the set {(h(x1), ..., h(xn)); (X1,..., Xn) Sk
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Proof. Let fP= g identically on S n {0,1}". Suppose on the contrary that
there exists an n-tuple (dg,...,dn) [3 such that fYd;,...,d,) = a 8 b =
g'(dy,...,dn). Since a,b [ and D is a subdirect product of copies of 2-element
lattices, there exists a “projection” h: D - {0, 1}, which is a 0, 1-homomorphism
between D and some lattice 2 = {0, 1}, such that h(a) & h(b). Define functions
5 g5% h(S) - {0, 1} by the following rules:

fith(x1), ..., h(xn)) = h(Fxq, ..., Xn)),
g2(h(xa), ..., h(xn)) = h(g'(Xs, ..., Xn)).

Obviously, f}) g5’ are well-defined. Furthermore, - = g5 identically on h(S),
because h(S) = h(S n {0,1}") and f7= g identically on S n {0,1}". There-
fore h(a) = h(f{dy,...,dn)) = Fi{h(dy),...,h(dn)) = gx(h(d1),...,h(dn)) =
h(gHds, ...,dn)) = h(b), a contradiction. Hence f~'= g identically on S and the
proof is complete. —1

The following lemma states a canonical form of any polynomial function on an
MS-algebra and generalizes a similar result for Stone algebras (see [1; Lemma 1]).

Lemma 2. Any polynomial function p(xs, ..., Xn) on an MS-algebra L can be
represented in the form
P(X1,...,Xn) = [a(i1, 1. -+ in.dn) @1 Ijil L1 Ij’\n Ij"]n]
TjE0,1,2,330, i<j

and dually, in the form

P(X1,...,Xn) = B, J1,---,inJn) X O 2 X O3]
T H40,1,2,33, i<j
U B —1 - . .
where the join  and the meet  are taken over all n-tuples i = (i1,...,in),

j~= (J1,---,Jn) ID,1,2,3}", the coe [ciehts a(is, ..., jn), B(i1,...,jn) [Cand
x%, x%,x% and x3 denote 1 (0 in the dual form), x,x° and x°°, respectively (i.e.
x® means that the variable x can be omitted in a given conjunction (disjunction)).

Proof. It follows from the facts that

xDOY =x" 0y, xO° =x" Oy, x°° =x°, x=x"" forany x,y [
and that the lattice L is distributive. —1

Proposition 3. Let L be an MS-algebra. If L is (locally) a [nekomplete, then
S0 is L°°.

Proof. Let L be a (locally) a [melcomplete MS-algebra. Let £ (L°°)" - L°°
be a compatible function (and F [_(L°°)" be a finite set). Define a function



AFFINE COMPLETE MS-ALGEBRAS 183

f:L" - L by f(X1,...,%n) = Fx;°,...,x°). Obviously f is compatible,
since fUis compatible, so f can be represented (on the set F) by a polynomial
p(X1,...,Xn) of L. Hence, for all X = (X1,...,%Xn) CL°°)" (X [H), we have
%) = (X)) = p(X) = p(X)°°, since F{X) [CII°°. Using Lemma 2, all constants
in p(X1,...,Xn)°" are elements of L°°. Thus fHcan be represented (on F) by a
polynomial of L°°. 1

Lemma 3. Let L be a Ky-algebra, a C and b CO~'If b < a &l then
a=a"" [(@ [h)

Proof. By the distributivity of L, a°° [(@ [(h) = a (@~ [h). It sucedto
show that a°° [h¥ a [h1Put x = a°° [hly = a° [h,]z = a [h1Using the identity
(4) and the hypothesis we get

X yl=a* [al (b a Al bz [yl and
x yl= (@°° [al) [hlE b= (a [al) [hkz [yl

Now x = z follows immediately from the distributivity of L. 1

Lemma 4. Let L be a K,-algebra and x,y . If x,y O then x° <vy. If
x,y [ then x° =.

Proof. If x,y [CO~then x = a [al, y = b [0l for some a,b 0. Thus x° =
a° [@l° <b [0l =y by (5). The second statement can be shown analogously. 1

Lemma 5. Let L be a Ky-algebra, f: L" - L be a compatible function on L,
F CLT and b CO%Let 22 [b, 1]°" - [b, 1] be a partial function such that

fE(xo 8. ., x, (K] 8. ., x5, (K" 8. ., ;5" )= (X4, ...,Xn) (XX CE)

and f£' is undefined elsewhere. Then fX is a well-defined partial compatible func-
tion of the lattice [b, 1].

Proof. For any lattice congruence 6, of [b, 1] we define an equivalence relation
BonLbyx=y@)il]

(d) x [hEy [hk6,) and x° [ChkEy” [bkB,) and x°° ChikEy"™ [ChL6).

It is easy to verify that 0 is a congruence of the algebra L. Therefore, if some
pairs (Xi,vi), i =1,...,n satisfy (a), then x; = y;j(6), and since f is compatible,
f(X1,...,%n) = F(y1,...,¥Yn)(6). Hence, £(X) Chl= f(y) Chl(6,) again by (a).
Thus X preserves the congruences of [b, 1] where defined. To show that X is
well-defined, it su [ced to take 8, = w, the smallest congruence of [b, 1]. 1
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Definition 1. A Kj-algebra L satisfies the condition (FD) if for any com-
patible function f: L" - L, any element b [CIO™4dnd any finite set F LT, the
partial compatible function £ defined above can be extended to a total compatible
function of the lattice [b, 1].

Convention. In what follows, the 3n-tuples (X1,...,Xn, X3, ..., Xp, X377, ..+,

x;7) will be shortly written as (X,X°,X°°), and the 3n-tuples (x; [h)...,x, [
b,x; [b1..,x; h,ix;7° [B1..,x;” [ will be abbreviated as (X [, X° [b,X°° [

Theorem 1. Let L be a Ks-algebra. The following two conditions are equiva-
lent:

(1) L is locally a Cnelcomplete;

(2) (i) L5 locally a [Cnelcomplete distributive lattice and

(i) L°° is locally a [nelcomplete Kleene algebra and
(iii) (FD).

Proof. (1) =LC(2)(i). To show that the lattice L "% locally a Cnelcomplete,
it su[ced to show (by Proposition 2) that C(L 5 CQF (LY Suppose to the
contrary that there exists a compatible function £~ (LD - L™Which is not
order-preserving, i.e. f(u) > f(v) for some u,v (LYY, u < v. Define a func-
tion f: L" - L as follows: f(Xy,...,Xn) = fifx; [XI,...,xn [X}) for any
(X1,...,Xn) . Obviously, f CIL 5™ = f(Lemma 4) and f is compatible on
L. By hypothesis, for any finite set F LT, the function f can be interpolated
on F by a polynomial function of L. Thus, using Lemma 2, for all X [l (05"
we can write

(b) ) =F(x) = (B, j1, ... in,Jn) O O CoF X 57

TidD,1,2,330, i<j

Since {f(X); X CHJ} is a finite subset of L -there exists an element d CI0-sluch
that fXX) = f¢X) Cdlfor all X [Fl. Furthermore, by Lemma 4, the terms x; can
be omitted in (b). Hence for all X [Fl we get

fix) = [(B(ix .- in,jn) Cd) O O L O O347].

T 01,33, i<j

Now it is evident that ¥ is an order-preserving function on F. For F = {u, v} this
contradicts f(u) > f(v).

(1) =L2)(ii) This follows from Proposition 3.

(1) =C)(ii) Let f: L™ - L be a compatible function on L, F LT be a
finite set, b C™dnd fX be the partial compatible function defined in Lemma 5.
Obviously, the function f1: L™ - [b,1], f1(X) = £(X) [hlis compatible on L.
Thus f; can be interpolated on F by a polynomial p(xq,...,Xn) of the algebra
L. Using the formulas (x [y)° = x° [yT, (x [y)° = x° [yT and x°°° = Xx°,
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the polynomial p(X) can be rewritten as I(X, X, X°°) where (X1, ..., Xsn) is a lat-
tice polynomial of L. Furthermore, if ai,...,am are all constant symbols ap-
pearing in I, then I(Xy, ..., X3n) is a term t(Xa, ..., X3n, a1, --.,am) Of the algebra

Ly = (L; CILa,...,am). Hence for any X [H, f&(X ChJX° [Ch)X"" [h) =
f1(X) = I(X,X°,X°°) = t(X,X°,X°°,a1,...,am). Since f1(X) = f1(X) [hland the
mapping ¢: L - L “defined by ¢(x) = x [Ids a lattice homomorphism, we have
t((X,X°,X°°,a1,...,am) = ¢(t(X,X°,X°°,a1,...,am)) = t(X [hJX° [bJX°° [hla; 1
b,...,am 1= I¥X (X" [B,X°° [O), where 1"x4, ..., Xan) is now a lattice poly-
nomial of the lattice L “—Hence the partial function X can be extended to a total
polynomial function I"¢x, ..., Xan) of the lattice L =~Thus (FD) holds in L.

(2) =@ Let f: L" - L be a compatible function of L and F be a finite
subset of L". The finiteness of F guarantees that there exists an element b 1™
such that f(X) CE{(X)° b, 1] for all X CEl. Thus by Lemma 3,

(©) f(X) = f£(X)°° CCH(X) CBY  for all X CEL

Obviously, the function f;: (L°°)" — L°° defined by f1(x3°,...,x3°) = f(Xq,...,
Xn)°° is well-defined because x — x°° is an endomorphism of L. We show that f;

is compatible on L°°. Let 6; be a congruence of L°°, x;,y; [CLT°,i=1,...,nand
Xi = Vi(61). Evidently, the relation 8 defined on L by x = y(8) i[X°" = y°°(01)
is a congruence of L extending 6;. So we have x; = y;(8), i = 1,...,n. Since

T is compatible, we get f(X) = £(§)(8). Thus f(X)°° = f(¥)°°(61), and so f;
is compatible on L°°. By hypothesis, f; can be interpolated on the finite set
{(X3°, ..., %), X CH} by a polynomial K(Xy, ...,Xn) of L°°. Thus for all X CH
we get F(X1,...,Xn)"" = F1(X7°, ..., X3°) = k(X7°, ..., X3), and so in (c), F(X)°>°
can be replaced by a polynomial of the algebra L.

Now consider the partial function f£: [b, 1]*" - [b, 1] defined in Lemma 5.
Using (FD), X can be extended to a total compatible function f, of the lattice
[b, 1]. By hypothesis and Proposition 2, f, can be represented on the finite set
{(X [bJX° [JX°° [h), X CH} by a lattice polynomial 1(Xy,...,Xsn). Hence for
any X [Fl we have

(%) (0= (X DK (0K (D)= (X (LK 0K ()= (X (LK (K (D)
and consequently,

f(X) = k(X)) X [LX" B Ch).
This proves that the algebra L is locally a Cnelcomplete. 1

Remark 1. One can easily show that the local a [nelcompleteness of the al-
gebra L also yields the local a [helcompleteness of the lattice L =
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Lemma 6. Let L be a Stone algebra, b [CIO%dnd x,y L1 Then
x" [hkFy" b1 i1 x°° [Chky" [hl
Proof. Let x° [hl=y° [hlSince y° [y1° =1 holds in L, we have

X" [ (v CICYI) DO CBY= [(¢ OB O Chl) C T O
= [ 0") COJ O L0 00 = (y°° LB} CO4 )

using (5).
Hence x°° [his y°° [kl Similarly, y°° [Chl< x°° [hl The converse statement
can be proved analogously. 1

Lemma 7. Let L be a Ky-algebra, b CII~dnd x [ such that (x Chlx> 1
b,x°° [h) [Ib,1}3. Then x° [hk= 1 implies x [hl= x°° [hl= b. Furthermore,
X [hl=1vyields x° [hl=b and x°° [hi= 1.

Proof. If b = 1 then the statement is obvious. So letb & 1. Let x° [hl= 1.
If also x°° [hl= 1, then 1 = (x° [h) C(X°° [h) = (x° [xt°) Chl=b by (5), a
contradiction. Hence x (¥ x°° [h¥b. Now let x [h¥= 1. Then again, x° [h¥ 1
would mean that 1 = (x [X1) [hk= b; a contradiction. Therefore x> [Chil=bh. [

Remark 2. If L is a finite K,-algebra then in Theorem 1 as well as in the
next results, the term “locally a Chekomplete” can be replaced by the term “a [nel
complete”. However, in the following results the finite case would not be interesting
to investigate. Therefore we confine our considerations to infinite algebras.

Theorem 2. Let L be an infinite Stone algebra. The following conditions are
equivalent:

(i) L is locally a Cnelcomplete;
(if) L% locally a [nelcomplete distributive lattice;
(i) No proper interval of L% Boolean.

Proof. If L is a Stone algebra then L= {0} and L°° is a Boolean algebra.
Therefore by Theorem 1 it su [ced to show that the local a Cnelcompleteness of
L5(= D(L)) yields (FD).

So let L ~cbntain no proper Boolean interval. For an n-ary compatible function
f on L, a finite set F LI and an element b [™take the function f£ from
Lemma 5. Take its partial extension f-= f, with the domain S = {(X [hJX" ]
b,X°° [h); X IO} (see again Lemma 5). Define a polynomial p(Xy,...,Xsn) of
the lattice [b, 1] by

—
P(X1, - -+, Xan) = (fay, ... asn) 04 3 Ovdn),

3 S {b,1}3n
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Cd o ifai=1,
where y; = .
1 if aj = b.

We show that f™=p on S n {b, 1}°".

Take any X = (X1, ..., X3n) n {b, 1}°". Assume first that & n {b, 1}°",
a8 Xanda; 8 x; forsome j, n < j < 3n. Hence a; and x; are elements of the set
{x° x1x LT} or the set {x°° [hi]x L. By Lemma 6 we can suppose that a; &
x; for some n < j < 2n. If aj = 1 then evidently f'{ay, ..., asn) [val [} Oygh = b,
if a; = b then x; = x” [hl= 1 for some x L1 thus by Lemmas 6, 7 aj+n = 1 and
again f'(ay, . ..,asn) [val =} O¥zh = b. Now let @ [SIh{b, 1}°", 3 8 X and a; > X;
for some j, 1< j < n. Again it is clear that fa,,...,asn) 53 - [y, =b.
Hence we have shown that

P(X1,...,X3n) = (FXas,...,an, Xn+1, ..., X3n) .
ASa{b,133n, a<x

Take any @ S n {b, 1}*" such that a; < x; for i = 1,...,n, a; 8 x; for some
l<j<nanda;=x;fori=n+1,...,3n. We show that fY{ay, ..., an, Xn+1, - -
Xan) < TYxq,...,X3n). Denote z, = ay if ax = Xg, otherwise zx = z, 1
k < n. We define a total function of one variable g: [b,1] - [b,1] by g(z)
t%z1,...,2n, Xn+1, ..., Xan). Obviously, g is compatible on [b, 1] and f¥ay, ..., an,
Xn+1, - - -1 X3n) = g(b), Fx1, ..., Xan) = g(1). Hence we need to show that g(h) <
g(1). For any z []nl 1] we have g(b) = g(z) (Biat(b, 2)) and g(z) = g(1) (Biat(z, 1)).
Therefore

ImIA -

g(z) CzF=g() z1 and

9(z) [z=g(1)
Thus for any z [C]g(1), g(b) Cgq1)], g(2) is the relative complement of z in this in-
terval. Consequently, [g(1), g(b) [g(l)] is a Boolean interval of [b, 1]. By hypothesis
this yields g(b) < g(1), as required.

Hence p = fYon S n {b,1}*". To apply Lemma 1 to the functions fY p, it

remains to show that h(S n {b, 1}*") = h(S) for any 0, 1-lattice homomorphism h
from [b, 1] onto a 2-element lattice 2 = {0, 1}. Note that for any x CLIwe have

h(x” ) Chix™ [h)= h(x” [X1° [h=h(1) =1,

h(x” [} Chix™ [ = h((x" [x1") [bY=h(b) =0,
and analogously,

h(x [} Ch{x” Ch)=h(b) = 0.

So the triples (h(x ), h(x> [h), h(x>* b)) as components of every 3n-tuple in
h(S) are only of the form (0,1,0) or (1,0,1) or (0,0,1). Thus when finding the
associated triples (their preimages in h) (x [, k> [h,x°° [h)l CSIn{b, 1}3, it su [ced
to take x equal to 0,1 and b, respectively. Therefore h(S) = h(S n {b, 1}*") and,
by Lemma 1, p(Xy, ..., Xs3n) is a total compatible extension of the partial function
T hence the required extension of the partial function £ 1
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Lemma 8. Let L be an infinite K,-algebra. If L ~Has a smallest element then
L “Has a greatest element. If L} finite then L% finite. If L is Kleene algebra

then L =L@l 53,

Proof. The first statement follows from the fact that the mapping x - Xx° is a
dual endomorphism of L dnto L Let L "He finite. The mapping x - X" is a
dual embedding of L “ihto L =Thus L™} finite. If L is a Kleene algebra then
X — x° define a dual isomorphism between L ~dnd L 1

Corollary 1. Let L be an infinite K,-algebra such that L ™ finite. The fol-
lowing conditions are equivalent:

() L is locally a Cnelcomplete;
(i) L is locally a Cnelcomplete Stone algebra.

Proof. If L is locally a [nelcomplete, then also L ™% locally a [nelcomplete
(see Remark 1). By Proposition 2 this yields |L "= 1 since L™ finite. Thus
X X1 =0 for all x [Tdand L is a Stone algebra. 1

Corollary 2. Let L be an infinite Kleene algebra such that L. 5 is finite.
Then L is (locally) a Cnelcomplete if and only if L is a Boolean algebra.

Example 1. Let D be a dense-in-itself chain with 1, e.g. D is the interval
(0, 1] in the real numbers. If we adjoin a new zero 0 and put a°> =0 for all a [T,
then we obviously obtain a Stone algebra L (see Figure 2). By Theorem 2, L is
locally a [Relcomplete because L ™2 D has no proper Boolean interval. Now,
let D =[0,1] and 0° = 0, a°> = 0 for every a > 0 (see Figure 3). We obtain a
Ks-algebra L in which L= D has no proper Boolean interval again. But L is
not (locally) a [nelcomplete because L is not a Stone algebra using Corollary 1. 1

1 1
D D
a a
0 0=0°
0=a° e« 0=a°
Figure 2. Figure 3.

To achieve similar results concerning a Cnelcompleteness, we ought to confine
our considerations to principal K;-algebras.
So let (L; CIL710,1) be a principal K»-algebra such that L == [d).
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Definition 2. We shall say that L satisfies the condition (D) if for any com-
patible function f: L" - L, the partial function == fJ, (see Lemma 5) with the
domain S = {(X [d,)X° [d,)X°° [d); X [I1"} can be extended to a total compatible
function of the lattice L

Repeating the proof of Theorem 1 with d playing the role of the element b
everywhere and (D) used instead of (FD), we get the following generalization of
R. Beazer’s result.

Theorem 3. Let L be a principal K,-algebra such that L™= [d). Then the
following two conditions are equivalent:
(1) L is a [nelomplete;
(2) (i) L% an a [medcomplete distributive lattice and
(i) L°° is an a [nelcomplete Kleene algebra and
(iii) (D).
Corollary 3. Let L be a Ky-algebra such that L5 finite. Then L is a [nel
complete if and only if L is an a [nelcomplete Stone algebra.

Proof. This can be done in the same way as that of Corollary 1. 1

Corollary 4. Let L be a Ky-algebra such that L5 finite. Then L is a [Rel
complete if and only if L is a Boolean algebra.

Corollary 5. Finite Boolean algebras are the only finite a Cnelcomplete K-
algebras.

Analogously as in Theorem 2, one can show that a Cnelkompleteness of a princi-
pal K;-algebra L yields (D). Hence from Theorem we immediately get R. Beazer’s
characterization of a [nekomplete Stone algebras having a smallest dense element,
i.e. (in our terminology) principal Stone algebras:

Corollary 6 ([1; Theorem 4]). Let L be a principal Stone algebra. Then the
following conditions are equivalent:
() L is a [Cnelcomplete;
(ii) L% a Chelcomplete;
(iii) No proper interval of L% a Boolean algebra.

Remark 3. R. Beazer in [1] asked whether the equivalence (i) and (ii) in
this result holds also for L not having a smallest dense element (i.e. if L is not
principal). Theorem 2 can be considered as a positive answer to this question in
its “local version”.?

2The author together with M. PloStica have shown (in an unpublished paper) that the men-
tioned equivalence does not hold in general.
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