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MONOTONE SEMIFLOWS GENERATED BY

NEUTRAL EQUATIONS WITH DIFFERENT

DELAYS IN NEUTRAL AND RETARDED PARTS

T. KRISZTIN and J. WU

1. Introduction

Let r ≥ r0 > 0 be given constants, C = C([−r, 0];R) the Banach space of

continuous functions from [−r, 0] into R with the norm ||φ|| = sup−r≤s≤0 |φ(s)|,
φ ∈ C. We consider the following scalar neutral functional differential equation

(1.1)
d

dt
Dxt = f(xt)

where

(D) Dxt = x(t) −
∫ −r0
−r x(t + s)dν(s), ν : [−r, r0] → R is nondecreasing and

ν(−r0)− ν(−r) < 1;

(f) f : C → R is locally Lipschitz continuous;

and xt ∈ C is defined in the usual way by xt(s) = x(t+ s) for s ∈ [−r, 0].

In [13], an ordering ≥D of the space C is introduced as follows

φ ≥D 0 iff φ(s) ≥ 0 on [−r, 0] and D(φ) ≥ 0,

so that under certain conditions, the solution semiflow defined by (1.1) is even-

tually strongly monotone in the sense of [6]. In particular, the eventual strong

monotonicity is obtained for solutions of the following scalar neutral equation

(1.2)
d

dt
[x(t)− cx(t− τ)] = g(x(t), x(t − ω))

if τ = ω, 0 ≤ c < 1 and ∂
∂y
g(x, y) > 0 for all (x, y) ∈ R2. In verifying the above

strong monotonicity of the solution semiflow, it is crucial to assume that the delay

τ in the neutral part and the delay ω in the retarded part are the same. However,

in some applications, this assumption is unrealistic. For example, a special case is

(1.3)
d

dt
[x(t)− cx(t− τ)] = −h(x(t)) + h(x(t − ω)),
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where h : R → R is continuously differentiable and d
dxh(x) > 0 for x ∈ R, was

used to model the transmission dynamics of material in an active compartmental

system with one compartment and one pipe coming out of and returning into the

compartment, where the delay τ is the length of time required in the process in

which some material is produced, while the delay ω represents the transit time for

the material flow to pass through the pipe (see [2] for details).

In this paper, we follow Smith and Thieme [8], [10] to consider the restriction

of the solution semiflow to a dense subset X of C. The subset X chosen here is

different from the one used by Smith and Thieme in [8], [10] for delay differential

equations because of the peculiarity of neutral equations. We obtain fairly gen-

eral sufficient conditions guaranteeing the strong order-preserving property of the

solution semiflow in X. In particular, we show that the solution semiflow of (1.2)

on X is strongly order-preserving if there exists µ ≥ 0 such that

(1.4) µ+ L1 − cµe
µτ + min{L2, 0}e

µω > 0,

or if there exist µ ≥ 0, α1, α2 ≥ 0 with α1 + α2 = 1 such that

(1.5)


µ+ L1 ≥ 0,

α1(µ+ L1)e
−µτ − cµ > 0,

α2(µ+ L1)e
−µω + L2 ≥ 0,

where

L1 = inf
(x,y)∈R2

∂g(x, y)

∂x
, L2 = inf

(x,y)∈R2

∂g(x, y)

∂y
.

The established strong order-preserving property allows us to apply the pow-

erful theory of convergence and stability theory developed in [9], [11] to neutral

equations (1.1), (1.2) and (1.3). In particular, we will employ the principle of

sequential limit set trichotomy to show that, under certain conditions, every so-

lution of (1.3), starting from an initial function in X, is convergent to a single

constant function. This extends corresponding results of [3], [4], [13] to the case

where τ 6= ω. It should be mentioned that an example can be easily constructed in

which periodic solutions of (1.3) exist [7]. Hence, certain conditions on c, τ , ω have

to be imposed for solutions of equation (1.3) to converge to constant functions.

2. Monotonicity of the Solution Semiflow

We start with a description of a dense strongly ordered subspace of C. Define

C1 = C1([−r, 0];R) and let

X = {φ ∈ C1 : Dφ′ = f(φ)}

be a metric space endowed with the topology of C1, i.e., d(φ,ψ) = ||φ− ψ||C1 :=

max{||φ− ψ||, ||φ′ − ψ′||}. Clearly, X is complete.



MONOTONE SEMIFLOWS 209

In order to show some properties of the space X, we need a particular function.

For given real α, positive β and 0 < γ ≤ min{r0,
2β
|α|+1} define

(2.1) ξα,β,γ(s) =

{
0, if −r ≤ s ≤ −γ

α
(
s2

2γ + s+ γ
2

)
, if −γ ≤ s ≤ 0.

It is straightforward to check that this ξα,β,γ has the following properties:

Lemma 2.1. For any α ∈ R, β > 0 and 0 < γ ≤ min{r0,
2β
|α|+1}, the function

ξ = ξα,β,γ satisfies ξ ∈ C1, ||ξ|| < β, ||ξ′|| = |α|, ξ′(0) = α, Dξ′ = α. Moreover,

for fixed β > 0, the mapping α 7→ ξα,β,γ, where 0 < γ = min{r0,
2β
|α|+1}, is

continuous from R to C1.

By using Lemma 2.1 one can get the denseness of X in C.

Lemma 2.2. X is dense in C.

Proof. Let ε > 0 and φ ∈ C be given. Then there is ψ ∈ C1 such that

||φ − ψ|| < ε/2 and ψ is constant on some interval [−δ, 0], 0 < δ < r. Let

ηα = ξα,ε/2,γ be defined as in (2.1), where 0 < γ = min{r0,
2β
|α|+1 ,

δ
2}. Then, for

any α ∈ R, ψ + ηα is in C1 and ||φ − (ψ + ηα)|| < ε. It suffices to show that

ψ + ηα ∈ X, i.e., Dψ′ + α = f(ψ + ηα) for some α. Dψ′ + α and f(ψ + ηα) are

continuous in α by Lemma 2.1. The range of Dψ′ + α is R as α varies, while the

range of f(ψ+ηα) is bounded (at least for sufficiently small ε > 0 by condition (f)).

Therefore, there is at least one α such that ψ + ηα ∈ X. �

For any given constant µ ≥ 0, let us define an order ≤µ on X such that for

φ, ψ ∈ X, φ ≤µ ψ provided φ(s) ≤ ψ(s) and φ′(s) + µφ(s) ≤ ψ′(s) + µψ(s)

on [−r, 0], or, equivalently, φ(s) ≤ ψ(s) and eµs[ψ(s) − φ(s)] is nondecreasing on

[−r, 0]. If φ ≤µ ψ and φ 6= ψ then we write that φ <µ ψ. This order is compatible

with the topology on X in the sense that for any sequences {φn}, {ψn} from

φn ≤µ ψn, φn → φ and ψn → ψ it follows that φ ≤µ ψ. It is easy to see that X is

normally ordered, i.e., there exists a constant k > 0 such that d(ξ, η) ≤ kd(φ,ψ)

for all ξ, η, φ, ψ with φ <µ ψ, φ ≤µ ξ, η ≤µ ψ.

In the next lemma we show another relation between the order and the topology

of X. For a φ ∈ X, we say that φ can be approximated from above (below) in X if

there exists a sequence {φn} in X satisfying φ <µ φn+1 <µ φn (φn <µ φn+1 <µ φ)

for n ≥ 1, and φn → φ as n→∞.

Lemma 2.3. If the assumption

there is an L ≥ 0 such that φ,ψ ∈ X and φ(s) ≥ ψ(s), s ∈ [−r, 0], imply

f(φ)− f(ψ) ≥ −L||φ− ψ||
(L−)
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holds and µ > L, then each φ ∈ X can be approximated from above and below

in X.

Proof. Let φ ∈ X be given. First we construct a φ1 ∈ X such that φ <µ φ1. Let

δ1 ∈ (0, 1] and choose ε1 ∈ (0, δ1) such that µ(δ1−ε1) > L(δ1 +ε1). We look for φ1

in the form φ1 = φ+ δ1 +ηα, where ηα = ξα,ε1,γ , 0 < γ = min{r0,
2ε1
|α|+1}. One has

φ1(s) > φ(s), −r ≤ s ≤ 0, for any α because ||ηα|| < ε1 and ε1 < δ1. In order to

have φ <µ φ1, we need (φ1−φ)′+µ(φ1−φ) ≥ 0, that is η′α+µ(δ1+ηα) ≥ 0. By using

the definition of ηα, we see that the last inequality holds provided α+µ(δ1−ε1) ≥ 0.

Thus it suffices to show that there is an α1 ∈ R such that α1 > −L(δ1 + ε1) and

φ1 = φ + δ1 + ηα1 ∈ X. φ1 is in X if and only if α1 = f(φ + δ1 + ηα1) − f(φ),

where we used Dφ′ = f(φ) and Dη′α1
= α1. The existence of an α1 with α1 =

f(φ + δ1 + ηα1) − f(φ) follows since f(φ+ δ1 + ηα1) − f(φ) is bounded in α1 by

condition (f) (at least for sufficiently small δ1). By assumption (L−)

α1 = f(φ+ δ1 + ηα1)− f(φ) ≥ −L||δ1 + ηα1 || > −L(δ1 + ε1).

Therefore φ <µ φ1.

Assume φn ∈ X is given such that φ <µ φn and φn = φ+δn+ηαn , where ηαn =

ξαn,εn,γ , 0 < γ = min{r0,
2εn
|αn|+1}, 0 < εn < δn ≤ 1/n, µ(δn − εn) > L(δn + εn),

αn > −L(δn + εn).

We seek for φn+1 in the form φn+1 = φ+ δn+1 + ηα, where ηα = ξα,εn+1,γ , 0 <

γ = min{r0,
2εn+1

|α|+1 }, 0 < εn+1 < δn+1 ≤ 1/(n+1), µ(δn+1−εn+1) > L(δn+1+εn+1),

δn+1 + εn+1 < δn − εn. For this φn+1, the relation φ <µ φn+1 is satisfied if

(φn+1 − φ)′ + µ(φn+1 − φ) = η′α + µ(δn+1 + ηα) > 0.

This is true if α ≥ −L(δn+1 + εn+1) because of η′α ≥ min{0, α}, ηα > −ε1
and µ(δn+1 − εn+1) > L(δn+1 + εn+1). In the same way as above for α1, one

gets the existence of an αn+1 such that φ + δn+1 + ηαn+1 ∈ X. Since αn+1

satisfies αn+1 = f(φ+ δn+1 + ηαn+1)− f(φ), by using the properties of ηαn+1 and

condition (L−), we obtain αn+1 > −L(δn+1 + εn+1). So, letting α = αn+1, one

gets φ <µ φn+1.

We also have

(φn − φn+1)
′ + µ(φn − φn+1)

≥ −L(δn + εn)− |αn+1|+ µ(δn − εn − δn+1 − εn+1)

= −L(δn + εn) + µ(δn − εn)− |αn+1| − µ(δn+1 + εn+1).

In order to show the relation φn+1 <µ φn, the positivity of −L(δn + εn) + µ(δn −
εn)− |αn+1| − µ(δn+1 + εn+1) is sufficient. If δn+1 → 0 in the definition of φn+1,

then the corresponding αn+1 also goes to 0 because of the continuity of f in C.
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Thus, since −L(δn + εn) + µ(δn − εn) > 0, δn+1 can be chosen so small that

−L(δn + εn) + µ(δn − εn)− |αn+1| − µ(δn+1 + εn+1) > 0,

that is φn+1 <µ φn will be satisfied.

Therefore, by induction we can construct {φn} inX such that φ <µ φn+1 <µ φn.

The convergence φn → φ also holds in X, since d(φn, φ) ≤ max{2δn, |αn|} and

δn → 0, αn → 0 as n → ∞. This completes the proof of the approximation from

above. The proof for the approximation from below is analogous. �

Lemma 2.4. Assume that T > 0 is a given constant. If φ ∈ C1, y ∈
C([−r, T ];R) and h ∈ C1([0, T ];R) are given so that

D(yt) = h(t) (0 ≤ t ≤ T ),

y0 = φ,

and D(φ′) = h′(0+), then the mapping [−r, T ] 3 t 7→ y(t) ∈ R belongs to

C1([−r, T ];R) and

(2.2) |y|C1[−r,T ] ≤ max

{
|φ|C1 ,

1

1− [ν(−r0)− ν(−r)]
|h|C1[0,T ]

}
.

Proof. We have

(2.3) y(t) =

∫ −r0
−r

y(t+ u) dν(u) + h(t) (t ∈ [0, T ]),

from which and from our conditions it follows that y ∈ C1[−r, r0]. Repeating the

same argument we get y ∈ C1[−r, T ]. From (2.3)

|y(t)| ≤

∫ −r0
−r

|y(t+ u)| dν(u) + |h(t)|, 0 ≤ t ≤ T.

Differentiating (2.3), one obtains

|y′(t)| ≤

∫ −r0
−r

|y′(t+ u)| dν(u) + |h′(t)|, 0 ≤ t ≤ T.

Thus

sup
t∈[0,T ]

|y(t)| ≤ [ν(−r0)− ν(−r)] sup
t∈[−r,T ]

|y(t)|+ sup
t∈[0,T ]

|h(t)|

and

sup
t∈[0,T ]

|y′(t)| ≤ [ν(−r0)− ν(−r)] sup
t∈[−r,T ]

|y′(t)| + sup
t∈[0,T ]

|h′(t)|.
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Using 0 ≤ ν(−r0)− ν(−r) < 1, one obtains

sup
t∈[0,T ]

|y(t)| ≤ max

{
||φ||,

1

1− [ν(−r0)− ν(−r)]
sup
t∈[0,T ]

|h(t)|

}
and

sup
t∈[0,T ]

|y′(t)| ≤ max

{
||φ′||,

1

1− [ν(−r0)− ν(−r)]
sup
t∈[0,T ]

|h′(t)|

}
.

Hence, taking into account y0 = φ, we get inequality (2.2). �
Lemma 2.5. If φ ∈ X, then xt(φ) ∈ X for t ∈ [0, τ(φ)), where and in what

follows, τ(φ) denotes the escape time of the solution xt(φ) of (1.1) with x0 = φ. If

supt∈[0,τ(φ)) ||xt(φ)|| < ∞, then τ(φ) = ∞. Moreover, the mapping [0,∞) ×X 3
(t, φ) 7→ xt(φ) ∈ X defines a semiflow on X.

Proof. Since φ ∈ X, our equation on [0, r0] can be written as

x′(t) = f(xt) + g(t),

where g(t) =
∫ −r0
−r φ′(t+s) dν(s). This is a delay differential equation and standard

results imply the existence and uniqueness of the solution in phase space C. This

argument can be repeated to get existence on [r0, 2r0], [2r0, 3r0] and so on. Clearly,

the obtained solution satisfies xt(φ) ∈ X. It also comes from a standard result for

delay differential equations that the boundedness of xt(φ) in C on [0, τ(φ)) implies

τ(φ)) =∞.

Since the mapping [0,∞)× C 3 (t, φ) 7→ xt(φ) ∈ C defines a semiflow on C, it

suffices to check the continuity of xt(φ) with respect to t and φ in the topology

of X. As x(φ) ∈ C1[−r, τ(φ)) holds, the continuity in t is clear.

Let φ1, φ2 ∈ X, τ∗ = min{τ(φ1), τ(φ2)} and let T be arbitrarily given such that

0 < T < τ∗. Since f is Lipschitz continuous on the compact subset ∪t∈[0,T ]{xt(φ1),

xt(φ2)} of C, we can find a constant M > 0 such that

|f(xt(φ2))− f(xt(φ1))| ≤M ||xt(φ2)− xt(φ1)||, t ∈ [0, T ].

So, applying Lemma 2.4 with y(t) = x(φ2)(t) − x(φ1)(t), h(t) = D(φ2 − φ1) +∫ t
0
[f(xs(φ2))− f(xs(φ1))]ds and φ = φ2 − φ1, we obtain

d(xt(φ2), xt(φ1)) ≤ |x(φ2)− x(φ1)|C1[−r,T ]

≤ max{|φ2 − φ1|C1 ,
1

1− [ν(−r0)− ν(−r)]
(|D(φ2 − φ1)|

+M(T + 1) sup
t∈[0,T ]

||xt(φ2)− xt(φ1)||)}.

Therefore, our conclusion follows from the continuity of xt(φ) with respect to φ in

the topology of C. This completes the proof. �
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Theorem 2.6. If
∫ −r0
−r e−µs dν(s) < 1 and the condition

(M) µ[D(φ2)−D(φ1)] + f(φ2)− f(φ1) ≥ 0 whenever φ1, φ2 ∈ X and φ1 ≤µ φ2

is satisfied, then the solution semiflow on X is monotone, i.e., from φ1 ≤µ φ2 it

follows that xt(φ1) ≤µ xt(φ2) for t ∈ [0,min{τ(φ1), τ(φ2)}).

Proof. For any ε > 0 we define fε(φ) = f(φ) + εD(φ) for φ ∈ C, and denote by

x(t, φ, ε) the unique solution of the initial value problem

d

dt
Dxt = fε(xt),

x0 = φ.

By the well-known continuous dependence on initial data and right-hand func-

tionals of solutions to neutral equations on C (see, e.g. [5]), for any 0 < T <

min{τ(φ1), τ(φ2)}, there exists ε0 > 0 such that if 0 < ε < ε0, then x(t, φi, ε)

exists on [0, T ] for i = 1, 2.

Let t1 ∈ [0, T ] be the maximum real number such that x(t, φ1, ε) ≤ x(t, φ2, ε)

on [0, t1] and eµt[x(t, φ2, ε) − x(t, φ1, ε)] is nondecreasing on [−r, t1]. We want to

show that t1 = T .

By way of contradiction, we assume t1 < T . If x(t1, φ2, ε) = x(t1, φ1, ε), then

0 = eµt1 [x(t1, φ2, ε)− x(t1, φ1, ε)] ≥ e
µt[x(t, φ2, ε)− x(t, φ1, ε)] ≥ 0

for all t ∈ [−r, t1]. Therefore, φ1 = φ2 on [−r, 0]. Hence by uniqueness, t1 is not the

maximum number satisfying the stated properties. So x(t1, φ2, ε) > x(t1, φ1, ε).

Let y(t) = x(t, φ2, ε)− x(t, φ1, ε). By condition (M), we obtain

d

dt

[
eµtD(xt(φ2, ε)− xt(φ1, ε))

]
|t=t1

= eµt1(µ+ ε)D[xt1(φ2, ε)− xt1(φ1, ε)] + eµt1 [f(xt1(φ2, ε))− f(xt1(φ1, ε))]

≥ εeµt1D(xt1(φ2, ε)− xt1(φ1, ε))

= εeµt1
{

[x(t1, φ2, ε)−x(t1, φ1, ε)]−

∫ −r0
−r

[x(t1 + s, φ2, ε)−x(t1 + s, φ1, ε)]dν(s)

}
= εeµt1

{
y(t1)−

∫ −r0
−r

y(t1 + s)eµse−µs dν(s)

}
≥ εeµt1y(t1)

[
1−

∫ −r0
−r

e−µs dν(s)

]
> 0.

Therefore, since d
dt

[eµtD(xt(φ2, ε)− xt(φ1, ε))] is continuous at t = t1 (continuous

from the right if t1 = 0), there exists h0 > 0 and α0 > 0 such that h0 < r0 and

d

dt

[
eµtD(xt(φ2, ε)− xt(φ1, ε))

]
≥ α0, t ∈ [t1, t1 + h0].
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Therefore

eµtD(xt(φ2, ε)− xt(φ1, ε))− e
µsD(xs(φ2, ε)− xs(φ1, ε))

≥ α0(t− s), t1 ≤ s ≤ t ≤ t1 + h0.

That is,

eµty(t)− eµsy(s) ≥ α0(t− s) +

∫ −r0
−r

[
eµty(t+ θ)− eµsy(s+ θ)

]
dν(θ)

for t1 ≤ s ≤ t ≤ t1 + h0. We note that eµty(t) is nondecreasing on [−r, t1] and

t− r0 ≤ t1 + h0 − r0 < t1. Therefore∫ −r0
−r

[
eµty(t+ θ)− eµsy(s+ θ)

]
dν(θ) ≥ 0.

Consequently, eµty(t)− eµsy(s) ≥ α0(t− s). This shows that eµty(t) is increasing

in [t1, t1 + h0], contradicting the maximality of t1.

So xt(φ1, ε) ≤µ xt(φ2, ε) on [0, T ]. Letting ε→ 0, we obtain the monotonicity.�

Theorem 2.7. If
∫ −r0
−r e−µs dν(s) < 1 and the condition

(SM) µ[D(φ2)−D(φ1)]+f(φ2)−f(φ1) > 0 whenever φ1, φ2 ∈ X and φ1 <µ φ2

is satisfied, then the solution semiflow on X is strongly order preserving, i.e., it

is monotone, and whenever φ, ψ ∈ X with φ <µ ψ, there exist open sets U and

V such that φ ∈ U , ψ ∈ V and xr(U) ≤µ xr(V ) (of course, we assume that both

solutions x(φ) and x(ψ) can be defined in an open interval containing [0, r]).

Proof. Assume that both solutions x(t, φ) and x(t, ψ) are defined on [0, r]. By

Theorem 2.6, if φ <µ ψ, then xt(φ) ≤µ xt(ψ) on [0, r]. It follows from the unique-

ness of solutions and the nondecreasing property of eµθ[xt(ψ)(θ) − xt(φ)(θ)] on

[−r, 0] that x(t, φ) < x(t, ψ) on [0, r]. In particular, xt(φ) <µ xt(ψ), 0 ≤ t ≤ r.

Therefore, by condition (SM) and the compactness of ∪t∈[0,r]{xt(φ), xt(ψ)} in C,

we have

β0 := min
t∈[0,r]

{µ[D(xt(ψ)− xt(φ))] + f(xt(ψ))− f(xt(φ))} > 0.

So
d

dt
D(xt(ψ)− xt(φ)) + µD(xt(ψ)− xt(φ)) ≥ β0 > 0, t ∈ [0, r].

That is,

y′(t) + µy(t)−

∫ −r0
−r

[y′(t+ θ) + µy(t+ θ)] dν(θ) ≥ β0
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on [0, r], where y(t) = x(t, ψ)− x(t, φ). Hence, applying that xt(φ) <µ xt(ψ) and

x(t, φ) < x(t, ψ) for 0 ≤ t ≤ r, one obtains

y(t) > 0, y′(t) + µy(t) > 0, 0 ≤ t ≤ r.

Then it follows that there exists an ε > 0 such that for the balls B1 = {η ∈
X; d(η, xr(φ)) < ε} and B2 = {η ∈ X; d(η, xr(ψ)) < ε} in X the relation

B1 ≤µ B2 holds. By Lemma 2.5, xr(·) is continous fromX to X provided solutions

exist on [0, r]. Therefore we can find open sets U and V in X with φ ∈ U and

ψ ∈ V such that xr(U) ⊂ B1 and xr(V ) ⊂ B2. This implies xr(U) ≤µ xr(V ) and

the proof is complete. �

Theorems 2.6 and 2.7 allow us to apply the powerful theory of strongly order-

preserving semiflows developed in [9] and [11] to the solution semiflow on X of

equation (1.1). We will ilustrate this by an application of the principle of sequential

limit set trichotomy to the problem of asymptotic constancy of equation (1.3).

3. Asymptotic Constancy

We now consider the following scalar neutral functional differential equation

(3.1)
d

dt
[x(t)− cx(t− τ)] = g(x(t), x(t − ω))

where 0 ≤ c < 1, τ > 0, ω ≥ 0, g : R2 → R is locally Lipschitz continuous and

L1 = inf
(x,y)∈R2

∂g(x, y)

∂x
> −∞, L2 = inf

(x,y)∈R2

∂g(x, y)

∂y
> −∞.

Then g satisfies the following one-sided global Lipschitz condition:

(L) If x1 ≤ x2 and y1 ≤ y2, then g(x2, y2)−g(x1, y1) ≥L1(x2−x1)+L2(y2−y1).
For the above equation, D(φ) = φ(0) − cφ(−τ), f(φ) = g(φ(0), φ(−ω)) for

φ ∈ C([−r, 0];R), where r = max{τ, ω}. We now fix µ ≥ 0. Then for any

φ2 ≥µ φ1, we have

µ[D(φ2)−D(φ1)] + f(φ2)− f(φ1)

≥ µ[φ2(0)− φ1(0)]− cµ[φ2(−τ)− φ1(−τ)]

+ L1[φ2(0)− φ1(0)] + L2[φ2(−ω)− φ1(−ω)]

= (µ+ L1)[φ2(0)− φ1(0)]− cµ[φ2(−τ) − φ1(−τ)] + L2[φ2(−ω)− φ1(−ω)].

Note that φ2 ≥µ φ1 implies that

φ2(0)− φ1(0) ≥ [φ2(−θ)− φ1(−θ)]e
−µθ, θ = τ, ω.
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Then with L−2 = min{L2, 0}, for φ2 ≥µ φ1 we have

µ[D(φ2)−D(φ1)] + f(φ2)− f(φ1)

≥ (µ+ L1)[φ2(0)− φ1(0)]− cµ[φ2(−τ)− φ1(−τ)] + L−2 [φ2(−ω)− φ1(−ω)]

≥ [µ+ L1 − cµe
µτ + L−2 e

µω][φ2(0)− φ1(0)].

Therefore, condition (M) holds if

(3.2) µ+ L1 − cµe
µτ + L−2 e

µω ≥ 0.

Notice also that if φ2 >µ φ1 then φ2(0) > φ1(0) and hence (SM) is satisfied if

(3.3) µ+ L1 − cµe
µτ + L−2 e

µω > 0.

We next consider the case where µ+L1 ≥ 0. Then for any nonnegative constants

α1, α2 with α1 + α2 = 1, we have for φ2 ≥µ φ1 that

µ[D(φ2)−D(φ1)] + f(φ2)− f(φ1)

≥ [α1(µ+ L1)− cµe
µτ ][φ2(0)− φ1(0)]

+ [α2(µ+ L1)e
−µω + L2][φ2(−ω)− φ1(−ω)].

So, (M) is satisfied if

(3.4)


µ+ L1 ≥ 0,

α1(µ+ L1)e
−µτ − cµ ≥ 0,

α2(µ+ L1)e
−µω + L2 ≥ 0,

and (SM) is satisfied if

(3.5)


µ+ L1 ≥ 0,

α1(µ+ L1)e
−µτ − cµ > 0,

α2(µ+ L1)e
−µω + L2 ≥ 0.

Note also that if ω ≤ τ then φ2 ≥µ φ1 implies

φ2(−τ)− φ1(−τ) ≤ e
µ(τ−ω)[φ2(−ω)− φ1(−ω)].

So φ2 ≥µ φ1 implies that

µ[D(φ2)−D(φ1)] + f(φ2)− f(φ1)

≥ [(µ+ L1)e
−µω − cµeµ(τ−ω) + L2][cφ2(−ω)− φ1(−ω)]
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and hence (M) is also satisfied if

(3.6)

{
µ+ L1 ≥ 0,

(µ+ L1)e
−µω − cµeµ(τ−ω) + L2 ≥ 0.

More sets of sufficient conditions for (M) and (SM) can be given similarly.

Similarly, we can show that if φ, ψ ∈ C with φ(s) ≥ ψ(s) for s ∈ [−r, 0] then

f(φ) − f(ψ) ≥ (L−1 + L−2 )||φ− ψ||. Hence, (L−) holds with L = −(L−1 + L−2 ).

In the case where g(x, y) = −h(x) + h(y), (x, y) ∈ R2, (L−) is satisfied if

−∞ < infx∈R h
′(x) ≤ supx∈R h

′(x) < +∞. Therefore, (SM) is satisfied if either

(3.3) or (3.5) holds with L1 = − supx∈R h
′(x) and L2 = infx∈R h

′(x). In particular,

(3.3) holds if 0 ≤ infx∈R h
′(x) ≤ supx∈R h

′(x) < +∞ and c is sufficiently small.

Note also that for equation (3.1) with g(x, y) = −h(x)+h(y), (x, y) ∈ R2, every

constant function is a solution. The following result shows that one can apply the

principle of sequential limit set trichotomy (Proposition 3.1 in [9]) to prove that,

under certain conditions, every solution of (3.1) converges to a constant.

Theorem 3.1. Consider equation (3.1) with g(x, y) = −h(x) + h(y), (x, y) ∈
R2. Assume that there exists a constant µ > 0 so that one of the conditions

inf
x∈R

h′(x) ≥ 0, µ(1− ceµτ )− sup
x∈R

h′(x) > 0;(3.7)

inf
x∈R

h′(x) < 0, µ(1− ceµτ)−max{sup
x∈R

h′(x), 0}+ inf
x∈R

h′(x)eµω > 0(3.8)

is satisfied. Then for any φ ∈ X := {φ ∈ C1 : φ′(0) − cφ′(−τ) = −h(φ(0)) +

h(φ(−ω))} there exists a constant m = mφ so that limt→∞ x(t, φ) = mφ.

Proof. It is easy to show that either (3.7) or (3.8) implies (3.3) with L1 =

− supx∈R h
′(x) and L2 = infx∈R h

′(x). Therefore, (3.1) satisfies (SM). Moreover,

µ > −(L−1 + L−2 ).

In order to apply Proposition 3.1 of [9], the following compactness hypothesis

is required:

(C) For each φ ∈ X, {xt(φ) : t ≥ 0} is precompact in X and, in addition, for each

compact subset K of X, ∪φ∈Kω(φ) is precompact in X.

This condition holds, in particular, if for any bounded subset B of X, the set

{xt(φ) : φ ∈ B, t ≥ 0} is precompact in X (see [9]). For a given φ ∈ X we have

−∞ < Kφ ≤ K
φ < +∞,

where

Kφ =
1

µ
min{0, min

θ∈[−r,0]
φ′(θ)}+ min

θ∈[−r,0]
φ(θ),

Kφ =
1

µ
max{0, max

θ∈[−r,0]
φ′(θ)}+ max

θ∈[−r,0]
φ(θ).
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Clearly, φ(θ) ≤ Kφ for θ ∈ [−r, 0]. Moreover

d

dθ
[(Kφ − φ(θ))eµθ] = [µ(Kφ − φ(θ))− φ′(θ)]eµθ ≥ 0, θ ∈ [−r, 0].

Therefore, φ ≤µ Kφ. Similarly, φ ≥µ Kφ. So by Theorem 2.6, we have

Kφ ≤µ xt(φ) ≤µ K
φ, t ≥ 0,

since every constant function is a solution of (3.1). Consequently,

Kφ ≤ x(t, φ) ≤ Kφ, t ≥ 0,

and

µ(Kφ −K
φ) ≤ µ[Kφ − x(t, φ)] ≤ x′(t, φ) ≤ µ[Kφ − x(t, φ)] ≤ µ(Kφ −Kφ)

on [0,∞). If B is a bounded subset of X, then KB = supφ∈BK
φ < ∞, KB =

infφ∈BKφ > −∞ and

KB ≤ x(t, φ) ≤ KB, µ(KB −K
B) ≤ x′(t, φ) ≤ µ(KB −KB) (t ≥ 0, φ ∈ B).

Hence it follows that {xt(φ) : t ≥ 0, φ ∈ B} is precompact in C. From x ∈
C1([−r,∞);R) we obtain D(x′t+h − x′t) = f(xt+h)− f(xt), t ≥ 0, h ≥ 0. Hence,

applying the above inequalities and Theorem 4.1 of [5, p. 287] (D is stable in the

sense of [5], it follows that there is a b > 0 such that

||x′t+h(φ) − x′t(φ)|| ≤ b||x′h(φ)− φ′||+ bhµ(KB −KB) sup
x∈R
|h′(x)|

for any t ≥ 0 and φ ∈ B. Therefore, {x′t(φ) : t ≥ 0, φ ∈ B} is uniformly bounded

and equicontinuous in C. Consequently, {xt(φ) : t ≥ 0, φ ∈ B} is precompact

in X.

By Lemma 2.3, φ can be approximated from below in X by a sequence. There-

fore, by the principle of sequential limit set trichotomy (Proposition 3.1 in [9]),

we can find a sequence {φn} such that φn <µ φn+1 <µ φ for n ≥ 1 with φn → φ

as n → ∞ and satisfying one of the following: (a) ω(φ) = uφ for some uφ ∈ X;

(b) ω(φn) are identical for all n and consist of a single point (equilibrium) and

ω(φn) <µ ω(φ); (c) ω(φn) are all identical to ω(φ) for all n, where ω(φ) is the

omega limit set of the orbit {xt(φ)}t≥0. Since in case (a) uφ = ω(φ) is a single

point in X, the invariance of ω(φ) implies that uφ ≡ mφ for some constant mφ.

So it suffices to exclude (b) and (c). This can be done by proving that if (3.7) or

(3.8) is satisfied and φ, ψ ∈ X with ψ >µ φ, then ω(ψ) ∩ ω(φ) = ∅. Note that

(3.1) with g(x, y) = −h(x) + h(y) is equivalent to

d

dt
[x(t)− cx(t − τ) +

∫ 0

−ω
h(x(t+ s)) ds] = 0, t ≥ 0.
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Therefore, any point φ∗ ∈ ω(φ) satisfies

φ∗(0)− cφ∗(−τ) +

∫ 0

−ω
h(φ∗(s)) ds = φ(0)− cφ(−τ) +

∫ 0

−ω
h(φ(s)) ds.

Similar result holds for ψ∗ ∈ ω(ψ). Consequently, if ω(ψ) ∩ ω(φ) = ∅ fails, then

(3.9) φ(0)− cφ(−τ) +

∫ 0

−ω
h(φ(s)) ds = ψ(0)− cψ(−τ) +

∫ 0

−ω
h(ψ(s)) ds.

But infx∈R h
′(x) < 0 and ψ >µ φ imply that

ψ(0)− cψ(−τ) +

∫ 0

−ω
h(ψ(s)) ds − [φ(0)− cφ(−τ) +

∫ 0

−ω
h(φ(s)) ds]

≥ [1− ceµτ + inf
x∈R

h′(x)

∫ 0

−ω
e−µs ds][ψ(0)− φ(0)]

> µ−1[µ(1− ceµτ ) + inf
x∈R

h′(x)eµω][ψ(0)− φ(0)]

> 0,

by using (3.8). This clearly contradicts to (3.9). Similarly, if infx∈R h
′(x) ≥ 0, by

using condition (3.7), we will also get a contradiction to (3.9). This shows that

ω(φ) ∩ ω(ψ) = ∅ and the proof is complete.

Acknowledgement. We would like to thank Professor H. Smith and B. Tang

for their careful reading and critical comments on the preliminary version of this

work.

References

1. Amann H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach
spaces, SIAM Review 18 (1976), 620–709.
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