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ON CONTINUITY AND MONOTONICITY

OF DARBOUX TRANSFORMATIONS

R. J. PAWLAK

Abstract. In this paper we consider the problems connected with the continu-
ity of Darboux transformations and the monotonicity of the restrictions of these
transformations. We show that it becomes possible to give answers to many ques-
tions concerning these problems if our considerations are confined to the family of
c-functions which is defined in the paper.

In paper [DG] (1875), the first example of a discontinuous Darboux function

was given. Since then, there have appeared many papers devoted to the studies of

the properties of these functions. The proving of a series of interesting properties

for real Darboux transformations of a real variable became a cause of the search for

a generalization of the notion of a Darboux function to the case of transformations

defined and taking their values in more general spaces. Different ways of the

generalizations can be found, among others, in papers [BB], [GK], [PR], and

the specification and discussion of many of them — in paper [JJ]. The definitions

presented below are analogous to those of Darboux(B) transformations and weakly

connected ones considered in papers [BB] and [GK]. However, what differentiates

one from another is that we free ourselves from the strictly defined classes of sets,

considered in these papers.

So, let L be some family of connected sets (in the sequel, unless otherwise stated,

L will always denote a fixed family of connected sets) in a topological space X

and let f : X → Y .

We say that f is a Darboux∗(L) function if f(C) is a connected set for any

C ∈ L.

We say that f is a Darboux(L) function if f(C) is a connected set for any

C ∈ L.

It will be convenient to our considerations to adopt the following definition,

too:

We say that B is an L-base of the topological space X if B is an open base of
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this space and, for any U ∈ B and any x, y ∈ U , there exists C ∈ L such that

x, y ∈ C ⊂ U .

Many problems studied by mathematicians in connection with the papers con-

cerning Darboux transformations were related to the question of the continuity

and the monotonity of these functions. In order to make it possible to carry out

the studies on this subject, it was necessary to confine the considerations to some

narrower families of functions (e.g. [KU], [WD], [GZ], [HT], [PH] or [PJ]). In

this situation, it seems essential to find as wide a family of transformations as pos-

sible, whose properties would enable one to obtain results analogous (or stronger)

to those included in the papers cited above. To accomplish this aim, we shall adopt

the following definition (the symbol Md stands for the derived set of a set M).

Definition. Let f : X → Y where X and Y are arbitrary topological spaces.

We say that f is a c-function if, for any subset A of the space X and each x ∈ Ad,
there exists a set B ⊂ A such that x ∈ Bd and (f(B))d ⊂ {f(x)}.

Throughout the paper, we adopt the classical symbols and notations. The

adoption of the way of defining a Darboux function justifies the adoption of certain

modifications of the notations applied, among others, in papers [GK] and [GZ].

So, let L be some family of connected sets in X and let f be a function defined

on X. Then YL(f) = {α ∈ f(X) : f−1(α) ∈ L} and SL(f) = f−1(YL(f)). Of

course, if L is the family of all connected subsets (continua) of the space X, and

SL(f) = X, then f is weakly monotone (Morrey monotone) ([GK]). We say that

f : X → Y is L-pseudo monotone if f(X) is a connected set and, for any α ∈ Y ,

any x, y ∈ f−1(α) and any neighbourhoods U, V and W of the points x, y and α,

respectively, there exists a set C ∈ L such that U ∩C 6= ∅ 6= V ∩C and f(C) ⊂W .

Of course, every L-weakly monotone function (i.e. such that SL(f) = X) is L-

pseudo monotone. There exist, however, continuous c-functions being C-pseudo

monotone and K-pseudo monotone which are not C-weakly monotone (C — the

family of all connected sets, K — the family of all continua).

We say that a function f : X → Y is relatively proper if f−1(K) is a compact

set for any compact set K ⊂ Y ([GK], [GZ]).

As far back as the XIXth century, many mthematicians thought the Darboux

property to be equivalent to the continuity of functions ([BA, Chapter I]). Later,

additional conditions under which Darboux transformations (also in more abstract

spaces) are continuous were sought for (e.g. [HT], [JJ], [KU], [PH], [WD]). These

considerations comprised mainly metric spaces because, in the case of topological

ones, the situation became considerably complicated. Therefore it seems essential

to ask about the possibility of obtaining results analogous (or stronger) to those

contained in the papers cited above, in a more general case.

A partial solution to this question is the following
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Theorem 1. Let X be a Hausdorff space with an L-base and let Y be a lo-

cally compact space; moreover, let X and Y be first-countable. Then a c-function

f : X → Y is Darboux∗(L) if and only if f is continuous.

Proof. The sufficiency of the above condition is obvious.

Necessity. Suppose to the contrary that a c-function f is Darboux∗(L) and

there exists a point t0 ∈ X such that f is discontinuous at t0.

Let Z be a compact set included in Y such that f(t0) ∈ Int (Z) and

(1) f(U) \ Z 6= ∅ for any neighbourhood U of f(t0).

Let P be a compact set such that f(t0) ∈ Int (P ) ⊂ P ⊂ Int (Z). Assume that B
is an L-base of X, and

B(t0) = {U ∈ B : t0 ∈ U}.

We infer that

f(U) ∩ (V \ P ) 6= ∅ for any U ∈ B(t0) and for any open set V ,

such that P ⊂ V ⊂ Int (Z).
(2)

Indeed. Assume that (2) does not take place. Then there exist U ∈ B(t0) and

an open set V such that P ⊂ V ⊂ Int (Z) and f(U) ∩ (V \ P ) = ∅. By virtue

of (1), there exists x ∈ U such that f(x) /∈ Z. Let C ∈ L be such that t0, x ∈ C.

Therefore f(C)∩(V \P ) = ∅ and f(C)∩P 6= ∅ 6= f(C)\V . This means that f(C)

is not a connected set, which contradicts our assumption that f is Darboux∗(L).

So, (2) is true.

Let Ξ = {(U, V ) : U ∈ B(t0) ∧ P ⊂ Int(V ) = V ⊂ Int(Z)}. Define the directing

relation ≤ in Ξ in t he following way:

(U, V ) ≤ (U ′, V ′)⇔ U ⊃ U ′ ∧ V ⊃ V ′.

Now, we define the net {xξ}ξ∈Ξ in the following way: for each ξ = (U, V ) ∈ Ξ,

let xξ denote an arbitrary element of the set U satisfying f(xξ) ∈ V \ P (by (2),

it is possible).

Let α0 be a cluster point of the net {f(xξ)}ξ∈Ξ. We shall show that

(3) α0 ∈ P \ Int(P ).

Let us first prove that α0 ∈ P . Assume to the contrary that α0 /∈ P . Thus, by

the regularity of Y , there exist open sets V0 and V1 such that P ⊂ V0 ⊂ Int (Z),

α0 ∈ V1 and V0 ∩ V1 = ∅. Put ξ0 = (U0, V0) where U0 is an arbitrary set from

B(t0). It is easy to see that f(xξ) ∈ V0 for each ξ ≥ ξ0, which contradicts the

fact that α0 is a cluster point of {f(xξ)}ξ∈Ξ. This proves that α0 ∈ P . Note

that α0 /∈ IntP because, in the opposite case, by the definition of {xξ}ξ∈Ξ, there
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exists a neighbourhood of α0 disjoint from {f(xξ) : ξ ∈ Ξ}, which is impossible.

Condition (3) is proved.

By virtue of (3), we have

α0 /∈ {f(xξ) : ξ ∈ Ξ}.

Let B∗(t0) be a countable open base of X at t0 and let R(α0) be a countable

base of Y at α0 consisting of open sets such that their closures are included in

Int (Z).

Write the above bases down in the following way:

B∗(t0) = {U1, U2, . . . },

R(α0) = {V1, V2, . . . }.

We may assume that V1 ⊃ V2 ⊃ . . . .
Let n be a fixed positive integer. From the above cosiderations we infer that

there exists a point

zn ∈ (Un \ {t0}) ∩ f
−1(Vn \ {α0}).

Put A1 = {zn : n = 1, 2, . . .}. Of course, t0 ∈ Ad1. So, let B be an arbitrary

subset of A1 such that t0 ∈ Bd. Thus there exists a sequence {kn}∞n=1 consisting

of positive integers such that zkn ∈ B (for n = 1, 2, . . . ). It is easy to see that

α0 ∈ (f(B))d and (by (3) and the fact that f(t0) ∈ Int (P )) α0 6= f(t0), which

contradicts the assumption that f is a c-function.

The contradiction obtained ends the proof. �

In paper [GK], the following problem was posed: under what assumptions with

respect to X and f is a connected function f : X → R (where R denotes the set

of all real numbers) monotone (i.e. the preimage of an arbitrary connected set is

a connected set) or weakly monotone (i.e. each level f−1(α) is a connected set)

relatively to the closure of the union of all connected levels? Some partial answer

can be found in [GZ], [PJ], [PRJ], [RP]. The adoption of our definitions and

notations allows one to write this problem down in a little more general form:

Under what assumptions with respect to X and f is a Darboux (L) function

f : X → R monotone or weakly monotone relatively to SL(f)?

The theorem below constitutes a partial answer to the problem thus formulated.

It deserves attention that, unlike the theorems in the works cited above, we assume

relatively little about the domains of the transformations considered and adopt the

weakest version of the Darboux property.

In the sequel, we shall assume that the family L contains all continua and

possesses the following property: for any A ∈ L, if x ∈ A, then A ∪ {x} ∈ L.
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Theorem 2. Let X be a T5-space with an L-base B and let f : X → R be a

c-function Darboux(L), relatively proper and L-pseudo monotone. Then f
∣∣
SL(f)

is

weakly monotone.

Proof. Assume to the contrary that:

(i) there exists α ∈ R such that f−1(α) ∩ SL(f) is a nonempty set which is

not connected.

By the above, we may show that:

(ii) there exists ε > 0 such that

either (α− ε, α) ∩ YL(f) = ∅ or (α,α+ ε) ∩ YL(f) = ∅.

Indeed, suppose that (ii) does not take place. Then there exist two sequences

{α−n }
∞
n=1, {α

+
n }
∞
n=1 ⊂ YL(f) such that

lim
n→∞

α−n = α = lim
n→∞

α+
n and α−i < α−i+1, α+

i > α+
i+1 (i = 1, 2, . . . ).

Let n be a fixed positive integer. We shall show that

(4) f−1([α−n , α
+
n ]) is the continuum.

First, we shall prove that

(5) f−1([α−n , α
+
n ]) is closed.

Consider x ∈ X \ f−1([α−n , α
+
n ]). We shall now show that:

(6) there exists U ∈ B such that x ∈ U and U ∩ (f−1(α−n ) ∪ f−1(α+
n )) = ∅ .

Suppose that (6) does not hold. Then either x ∈ f−1(α−n ) or x ∈ f−1(α+
n ). As-

sume, for instance, that x ∈ f−1(α−n ). Thus f−1(α−n )∪{x} ∈ L, which contradicts

the asumption that f is Darboux(L). The contradiction obtained proves (6).

By virtue of the assumption that f is Darboux(L) and by (6), we may observe

that x /∈ f−1([α−n , α
+
n ]), which proves (5) (by the free choice of x).

We shall now show that:

(7) the set f−1([α−n , α
+
n ]) is connected.

Suppose that f−1([α−n , α
+
n ]) is not connected; then f−1([α−n , α

+
n ]) = P ∪ Q

where P and Q are nonempty, closed and disjoint sets. Then, according to the

L-pseudomonotonicity of f , f(P ) ∩ f(Q) = ∅. Now, we shall show that

(8) f(P ) ∩ f(Q) = ∅ .
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Indeed, in the opposite case, there exists βn ∈ f(P ), (n = 1, 2, . . . ) and β ∈
f(Q) such that β = lim

n→∞
βn and βn 6= βm for n 6= m. Let pn ∈ P ∩ f−1(βn)

for n = 1, 2, . . . . From the assumption that f is relatively proper and from the

closedness of P we infer that there exists a subnet {qσ}σ∈S of {pn}∞n=1 converging

to some q0 ∈ P . It is easy to see that q0 ∈ {qσ : σ ∈ S}d. Let P1 be an

arbitrary subset of {qσ : σ ∈ S} such that q0 ∈ P d1 . Therefore f(P1) contains some

subsequence of {βn}∞n=1 and, consequently, β ∈ (f(P1))
d. Of course, β 6= f(q0),

which is impossible because f is a c-function. The contradiction obtained proves

equality (8).

Similarly we can show that f(P ) ∩ f(Q) = ∅.
Moreover, we infer that [α−n , α

+
n ] = f(P ) ∪ f(Q). This situation is impossible

according to (8) and the above remark. This contradiction ends the proof of (7).

By virtue of (5), (7) and the fact that f is relatively proper, we infer that (4)

takes place.

So, by (4), f−1(α) =
∞⋂
n=1

f−1([α−n , α
+
n ]) is a continuum ([ER, Corollary 6.1.2,

p. 437]), which contradicts (i ). The contradiction obtained ends the proof of (ii).

By virtue of (i), we have f−1(α)∩SL(f) = T ∪D where T and D are separated

sets. Let UT and UD be open sets such that T ⊂ UT , D ⊂ UD and UT ∩ UD = ∅
([ER, Theorem 2.1.7, p. 97]). Moreover, let t0 ∈ T and d0 ∈ D. Of course,

t0, d0 /∈ SL(f), so there exist nets {tσ}σ∈Σ and {dδ}δ∈∆ consisting of elements of

SL(f), such that t0 = lim
σ∈Σ

tσ and d0 = lim
δ∈∆

dδ. We shall show that

(9) lim
σ∈Σ

f(tσ) = α = lim
δ∈∆

f(dδ).

Since the proofs of both the equalities are analogous, therefore we shall show

only the first of them.

Assume to the contrary that α is not a limit of the net {f(tσ)}σ∈Σ. Thus

there exists a real number η > 0 such that, for each σ0 ∈ Σ, there exists σ ≥ σ0

such that f(tσ) /∈ (α − η, α + η). Put Σ′ = {σ ∈ Σ : f(tσ) /∈ (α − η, α + η)}.
Of course, {f(tσ)}σ∈Σ′ is a subnet of {f(tσ)}σ∈Σ. Consider the following sets:

Σ′′ = {σ ∈ Σ′ : f(tσ) ≤ α− η}, Σ′′′ = {σ ∈ Σ′ : f(tσ) ≥ α+ η}.
Let us remark that ( we assume that Σ is directed by ≤)

(10)

either,

for each σ′ ∈ Σ′, there exists σ′′ ∈ Σ′′ such that σ′′ ≥ σ′

or,

for each σ′ ∈ Σ′, there exists σ′′′ ∈ Σ′′′ such that σ′′′ ≥ σ′.

Assume, for instance, that (10) takes place for Σ′′. Thus Σ′′ is a directed set

and {tσ}σ∈Σ′′ is a subnet of {tσ}σ∈Σ and, of course, {f(tσ)}σ∈Σ′′ is a subnet of

{f(tσ)}σ∈Σ.
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Consider the following cases:

10. ξ− = sup{f(tσ) : σ ∈ Σ”} ∈ {f(tσ) : σ ∈ Σ”}.

Then ξ− ∈ YL(f) and, as is easy to show, f−1((ξ−,+∞)) is a neighbourhood of

t0 such that tσ /∈ f−1((ξ−,+∞)) for any σ ∈ Σ”, which leads to a contradiction.

20. ξ− = sup{f(tσ) : σ ∈ Σ”} /∈ {f(tσ) : σ ∈ Σ”}.

Let Π = {(U, n) : U ∈ B ∧ t0 ∈ U ∧ n ∈ N} (N denotes the set of all positive

integers ). Let us define the relation � directing Π as follows:

(U, n)� (V,m)⇔ U ⊃ V ∧ n ≤ m.

Define a net {ξp}p∈Π in the following way: for each p = (U, n) ∈ Π, give ξp such

that ξp ∈ U and f(ξp) ∈ (ξ− − 1
n
, ξ−). We infer that

t0 = lim
p∈Π

ξp and ξ− = lim
p∈Π

f(ξp).

Of course, t0 ∈ {ξp : p ∈ Π}d. Let B1 be an arbitrary subset of {ξp : p ∈ Π}
such that t0 ∈ Bd1 . We may notice that f(B1)∩(ξ−− 1

n , ξ
−) 6= ∅ (for n = 1, 2, . . . ),

which means that ξ− ∈ f(B1)
d, which contradicts the fact that f is a c- function.

The proof of (9) is thus finished.

So, let W be an arbitrary element from B containing d0 and such that W ⊂ UD.

According to (ii), assume (α,α + ε) ∩ YL(f) = ∅. By (9), one may assume that

f(tσ) < α for σ ∈ Σ and infer that f(W ) is a nondegenerate interval such that

(α − ε, α) ∩ f(W ) 6= ∅. Consequently, there exists σ0 ∈ Σ such that, for each

σ ≥ σ0, f(tσ) ∈ f(W ). Since f−1(f(tσ)) is a connected set non-disjoint from UT
and UD, there exists hσ ∈ f−1(tσ) \ (UT ∪ UD), (σ ≥ σ0). By the fact that f is

relatively proper, there exists a cluster point h0 ∈ X of {hσ}σ≥σ0 . Let {gσ∗}σ∗∈Σ∗

be a subnet of {hσ}σ≥σ0 , converging to h0. Of course, h0 /∈ UT ∪ UD, and so,

h0 /∈ f−1(α) (because h0 ∈ SL(f)). Let Z = {gσ∗ : σ∗ ∈ Σ∗}. Therefore h0 ∈ Zd.
Let S be an arbitrary subset of Z such that h0 ∈ Sd.

Now, we shall show that

(11) f(S) ∩

(
α−

1

n
, α

)
6= ∅ for any n ∈ N.

First, we shall prove that

(12) f(h0) > α.

Indeed, in the opposite case, between f(h0) and α there lies some element

τ ∈ YL(f). Thus, as is easy to see, f−1((−∞, τ)) is a neighbourhood of h0, and

this is impossible because h0 is a cluster point of {hσ}σ≥σ0 .

Let us return to the proof of (11). Assume that there exists n0 such that

f(S) ∩ (α − 1
n0
, α) = ∅. Thus, by (12), it is easy to indicate a neighbourhood of

h0 which is disjoint from S, which is impossible.

From (11) we infer that α ∈ f(S)d, which contradicts the fact that f is a

c-function.

Thus the proof of Theorem 2 is finished.
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(1984), 1–84.
[KU] Klee V. L. and Utz W. R., Some remarks on continuous transformations, Proc. Amer.

Math. Soc. 5 (1954), 182–184.
[PH] Pawlak H., On some condition equivalent to the continuity of closed functions, Dem.

Math. 17.3 (1984), 723–732.
[PJ] Pawlak H. and Pawlak R.J., On some properties of closed functions in terms of their

levels, Comm. Math. 26 (1986), 81–87.
[PR] Pawlak R.J., On Zahorski classes of functions of two variables, Rev. Roum. de Math.

Pures et Appl. 35.1 (1990), 53–71.
[PRJ] , On the continuity and monotonicity of restrictions of connected functions, Fund.

Math. 114 (1981), 91–107.
[RP] Pawlak R. J. and Rychlewicz A., On K. M. Garg’s problem in respect to Darboux func-

tions, Acta Univ. Lodz. Folia Math. 4 (1991), 91–107.
[WD] White D. J., Functions preserving compactness and connectedness, J. London Math. Soc.

3 (1971), 767–768.
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