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ON PERTURBED ITERATIVE LINEAR
DIFFERENTIAL EQUATIONS OF ORDER n

J. MORAVCIK

Abstract. Some su Lcieht conditions, under which all solutions of a perturbed
iterative linear diLerkntial equation of the n-th order tend to zero for X — oo, are
established in this paper.

Consider a linear di [erkntial equation of second order

() U™ p(x)u =0
on an interval 1 = (a,h), —co<a<b<oo, p CA"2(l), n=3.

Let uy, us be linearly independent solutions of (p) on I. Let functions yi: 1 -
R = (—o0,00), i = 1,2,...,n be determinated by an identity y;(x) = uil_l(x)
u’;_i(x) for all x Il The fact u; CGQ"(1), j = 1,2 implies y; CG"(1) for
all i = 1,2,...,n. It is known (see e.g. [5]) that the Wronskian of functions

Y1,Y2,...,Y¥Yn IS non-vanishing on 1. There exists a linear di Lerkntial equation of
the n-th order such that these functions form its fundamental system of solutions.
We shall denote this equation

(Pn) [Pln(y,x; 1) =0.

According to [1], [3] or [4] the equation (pn) is called the iterative equation of the
n-th order. The dilerkntial equation (p) is called the accompanying equation of
the equation (pn).

Consider now a di [erential equation

() [PIn(y, x; 1) +3(x)y =0

where 3: 1 - R, d [CA(l), which is obtained by a perturbation of the iterative
equation (pn).
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Let
() [9ln(z,t;3) +r(t)z =0

be a perturbation of the iterative diLerkntial equation

(an) [gln(z,£3) =0
with the accompanying equation
V+q(v=0

on an interval J.

Definition. We say, that the equation (a) is globally equivalent on 1 to the
di Lerkntial equation (b) on J, if there exists an ordered pair {f, h} of functions
such that

ayf:1 - R, fa"(), f(x)E0onl, h A1), hx)E0onl, h(l) = J;

b) the functiony: I - R, y(x) = f(X)z[h(X)] is a solution of the equation (a)
on | whenever z is a solution of the equation (b) on J.

It is known that the relation of di [erential equations in our definition has pro-
perties of an equivalence. We shall denote this relation by

M @1 LMI{F(x), h(x)}-

We will need the following lemma.

Lemma 1 ([3] or [4]). The relation (1) is true if and only if for all x 11
@) f(x) = Clh (|4~

where C B 0 is a real constant, the function h is a solution of the next system of
the non-linear equations

©) £h(), 53 + eI (x) = p(x), x [
(4) rhI™(x) =3(x), x [T

where {h(x), x} = h™x)/2h{x) — 3/4[h™x)/h({x)]? is the Schwarzian derivative
of the function h in a number x.

Further we shall consider the case when the function q(t) = k [CR* = (0, o)
identically for all t [CJ1 First we shall prove the following lemma.
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Lemma 2. Let p CA"™2(1), & CA"(1), 8(x) E 0 on 1. Then (1) is true if
and only if (2) is true for all x CIJ r CA"(J), r(t) B 0on J, sgn r(t) = sgn d(x)
and the function h fulfills on 1 the system of equations

(5) IOl = 136 Irh el ",
1 1
L]
1 60 2 1 8T o
p(X) + ez 3 2n () [B(x)[7>/" =
(6) 1 (-

K+ 2n+1 Iﬂh(x)] L"_’_l_ 1 rh(X)]

. wheol 2y O

. .. O— d d
where k is a positive constant, —= g, i

Proof. Let (1) be true. When is 8(x) & 0 on I, then it follows from (4) that
r[h(x)] & 0 on I, sgn r[h(x)] = sgn 6(x). Since h(l) = J, it implies that r(t) 8 0
on J, sgn r(t) = sgn 6(x). The equations (4) and (5) are evidently equivalent on
I. From (5) we get by the derivation, step by step (in the case when sgn h¥=
sgn & =sgn r = 1; in the another case we can proceed by analogy),

hx) = %[5(X)]_(”_1)/ "3 0Ir (1"

©) )
= SO [r (GO /M ()),
W) = = BN/ 6 39l (AT
+ OIS 0 (hGo) "
® = 2 BT S H0Ir (hOAT2 i(h()

D 2B I hGO)] 72 (h(x)

- %[5(X)]3/ "[r(hO)I~ M (h(x) .

+

Substituting derivatives from (5), (7), (8) in the equation (3), where q[h(X)] = k,
and making some transformations we obtain (6).

Let inversely r CQ"(J), r(t) & 0 on J, sgn 3(x) = sgn r(t) and the function
h fulfills the system of equations (5) and (6) on I. In view of these assumptions
each solution h of the equation (5) has the next properties:

1) h (1), h'x) & 0 and h™fulfills the equation (4) on I;
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2) when the function h fulfills the equation (6) on I, then this function fulfills
also the equation (3), because both equations are equivalent.

Hence all assumptions of the Lemma 1 are fulfilled. That means that the
relation (1) holds.

This completes the proof. 1

We can now establish the main result.

Theorem. Let J = (a,), a = —oo; and let r [CA"(J) be a real function
with the next properties:
D r()80onJ and lim¢_ o r(t) =0;

]
2) |r(s)lds < oo, to >0
to

¢ ]
3) [r(s)|“"ds = oo and
to

J
9) R() = |r(s)[¥"ds, t LI

to
In addition let the coe [ciehts of dilerkntial equation (a) satisfy the following
conditions:
() p CA™2(1), & CA"(1), where | = (a, o), a = —oo, sgn d(X) = sgn r(t)
and either
(ii) d(x)>0o0n I and liminfy_ - 3(x) >0 or
(iii) d3(x) <0on I and limsup, _, ., 6(x) <O.
If the function h: I - R,
[ 1
(10) h(x) = R_1 [5(s)|¥Mds , xo [

Xo

where R_; means the inverse function to R, fulfills the equation (6) on I, then all
solutions of the di [erential equation (a) tend to zero for x — oo,

Proof. The function R defined by (9) is obviously increasing on J and according
to the property 3) it transforms the interval [}, o0) on the interval [Xp, o). The
function h given by (10) is therefore defined on I and transforms the interval
Xb, o) onthe interval [}, oo) because the condition (ii) or (iii) implies that the
integral o |5(s)|*/" ds is divergent. Further for the function h we obtain:

) -
h'(x) =RL, B(s)[*"ds 5| =

=R@®™ E BOAM™ = 18O Ir(h()) ™.

t=h(x)
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This means, that h'(x) > 0 for all x [CIland the function h fulfills the equation
(5) on I. When we put for any x [

(11 £(x) = Clh' ()| =72 = CIB )|/ | rh ()] "~ D72,

where C 8 0 is a real constant; then f CCI"(1), f(x) & 0 on | and the relation (2)
holds, because r CQA"(J), r(t) 20o0n J, d CA"(1), 3(x) 80 on I and therefore
h Ca"*(1). Since according to the assumption the function h satisfies also (6)
on I, all assumptions of the Lemma 2 are fulfilled. It means that (1) holds.

Let y be now an arbitrary non-trivial solution of the di[erkntial equation (a)
on I. Then there exists the solution z of the dilerential equation (b), where
q(t) = k on J, such that y(x) = f(x)z[h(x)] holds and according to (11) for all
x [Iis

(12) y(x) = 312 r[h )N D"z [h(x)],

where C 8 0 is a real constant.
In this case the equation

(13) V+kv=0, kLR

is the accompanying diLerkntial equation of the dilerkntial equation (gn). The
general solution of (13) is

V_ V_
v(t) = kj;cos kt+kysin kt,

where Ky, ko are real constants. Hence all non-trivial solutions of the di [erential
equation (13) are bounded and oscillatory on (—oo, o) and also on any J. Accord-
ing to the property 2) of the function r and by the Theorem 1 of the paper [2] all
solutions of the di Lerential equation (b) are bounded on the interval [f§, c0). With
regard to the property 1) it is limg_ o [F(t)|¥" = 0 too. That means, of course,
that also limy_. o [r(h(x))|*’™ = 0. In view of assumption (ii) or (iii) the function
[5(x)|E~™7/2n s also bounded for su [Ciehtly large x and therefore, according to
the mentioned above, from (12) we get

lim y(x) =0.
X — 0o

This completes the proof. 1

We can further prove that this theorem implies the next corollary.

Corollary 1. Leté:1 - R, I = (a, o), a= —oco be a function such that the
following conditions are fulfilled:
() 6 Ca"(1) and either
(ii) d(x) = 0 for all x [and liminfy_ o 0(x) > 0 or
(iii) 3(x) <0 for all x [and limsupy _ ., d(X) <O0.
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Let further p: I - R be a function such that for any x 11

.
o(x) = 13x) _2n+1 I%!Qx)

(14) 2n 5&? Alf_ﬂj 3(X) -
+ kexp(2  [3(s)|¥"ds)— = |&

Xo
where K is a positive constant.
Then all solutions of the di Lerkntial equation (a) tend to zero for x — oo.

Proof. Consider the function r(t) = t™" or r(t) = —t™". Obviously this func-
tion satisfies the assumptions of Theorem. Then from (9) we obtain
d t
Rt)= s lds=In—.
to 0

O, %o [

ENEN

The function u = R(t) = Intl transforms the interval [fj, o0) on the interval
[0 o) and t = R_;(u) = tgexpu. Then from (10) we get
()| 1

(15) h(x) = to exp [5(s)|*Mds , x [Dp, o)
Xo
and in view of r(t) =t=" or r(t) = —t™" we have
[ 1
(16) Ir(hOYl =to"exp —n  [3(s)|/"ds

Xo

When we put for any t 11§, o)
1 1
2n+1 I__r”%t) Lz__l_ 1 7(t)

= - AT =\ —2/n

VIr®Ol= k+ S S T MO

then for r(t) =t™" or r(t) = —t™" we get
V[r(t)] = kt* — L
4
Hence for the function h defined by (15) we obtain
1

17 V[r(h(x))] = ktZexp 2 [5(s)|*"ds — 711 .

Xo
Choosing in the special way to = 1 and substituting (17) in the second side of (6)
we get (14). This means that the function (15) satisfies the equation (6). With
regard to (15) and (16) we can easy find out that the function h fulfills the equation
(5) on | too. Because & [—A"(l), according to (14), the function p Q" 2(1).
Hence all assumptions of the Theorem are fulfilled. This completes the proof. [

Further we can deduce from the proof of Theorem and from the known criterion
of the global equivalence of the linear di Lerential equations of the n-th order ([4,
Th. 5.2.1]) the following result for the equation (p).
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Corollary 2. Letn=3 be aintegerand r: J - R, J = (0, 00), a0 = —oo he
a function with the next properties:
1) @ BO0onJ;r CA"Q);
2) g [r(8)lds < oo, to >ar;
3) ¢ Ir(s)[Y"ds = co.
Let R: J - R be the function defined by the relation (9).
Let further 3: 1 - R, 1 = (a,o), a = —oco be a function with the following
properties:
(i) 6(x) EOon I, d CA"(l), sgn d(x) = sgn r(t) and either
(i) d(x) =0o0n I and liminfx_ . d(x) >0 or
(iii) 6(x) <0 on I and limsup, _ ., d(X) <0,
h: I - R be the function given by the relation (10) and p: I - R be defined by

this relation 1
13" _2n+1 I%&x) : 560|-2/"

PO= 20300 ~ Az 300
1 1
a0 L L) o
4n2  r(h(x)) 2n r(h(x)) '
where K is a positive constant, "= &, ~ = 4.

Then the equation (p) is oscillatory on the interval I.

Proof. Let f: I - R be given by the relation (11). It follows from the proof
of Theorem that at our assumptions the relation (1) holds for the equation (b),
where q(t) = k. By the Theorem 5.2.1 of the monograph [4] we obtain from this,
that for any non-trivial solution u of the equation (p) on I holds the relation

(18) u(x) = Ah't)]~2v[h(x)],

where A B 0 is constant, v is a non-trivial solution of the equation (13). But all
non-trivial solutions of the equation (13) are oscillatory on J. With regard to (18)
the equation (p) has the same property on I. This completes the proof. 1
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