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NONASSOCIATIVE ALGEBRAS WITH

SUBMULTIPLICATIVE BILINEAR FORM

A. CEDILNIK and B. ZALAR

Abstract. In this paper algebras with identity, over ordered fields, which pos-
sess a (weak) submultiplicative positive bilinear form are studied. They are called
(weak) subdecomposition algebras. It is proved that every weak subdecomposition
algebra is a simple quadratic algebra with no nontrivial nilpotents or idempotents.
If a weak subdecomposition algebra is also flexible, then it is a noncommutative
Jordan algebra and an algebraic involution can be defined in a natural way. Every
subdecomposition algebra is automatically flexible. There exist simple examples
of weak subdecomposition algebras which are not flexible. Alternative weak sub-
decomposition algebras can be completely classified. Some structure theorems for
weak subdecomposition algebras with large nucleus are also given.

Introduction

In this paper we are concerned with the structure of nonassociative algebras with

identity over an ordered field, which possess a submultiplicative positive nonde-

generate bilinear form. This algebras are generalization of well-known composition

algebras, i.e. algebras in which the bilinear form is multiplicative. Therefore we

shall call them subdecomposition algebras.

There exist many examples of weak subdecomposition algebras and it is prob-

ably very difficult to classify all of them but many nice results can be obtained

even in the general case. Alternative weak subdecomposition algebras can be

completely classified. This is described in Section 2.

There are three groups of papers which motivated our study of subdecomposi-

tion algebras.

The first group consists of papers [2], [8], [9] and [13]. The results of [8], [9]

and [13] can be summarized in the following

Theorem A. Let A be a real Hilbert space which is also an associative algebra

with identity e. Suppose that ‖e‖ = 1 and ‖xy‖ ≤ ‖x‖ ·‖y‖. Then A is isomorphic

to the field of real numbers, complex numbers or quaternions.

In [2] one of the results (Theoreme 4) goes as follows:
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Theorem B. Let A be a complex Jordan H∗-algebra (see the paragraph before

Corollary 1 for definition) with the identity e such that ‖e‖ = 1 and ‖xy‖ ≤
‖x‖ · ‖y‖. Then A is isomorphic to the field of complex numbers.

Proofs and methods in these papers belong to the analysis. We obtain better

results (even in the case of real algebras) with entirely algebraic methods.

The second group consists of papers [1], [5] and [6] which concern the Cayley-

Dickson process. Let A be some algebra with involution ∗ over a field F . Take

a nonzero γ ∈ F and a symbol i 6∈ F . We shall denote by ACD(γ) the Cayley-

Dickson extension of A, i.e. A⊕ iA with the following multiplication

(a+ ib)(c+ id) = (ac+ γdb∗) + i(a∗d+ cb)

and new involution

(a+ ib)∗ = a∗ − ib

(see [12, p. 45]). The algebraA can be embedded into its Cayley-Dickson extension

as A ⊕ i{0}. If we begin with a field F with the identity involution and with

some sequence {γn} ⊂ F of nonzero constants, we obtain the Cayley-Dickson

sequence F , F1, F2, . . . such that Fn+1 is the Cayley-Dickson extension of Fn.
If R denotes the field of real numbers, then R1 is isomorphic to the field of complex

numbers, R2 to the field of quaternions and R3 to the algebra of octonions.

If F is an ordered field, then all elements of its Cayley-Dickson sequence can

be turned into a weak subdecomposition algebra over F . Even more: if A is some

weak subdecomposition algebra then its Cayley-Dickson extension is also a weak

subdecomposition algebra.

The third group consists of papers [10] and [14]. A real Banach algebra A is

called an absolute-valued algebra if ‖xy‖ = ‖x‖ · ‖y‖ holds for all x, y ∈ A. In real

weak subdecomposition algebras ‖x2‖ = ‖x‖2 holds for all x ∈ A and thus our

work is connected with absolute-valued algebras with identity. For some results

concerning absolute-valued algebras without identity see [10].

In the sequel we shall use the notation [x, y, z] = xy ·z−x·yz for the associator

in a nonassociative algebra A.

1. Preliminaries

Let (K,≤) be some (linearly) ordered field. This means that

(i) K = P ∪ {0} ∪ −P for some subset P which does not contain 0.

(ii) α, β ∈ P implies α+ β, αβ ∈ P .

(iii) α ≤ β if and only if α− β ∈ P ∪ {0}.

We shall denote the elements of K with small Greek letters.

Let A be some (nonassociative) algebra over K with the identity element e (in

the sequel the letter e automatically means the identity element). Let B : A ×
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A −→ K be a symmetric K-bilinear form. We shall say that the pair (A, B) is an

subdecomposition algebra if

(i) B is positive i.e. B(x, x) ≥ 0 holds for all x ∈ A,

(ii) B is nondegenerate i.e. B(x, x) = 0 implies x = 0,

(iii) B is submultiplicative i.e. B(xy, xy) ≤ B(x, x)B(y, y) holds for all

x, y ∈ A,

(iv) B(e, e) = 1.

The pair (A, B) will be called a weak subdecomposition algebra if we sub-

stitute (iii) by a weaker statement

(iii’) B(x2, x2) ≤ B(x, x)2 holds for all x ∈ A.

From now on we avoid notation (A, B) and simply say that A is a (weak)

subdecomposition algebra. It is obvious that K itself is an subdecomposition

algebra with the bilinear form B(α, β) = αβ.

Remark. If we start with a partially ordered field K, then the existence of some

weak subdecomposition algebra over K implies that the square of any element of

K is positive (see (i) and (iv)). In this case the order of K can be extended to a

linear order. Therefore we assume that K is linearly ordered from the beginning.

We say that a, b are orthogonal if B(a, b) = 0. If S is a subset of A it shall

be called an orthogonal subbase if all its elements are nonzero and pairwise

orthogonal. If A is spanned by S, then we call S an orthogonal base. Every

element a ∈ A can be uniquely decomposed into a sum a = αe + x where x is

orthogonal to e.

In the sequel we shall need some simple but very useful observations on ordered

fields. We collect them into

Observation 1. Let K be an ordered field and α, β, γ ∈ K. Then the following

holds:

(i) The square of any element of K is positive. Thus 1 ≥ 0.

(ii) If α ≥ 0, then α−1 ≥ 0.

(iii) If βξ + γ ≤ 0 for all ξ ∈ K, then β = 0.

(iv) If αξ2 + βξ + γ ≥ 0 for all ξ ∈ K, then α ≥ 0 and β2 ≤ 4αγ.

(v) Let A be a weak subdecomposition algebra over K. Then B(x, y)2 ≤
B(x, x)B(y, y) holds for all x, y ∈ A.

Proof. (iii) Suppose for a moment that β 6= 0. Take ξ1 = 0 and ξ2 = −2γβ−1.

This gives us γ ≤ 0 and −γ ≤ 0 and so γ = 0 must hold. Thus βξ ≤ 0 for all

ξ ∈ F . If we take ξ = ±1, we obtain β = 0 which is a contradiction.

(iv) If α = 0, we arrive in the situation described in (iii). Thus β = 0 also holds

and there is nothing to prove. Suppose that α is nonzero. By replacing ξ with

−ξ, we obtain that αξ2 + γ ≥ 0 holds for all ξ ∈ K. From ξ = 0 we get γ ≥ 0.

Now suppose that α ≤ 0. Then ξ2 ≤ −γα−1. But this is a contradiction since we
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can take ξ = 1− γ(2α)−1. Therefore α ≥ 0. If we insert now ξ = −β(2α)−1 into

αξ2 + βξ + γ ≥ 0, we get β2 ≤ 4αγ.

(v) Take x, y ∈ A and ξ ∈ K. From

0 ≤ B(x+ ξy, x+ ξy) = B(x, x) + 2ξB(x, y) + ξ2B(y, y)

we obtain, using (iv) B(x, y)2 ≤ B(x, x)B(y, y). In the case of real weak sub-

decomposition algebras this is a well-known Cauchy-Schwartz inequality for the

inner product. �

2. General Theory of Weak Subdecomposition Algebras

The following lemma is of fundamental importance for the theory of subdecom-

position algebras.

Lemma 1. Let A be a weak subdecomposition algebra. Suppose that x is or-

thogonal to the identity element e. Then x2 = −B(x, x)e.

Proof. Take some ξ ∈ K and form an element a = ξe + x. From B(a2, a2) ≤
B(a, a)2 we obtain

B(ξ2e+ 2ξx+ x2, ξ2e+ 2ξx+ x2) ≤ (ξ2 +B(x, x))2,

ξ4 + 4ξ2B(x, x) + 2ξ2B(e, x2) + 4ξB(x, x2) +B(x2, x2)

≤ ξ4 + 2ξ2B(x, x) +B(x, x)2

and finally

ξ2(2B(x, x) + 2B(e, x2)) + 4ξB(x, x2) +B(x2, x2)−B(x, x)2 ≤ 0.

From Observation 1(v) we obtain

B(e, x2)2 ≤ B(e, e)B(x2, x2) = B(x2, x2) ≤ B(x, x)2.

Observation 1(iv) also tells us that B(x, x) + B(e, x2) ≤ 0. This implies that

−B(e, x2) is positive and hence B(x, x)2 ≤ B(e, x2)2. Therefore B(x, x)2 =

B(x2, x2) = B(e, x2)2. Finally we get

0 ≤ B(x2 +B(x, x)e, x2 +B(x, x)e) = B(x2, x2) +B(x, x)2

+ 2B(x, x)B(e, x2) = 2B(x, x)(B(x, x) +B(e, x2)) ≤ 0 .

Since B is positive and nondegenerate, the proof is concluded. �
Define A0 = { x ∈ A; B(e, x) = 0 }. A0 is not a subalgebra of A but we shall

make it an algebra by defining a new product in A0 with

x ◦ y = xy −B(xy, e)e .

This is obviously a bilinear mapping since B is bilinear, and obviously we have

x ◦ y ∈ A0.
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We shall also define a mapping ∗ : A −→ A with (αe+ a)∗ = αe− a for α ∈ K
and a ∈ A0. Note that ∗ is not necessarily an algebraic involution of A.

Proposition 1. Let A be a weak subdecomposition algebra. Then (A0, ◦) is

anticommutative.

Proof. Take some x, y ∈ A0. Since x+ y ∈ A0, we get

(x+ y)2 = −B(x+ y, x+ y)e = −B(x, x)e− 2B(x, y)e−B(y, y)e

= x2 + y2 − 2B(x, y)e .

Thus xy + yx = −2B(x, y)e holds. Next we have

x ◦ y + y ◦ x = xy −B(xy, e)e+ yx−B(yx, e)e

= −2B(x, y)e−B(xy, e)e−B(yx, e)e .

Since x ◦ y + y ◦ x is orthogonal to e, this finally gives us x ◦ y = −y ◦ x. �
Observation 2. From this proof it also follows that

2B(x, y) = −B(xy, e)−B(yx, e)

for all x, y ∈ A0. We shall use this observation later.

Proposition 2. Let A be a weak subdecomposition algebra. Then B(x2, x2) =

B(x, x)2 for every x ∈ A.

Proof. Decompose x = αe+ a with a ∈ A0. Then we have first

x2 = (α2 −B(a, a))e+ 2αa .

Hence

B(x2, x2) = α4 − 2α2B(a, a) +B(a, a)2 + 4α2B(a, a)

= α4 + 2α2B(a, a) +B(a, a)2 = (α2 +B(a, a))2

= B(αe+ a, αe+ a)2 = B(x, x)2. �
Proposition 3. Let A be a weak subdecomposition algebra. Then the following

holds:

(i) A is a quadratic algebra: x2 − 2B(e, x)x+B(x, x)e = 0.

(ii) The only nilpotent in A is 0.

(iii) A contains only two idempotents, 0 and e.

(iv) Every left (right) ideal of A is trivial.

(v) Every nonzero subalgebra contains the identity e and is closed under the

mapping ∗ : A −→ A. Thus every subalgebra of a weak subdecomposition

algebra is again a weak subdecomposition algebra.

(vi) There is one to one correspondence between the subalgebras of A and sub-

algebras of (A0, ◦).
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Proof. (i) Take some x ∈ A and decompose x = αe + a with a ∈ A0. Using

Lemma 1 we obtain

x2−2B(e, x)x+B(x, x)e = α2e−B(a, a)e+2αa−2α(αe+a)+(α2+B(a, a))e = 0 .

(ii) Suppose that x2 = 0 for some x ∈ A. If we decompose x = αe + a, we

obtain 2αa = 0 and α2−B(a, a) = 0. This obviously implies α = 0 and a = 0 and

thus x = 0. Since A is power-associative, there are no nontrivial nilpotents in A.

(iii) This can be proved in a similar way as (ii).

(iv) is obvious.

(v) Let B be some nontrivial subalgebra of A and x ∈ B a nonzero element.

From

B(x, x)−1(x2 − 2B(e, x)x) = e

it follows that e belongs to B. From

x∗ = 2B(e, x)e− x

it follows that x∗ also belongs to B.

(vi) Let B be some subalgebra of A. It is obvious that (B∩A0, ◦) is a subalgebra

of (A0, ◦). Therefore it remains to prove that every subalgebra (C, ◦) of (A0, ◦) is

of the form B ∩A0 for some subalgebra B of A. In fact we can define B = Ke⊕C.
For α, β ∈ K and x, y ∈ C we have

(αe+ x)(βe+ y) = αβe+ αy + βx+ xy

= αβe+ αy + βx+ x ◦ y +B(xy, e)e

= (αβ +B(xy, e))e+ αy + βx+ x ◦ y ∈ Ke⊕ C.

Thus B is a subalgebra of A and C = B ∩A0 obviously holds. �

More can be said about weak subdecomposition algebras if they are flexible.

This means that [x, y, x] = 0 for all x, y ∈ A.

Example 1. Take A = R3 with bilinear form

B((α1, β1, γ1), (α2, β2, γ2)) = α1α2 + β1β2 + γ1γ2.

Denote e = (1, 0, 0), x = (0, 1, 0) and y = (0, 0, 1). Consider the following multi-

plication table for A:

• e x y

e e x y
x x −e x
y y −x −e
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The reader can easily verify that A is a weak subdecomposition algebra. A is not

flexible since

[x, y, x] = xy · x− x · yx = x2 + x2 = −2e 6= 0 .

A is also not an subdecomposition algebra, since

B((e+ x)(e+ y), (e+ x)(e+ y)) = B(e+ 2x+ y, e+ 2x+ y) = 6,

B(e+ x, e+ x)B(e+ y, e+ y) = 2 · 2 = 4 .

Theorem 1. Let A be a flexible weak subdecomposition algebra. Then the

following holds:

(i) A is a noncommutative Jordan algebra.

(ii) The mapping ∗ : A −→ A is an algebra involution.

(iii) If x, y ∈ A0 and α, β ∈ K then

(αe+ x)(βe+ y) = (αβ −B(x, y))e+ αy + βx+ x ◦ y.

(iv) A is a (commutative) Jordan algebra if and only if x ◦ y = 0 for all

x, y ∈ A0.

(v) If we define T (x, y) = B(x, y∗), then T is a trace form i.e. T (xy, z) =

T (x, yz) holds for all x, y, z ∈ A (see [12, page 24]).

Proof. (i) Take some x, y ∈ A and decompose x = αe+ a and y = βe+ b with

a, b ∈ A0. Then we have

[x2, y, x] = [(α2 −B(a, a))e+ 2αa, βe+ b, αe+ a] = 2α[a, b, a] = 0 .

(ii), (iii) Take some x, y ∈ A0 and suppose for a moment that x 6= 0. From

[x, y, x] = 0 we obtain

(x ◦ y +B(xy, e)e)x = x(y ◦ x+B(yx, e)e),

(x ◦ y) ◦ x+B((x ◦ y)x, e)e+B(xy, e)x

= x ◦ (y ◦ x) + B(x(y ◦ x), e)e+B(yx, e)x .

Since A0 is anticommutative, it follows x ◦ (y ◦ x) = (x ◦ y) ◦ x. Since e and x are

linearly independent, B(xy, e) = B(yx, e) holds. From Observation 1 it follows

that

(1) B(xy, e) = B(yx, e) = −B(x, y).

But (1) also holds for x = 0 and hence (1) is valid for all x, y ∈ A0. From (1) and

the definition of the product ◦, (iii) easily follows.
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Now we must verify that

((αe+ x)(βe+ y))∗ = (βe+ y)∗(αe+ x)∗ = (βe− y)(αe− x)

holds for all α, β ∈ K and x, y ∈ A0. First we have

(βe− y)(αe− x) = αβe− αy − βx+ y ◦ x−B(x, y)e .

Next we have

(αβe+ αy + βx+ x ◦ y −B(x, y)e)∗ = αβe− αy − βx−B(x, y)e− x ◦ y

and since x ◦ y = −y ◦ x we finally establish (ii).

(iv) This follows directly from (iii).

(v) Take some x, y, z ∈ A0. Then we have, using Lemma 1,

(x ◦ y + z)2 = −B(x ◦ y + z, x ◦ y + z)e .

If we expand this, we obtain

(x ◦ y)z + z(x ◦ y) = −2B(x ◦ y, z).

Since x ◦ y = xy +B(x, y)e, we get

(2) xy · z + x · yz + 2B(x, y)z = −2B(x ◦ y, z)e .

If we take adjoints in (2), we get

−z · yx− yx · z − 2B(x, y)z = −2B(x ◦ y, z)e

and so

(3) xy · z + z · xy − z · yx− yx · z = −4B(x ◦ y, z)e .

With a cyclic permutation we get from (3):

(4) yz · x+ x · yz − x · zy − zy · x = −4B(y ◦ z, x)e .

If we subtract (4) from (3), we obtain

[x, y, z] + [z, y, x] + x · zy + z · xy − yx · z − yz · x

= −4B(x ◦ y, z)e+ 4B(y ◦ z, x)e .
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Since A is flexible, [x, y, z] + [z, y, x] = 0. Next we have

x · zy − yz · x = x(z ◦ y −B(z, y)e)− (y ◦ z −B(z, y)e)x

= x(z ◦ y) + (z ◦ y)x = −2B(z ◦ y, x)e

and

z · xy − yx · z = z(x ◦ y −B(x, y)e)− (y ◦ x−B(x, y)e)z

= z(x ◦ y) + (x ◦ y)z = −2B(x ◦ y, z)e .

Finally we get

−2B(z ◦ y, x)− 2B(x ◦ y, z) = −4B(x ◦ y, z) + 4B(y ◦ z, x)

and thus B(x ◦ y, z) = B(y ◦ z, x). Since A0 is anticommutative, we obtain

(5) B(x ◦ y, z) = −B(x, z ◦ y).

Now take a, b, c ∈ A and decompose a = αe+x, b = βe+ y and c = γe+ z. We

must prove that

B(ab, c) = B(a, cb∗).

Hence we must verify

B((αe+ x)(βe + y), γe+ z) = B(αe+ x, (γe+ z)(βe− y)).

If we expand this equality, we see that B(x◦ y, z) = −B(x, z ◦ y) must hold. Since

this is (5), the proof of the theorem is completed. �

In [4] nonassociative realH∗-algebras are studied. This are real Hilbert algebras

with an involution such that

〈xy, z〉 = 〈x, zy∗〉 = 〈y, x∗z〉

holds for all x, y, z ∈ A.

Corollary 1. Let A be a real flexible algebra with the identity e which is also

a real Hilbert space with the norm ‖x‖ = 〈x, x〉
1
2 . Suppose that ‖e‖ = 1 and that

‖x2‖ ≤ ‖x‖2 holds for all x ∈ A. Then A is a quadratic noncommutative Jordan

real H∗-algebra.

The assumption of A being flexible can be removed in the case of subdecompo-

sition algebras as the following tells us.
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Proposition 4. Let A be a subdecomposition algebra. Then A is flexible.

Proof. Take x, y ∈ A0. For all ξ ∈ K we have

B(ξx+ xy, ξx+ xy) ≤ B(ξe+ y, ξe+ y)B(x, x)

= ξ2B(x, x) +B(x, x)B(y, y)

and so

2ξB(x, xy) +B(xy, xy)−B(x, x, )B(y, y) ≤ 0.

Thus, using Observation 1(iii), we get B(x, xy) = 0. In a similar way we prove

B(y, xy) = 0.

Now we shall use the inequality

B(e+ ξx+ y + ξxy, e+ ξx+ y + ξxy) ≤ B(e+ ξx, e+ ξx)B(e+ y, e+ y).

If we expand both sides, we obtain

ξ2(B(xy, xy) −B(x, x)B(y, y)) + 2ξ(B(e, xy) +B(x, y)) ≤ 0.

By Observation 1, this implies B(e, xy) = −B(x, y). In a similar way we prove

B(e, yx) = −B(x, y) and thus xy = x ◦ y −B(x, y)e holds. Finally

[x, y, x] = (x ◦ y −B(x, y)e)x− x(y ◦ x−B(x, y)e) = (x ◦ y)x+ x(x ◦ y)

= (x ◦ y) ◦ x−B(x ◦ y, x)e+ x ◦ (x ◦ y)−B(x ◦ y, x)e

= 2B(x ◦ y, x)e = 2B(xy +B(x, y)e, x)e = 0 . �

3. Alternative Weak Subdecomposition Algebras

In this section we describe the structure of alternative weak subdecomposition

algebras. Our result is that every flexible weak subdecomposition algebra which

satisfies the identity xy · yx = x · y2 · x is alternative and is isomorphic to one

of the Cayley-Dickson algebras K, K1, K2 or K3. This identity is a weak form

of well-known Moufang identity xy · zx = x(yz)x which holds in any alternative

algebra (see [12, page 28]).

Observation 3. Let A be a flexible weak subdecomposition algebra and α ∈ K
a negative element. Then the Cayley-Dickson extension ACD(α) of the algebra A
can be turned into a weak subdecomposition algebra.

Proof. Let (A, B) be a flexible weak subdecomposition algebra. According to

Theorem 1, A has an involution ∗. Define a new bilinear form on A⊕ iA by

B1(a+ ib, c+ id) = B(a, c)− αB(b, d).
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Since α is negative, B1 is positive and nondegenerate. Decompose a = βe+x with

x ∈ A0 and β ∈ K. Then we have

(a+ ib)2 = (a2 + αbb∗) + i(a+ a∗)b

= β2e−B(x, x)e + αB(b, b)e+ 2βx+ i(2βb).

It can now easily be verified that

B1((a+ ib)2, (a+ ib)2) = B1(a+ ib, a+ ib)2

holds. �

Lemma 2. Let A be a flexible weak subdecomposition algebra which satisfies

the identity xy ·yx = xy2x. Then A is alternative and the form B is multiplicative

i.e. B(xy, xy) = B(x, x)B(y, y).

Proof. Take some x, y ∈ A0 which are orthogonal. First we have x2y =

−B(x, x)y. Now we shall compute

B([x, x, y], [x, x, y]) = B(x · xy +B(x, x)y, x · xy +B(x, x)y).

Since x and y are orthogonal, we have xy = −yx ∈ A0. Thus

B(xy, xy)e = −(xy)2 = xy · yx = xy2x

= −B(y, y)x2 = B(x, x)B(y, y)e .(6)

From B(x, xy) = B(x2, y) = −B(x, x)B(e, y) = 0 it also follows

B(x · xy, x · xy) = B(x, x)B(xy, xy) = B(x, x)2B(y, y)

and so we finally obtain

B([x, x, y], [x, x, y]) = 2B(x, x)2B(y, y) + 2B(x, x)B(y, x · xy)

= 2B(x, x)2B(y, y)− 2B(x, x)B(xy, xy) = 0 .

Now take arbitrary x, y ∈ A0. If x = 0, there is nothing to prove, so we may

suppose that x 6= 0. Define

(7) z = y − B(x, y)B(x, x)−1x .

It is straightforward to verify that x and z are orthogonal. Thus

0 = [x, x, z] = [x, x, y]−B(x, y)B(x.x)−1[x, x, x] = [x, x, y]

and since A = Ke⊕A0 it follows that A itself is left alternative. In a similar way

we prove that A is right alternative.
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From (6) and (7) we get the validity of (6) for all x, y ∈ A0. Now, if x = αe+a,

y = βe+ b, we can verify (6) with an easy computation. �

Theorem 2. Let A be a flexible weak subdecomposition algebra which satisfies

the identity xy · yx = xy2x. Then A is isomorphic to one of the following four

examples:

(i) The field K.

(ii) A two-dimensional associative commutative field K1.

(iii) A four-dimensional associative noncommutative division quaternion alge-

bra over K.

(iv) An eight-dimensional octonion algebra over K.

The proof of this result can be made with standard methods using Lemma 1.

Remark. In [7, Theorem 4.1] Elduque described the structure of all alternative

quadratic algebras. They are of six different types and so the above result is also

a consequence of his classification. We only have to observe which quadratic

alternative algebras admit a symmetric bilinear form.

As we have already noted, in every alternative weak subdecomposition algebra

the form B is actually multiplicative. The converse is also true.

Proposition 5. Let A be an subdecomposition algebra in which B(xy, xy) =

B(x, x)B(y, y) holds. Then A is alternative.

Proof. It is sufficient to verify that [x, x, y] = 0 holds for all x, y ∈ A0. First we

have x2y = −B(x, x)y. Using the fact that B is nondegenerate, Theorem 1 and

the following calculation

B(x · xy +B(x, x)y, x · xy +B(x, x)y)

= B(x · xy, x · xy) + 2B(x, x)B(x · xy, y) +B(x, x)2B(y, y)

= 2B(x, x)2B(y, y)− 2B(x, x)B(xy, xy) = 0,

we obtain x2y = x · xy. �

Proposition 6. Let G be a field which is a proper extension of an ordered field

K. Let A be a (nonassociative) algebra with the identity element e over G. Suppose

that A is a weak subdecomposition algebra over K. Then A is isomorphic to the

field G.

Proof. The field G itself is also a weak subdecomposition algebra over K since

Ge ⊂ A. Since G is associative and commutative, G is isomorphic to K1 and is

2-dimensional as an algebra over K.

Suppose that A is not isomorphic to G. Then there exists a nonzero a ∈ A
which is orthogonal to Ge. Take some nonzero g ∈ Ge such that g2 = −B(g, g)e.
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First we have (ga)2 = g2a2 = B(a, a)B(g, g)e. Decompose ga = αe + y with

y ∈ A0. Then (ga)2 = α2e − B(y, y)e + 2αy. Therefore αy = 0 must hold. If

α = 0, then −B(y, y) = B(a, a)B(g, g) and from the fact that B is positive it

follows a = 0 which is contradiction. So y = 0 and from ga = αe, g2a = αg (note

that A is algebra over G) we finally obtain a = −αB(g, g)−1g. This is also not

possible, since we assumed that a and g are orthogonal. �

Corollary 2. Let A be a complex algebra with identity e which is also a pre-

Hilbert space such that ‖e‖ = 1 and ‖x2‖ ≤ ‖x‖2 holds for all x ∈ A. Then A is

isomorphic to the field of complex numbers.

4. Weak Subdecomposition Algebras with Large Nucleus

If A is some nonassociative algebra then the left, middle and right nucleus

are defined by

NL = { x ∈ A; [x,A,A] = (0) },

NM = { x ∈ A; [A, x,A] = (0) },

NR = { x ∈ A; [A,A, x] = (0) }.

Their intersection N = NL ∩ NM ∩ NR is called a nucleus of A. The nucleus is

always an associative subalgebra of A. If A is a weak subdecomposition algebra

then it is obvious that the nucleus of A is an associative subdecomposition algebra

and therefore by Theorem 2 it is 1, 2 or 4-dimensional. By the phrase “large

nucleus” we mean 2 or 4-dimensional nucleus.

Observation 4. Let A be a flexible weak subdecomposition algebra. Then NL =

NM = NR = N .

Proof. This follows from Theorem 1. First we have

a ∈ NM iff [A, a,A] = (0) iff [A, a,A]∗ = (0) iff

iff [A, a∗,A] = (0) iff a∗ ∈ NM .

Next we can observe, using the fact that B is nondegenerate,

a ∈ NL iff [a,A,A] = (0) iff B([a,A,A],A) = (0)

iff B(A, [A, a∗,A]) = (0) iff [A, a∗,A] = (0)

iff a∗ ∈ NM iff a ∈ NM .

Thus NL = NM . In a similar way we prove that NR = NM . �
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Theorem 3. Let A be a weak subdecomposition algebra and suppose that the

nucleus of A is isomorphic to the quaternion algebra. Then A itself is a quaternion

algebra and therefore associative.

Proof. Suppose that A 6= N = K2. Let {e, x, y, z = xy} be a (usual) orthogonal

base of N . There exists some nonzero b ∈ A orthogonal to N . Using

(x+ b)2 = −B(x+ b, x+ b)e = −B(x, x)e−B(b, b)e = x2 + b2

we obtain bx = −xb. In a similar way we see that by = −yb and bz = −zb. But

this implies

b = (−B(z, z)−1)(−B(z, z))b = −B(z, z)−1z2b = −B(z, z)−1zxy · b

= −B(z, z)−1zx · yb = B(z, z)−1zx · by = −B(z, z)−1z · bxy

= B(z, z)−1b · zxy = B(z, z)−1bz2 = −B(z, z)−1B(z, z)b = −b

which contradicts the assumption that b 6= 0. �

Lemma 3. Let A be a flexible weak subdecomposition algebra and suppose that

the nucleus N of A is 2-dimensional. Suppose that b is orthogonal to N and

nonzero. Then the subalgebra, generated with N and b, is isomorphic to the quater-

nion algebra.

Proof. Write N = Ke⊕Ka where a is orthogonal to e. Let c = ab. From

B(c, e) = B(ab, e) = −B(b, a) = 0,

B(c, a) = B(ab, a) = −B(b, a2) = B(a, a)B(b, e) = 0,

B(c, b) = B(ab, b) = −B(a, b2) = B(b, b)B(a, e) = 0

we obtain that the set {e, a, b, c} spans a 4-dimensional subspace since

ac = a · ab = a2b = −B(a, a)b

implies that c 6= 0. Using the fact that a belongs to the nucleus of A, we can easily

compute the following multiplication table:

• e a b c

e e a b c
a a −B(a, a)e c −B(a, a)b
b b −c −B(b, b)e B(b, b)a
c c B(a, a)b −B(b, b)a −B(a, a)B(b, b)e

which is a multiplication table of quaternions. �
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Lemma 4. Let A be a flexible weak subdecomposition algebra. Suppose that the

nucleus N = Ke ⊕ Ka is 2-dimensional and that the set {e, a, b1, c1 = ab1, b2} is

an orthogonal subbase of A. Then {e, a, b1, c1, b2, c2 = ab2} is also an orthogonal

subbase of A. The linear subspace generated with this set is a subalgebra of A with

the following multiplication table:

• e a b1 c1 b2 c2
e e a b1 c1 b2 c2
a a −αe c1 −αb1 c2 −αb2
b1 b1 −c1 −β1e β1a 0 0
c1 c1 αb1 −β1a −αβ1e 0 0
b2 b2 −c2 0 0 −β2e β2a
c2 c2 αb2 0 0 −β2a −αβ2e

where α = B(a, a), β1 = B(b1, b1) and β2 = B(b2, b2).

Proof. From Lemma 3 we already know everything except that b1b2 = b1c2 =

c1b2 = c1c2 = 0. Using the fact that a belongs to the nucleus of A we first obtain

c1c2 = ab1 · ab2 = −b1a · ab2 = −b1a
2 · b2 = αb1b2.

Next we have

a(b1 + c2)
2 = a(b1 + c2) · (b1 + c2).

If we expand both sides of the above equality, we get, using the fact that b1 and

c2 are orthogonal,

(−β1 −B(c2, c2))a = (c1 − αb2)(b1 + c2)

= −β1a− αb2b1 + c1c2 − αβ2a

= −β1a+ 2αb1b2 − αβ2a .

Thus 2αb1b2 = 0 and so b1b2 = c1c2 = 0. Now b1c2 = c1b2 = 0 easily follows. �

Theorem 4. Let A be a finite-dimensional flexible weak subdecomposition al-

gebra with 2-dimensional nucleus N = Ke⊕Ka. Then A can be decomposed into

an orthogonal sum A = N ⊕B⊕ aB where B ◦B = aB ◦ aB = (0). The dimension

of A is even but different from 4.

The proof easily follows from Lemma 4 and the finite-dimensionality of A.

A problem with infinite-dimensional subdecomposition algebras is that they are

not necessarily orthogonally complemented i.e. given a subspace B ⊂ A, B ⊕ B⊥

may be a proper subset of A.
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For real weak subdecomposition algebras which are complete with respect to

the norm which is generated with the inner product, a similar result can be proved.

Theorem 5. Let A be a real flexible weak subdecomposition algebra which is

a Hilbert space in the topology of the inner product B. Suppose that the nucleus

N = Re ⊕ Ra is 2-dimensional. Then A can be decomposed into an orthogonal

sum A = N ⊕B ⊕ aB where B ◦ B = aB ◦ aB = (0).

Proof. Consider the family Φ of those subspaces B ⊂ N⊥ for which aB ⊂
B⊥ ∩ N⊥ holds. From Theorem 1 it follows that the operators Ly(x) = yx and

Ry(x) = xy are continuous since L∗y = Ly∗ . Note that it is well-known that an

everywhere defined operator T acting on a Hilbert space is continuous if and only

if it has an adjoint T ∗. This also implies that the multiplication of A is jointly

continuous (see [3, Theorem 49.6]).

If B denotes the closure of B we have

aB = La(B) ⊂ B⊥ ∩N⊥ = B⊥ ∩N⊥ = (B)⊥ ∩N⊥

for all B ∈ Φ. Thus B ∈ Φ implies B ∈ Φ. Using the Zorn lemma, we see

that Φ contains some maximal element which we again denote with B. From the

maximality of B it easily follows that B is closed and that aB = B⊥ ∩ N⊥ (see

Lemma 3 and Lemma 4). From the continuity of the product it also easily follows

that B ◦ B = (0) since every element of B can be represented as a limit of finite

linear combinations of some orthonormal base of B which we can always choose.

The products of base elements are zero because of Lemma 4. �
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