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STRICTLY ORDER PRIMAL ALGEBRAS

O. LÜDERS and D. SCHWEIGERT

Partial orders and the clones of functions preserving them have been thoroughly

studied in recent years. The topic of this papers is strict orders which are irreflex-

ive, asymmetric and transitive subrelations of partial orders. We call an algebra

A = (A,Ω) strictly order primal if for some strict order (A,<) the term func-

tions are precisely the functions which preserve this strict order. Our approach

has some parallels to the theory of order primal algebras [8], [2]. We present new

examples of congruence distributive varieties and of strict orders without near

unanimity operations. Then we give a series of new examples showing that there

are varieties which are (n + 1)-permutable but not n-permutable. Furthermore

the dual category of strict chains is described by the methods from B. Davey and

H. Werner [3]. Throughout we use the notations of Grätzer [4] and assume a

knowledge of Davey-Werner [3] for the last section.

1. Notation

Definition 1.1. A binary relation< on A is called a strict order if the following

properties hold.

(i) a 6< a for every a ∈ A (irreflexivity)

(ii) if a < b then b 6< a for all a, b ∈ A (asymmetry)

(iii) if a < b and b < c then a < c for all a, b, c ∈ A (transitivity).

To every strict order we can define a partial order a ≤ b iff a < b or a = b and

vice versa from every partial order we can define a strict order. But we would like

to call the attention of the reader to the fact that the product of strict orders is

defined according to the principles in clone theory.

Definition 1.2. Let (A;<A) and (B;<B) be strict orders. Then the strict

order (A×B;<) is defined componentwise in the following way. (a1, b1) < (a2, b2)

if and only if a1 <A a2 and b1 <B b2.
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We present as an example the strict order D2
2 = ({0, 1}2;<) by its Hasse dia-

gram

Definition 1.3. A function f : A −→ B from a strict order (A;<A) into

a strict order (B;<B) is called strictly monotone if from a1 <A a2 it follows

f(a1) <B f(a2).

One can observe in the above example four strictly monotone functions

f : D2
2 −→ D2 which can be presented by the four term functions x, y, xy, xy

of the lattice connected to D2 = ({0, 1};<). We will write a ≺ b in (A;<) if a < b

in (A;<) and there exists no c ∈ A with a < c < b.

Poln < is the set of all strictly monotone functions f : An −→ A and Pol <=

∪n∈NPoln < is the clone of all strictly monotone functions of (A;<). Given an

algebra A = (A,Ω) we write Tn(A) for the set of all n-place term functions of A
and T (A) for the clone of term functions of A.

2. Strictly Monotone Funtions on a Chain

Notation 2.1. Assume that A has no infinite chains. The length `(a, b) for

a, b ∈ A with a < b is defined to be one less than the number of elements in a chain

of maximum size from a to b. Extend ` to a function ` : A2 −→ N0 by defining

`(a, b) = 0 whenever a 6< b. A function f : An −→ A is called length preserving if

`(a, b) ≤ `(f(a), f(b)) for all a, b ∈ An.

Lemma 2.2. Assume that A has no inifinte chains. The function f : An −→ A

is strictly monotone on (A;<) if and only if f is length preserving.

Proof. Let f ∈ Pol <, a < b and `(a, b) = r. Then there exists a maximal

chain a = a0 ≺ a1 ≺ . . . ≺ ar = b implying f(a) < f(a1) < . . . < f(b). Hence

`(f(a), f(b)) ≥ r. On the other hand if f is length preserving and a < b then

1 ≤ `(a, b) ≤ `(f(a), f(b)) and hence f(a) < f(b). �

From now on we assume that (A;<) is a finite chain where A = {0, 1, . . . , k}
and 0 ≺ 1 ≺ . . . ≺ k.

Proposition 2.3. The length function ` on An satiesfies `(0, a) = min{a1, . . . ,

an} where a = (a1, . . . an).
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Proof. One observes that for am = min{a1, . . . , an} the chain am � am−1 �
. . . � 0 corresponds to a maximal chain for 0 < a. �

Notation 2.4. Denote the top element of An by k. Let c ∈ An, c = (c1, . . . , cn)

and r ∈ A with `(0, c) ≤ r ≤ k − `(c, k). We define the function grc : An −→ A by

(i) grc (x) = max{r + `(c, x), `(0, x)} whenever x > c or x = c

(ii) grc (x) = `(0, x) whenever x 6> c and x 6= c.

Note that grc(x) : A
n −→ A is strictly monotone.

Lemma 2.5. Every strictly monotone function f : An −→ A can be obtained

by composing the function max and grc for c ∈ An and r ∈ A.

Proof. We consider C = {c ∈ An | f(c) > `(0, c)} as an index set to define

h(x) = max{grc(x) | c ∈ C, r = f(c)}.
We have to show that h(x) = f(x) for all x ∈ An. Consider an n-tuple x ∈ An.

We have `(0, x) ≤ f(x) and hence grc (x) ≤ f(x) whenever x 6> c and x 6= c. For

x = c we have grc(x) = f(x) and for x > c we have

grc (x) = max{r + `(c, x), `(0, x)}

= max{f(c) + `(c, x), `(0, x)}

≤ max{f(c) + `(f(c), f(x)), `(0, f(x))}

≤ f(x)

as f is length preserving.

Altogether we have grc(x) ≤ f(x) and for some c we have grc(x) = f(x). �

Lemma 2.6. Every function grc : An −→ A can be composed by functions

grd : A3 −→ A and min.

Proof. We assume n ≥ 3 and we put for c = (c1, . . . , cn)

D : = {d ∈ {c1, . . . , cn}
3 | `(0, d) ≤ r ≤ k − `(d, k)}

We define a function h by

h(x) = min{grc(x) | d ∈ D}

with x = (xi, xj , xl) corresponding to d = (ci, cj , cl).

Our aim is to prove that h(x) = grc(x) for all x ∈ An.
Consider an n-tuple x ∈ An. If we have x > d or x = d then we have

grd(x) = max{r+ `(d, x), `(0, x)}

≥ max{r+ `(c, x), `(0, x)}

≥ grc(x)
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If we have x 6> d and x 6= d then we have x 6> c and x 6= c and we get

grd(x) = `(0, x) ≥ `(0, x) = grc (x).

It remains to show that for some d we have

grd(x) = grc(x).

Case: x = c.

In this case we have x = d and so grd(x) = grc(x).

Case: x > c.

Let c = a0 ≺ a1 ≺ . . . ≺ aq = x be a maximal chain from c to x. Then for some

component m we have a chain cm = a0m ≺ a1m ≺ a2m ≺ . . . ≺ aqm = xm and

for all other components there exist chains of equal or larger length. Let i be an

index such that xi = `(0, x). We now take an index j with cj = `(0, c) if ci ≥ r

and cj = k − `(c, k) else. Obviously d = (ci, cj , cm) ∈ D. We have

grd(x) = max{r+ `(d, x), `(0, x)}

= max{r+ `(c, x), `(0, x)}

= grc(x).

Case: x 6> c and x 6= c.

In this case there exist h, l ∈ {1, . . . , n} such that xh 6> ch and xl 6= cl. Let s be

an index such that xs = min{x1, . . . , xn}. For cs ≥ r let ci = min{c1, . . . , cn} else

ci = max{c1, . . . , cn}. If cs 6= xs then we choose d = (cs, ch, ci) else d = (cs, cl, ci).

We have also d ∈ D,d 6< x and d 6= x. Hence

grd(x) = xs = grc (x). �

3. Strictly Order Primal Algebras

Definition 3.1. The algebra A = (A,Ω) is called n-sop for n ∈ N if Tn(A) =

Poln < for some strict order <. We call A a sop (: = strictly order primal)

algebra if A is n-sop for every n ∈ N.

Examples.

3.2. Every lattice L where L is a chain is 1-sop. Observe that the identity function

id is the only function which preserves this strict order.

3.3. A non trivial lattice L is 2-sop if and only if L is isomorphic to the two-element

distributive lattice D2. D2 is not 3-sop.

3.4. Consider an algebra G = ({0, 1};∧,∨, q) where q(x1, x2, x3) = x1 + x2 + x3

with the addition mod 2. The algebra G is 3-sop.



STRICTLY ORDER PRIMAL ALGEBRAS 279

The following lemma can be proved in a similar way as the analogous lemma

in [8].

Lemma 3.5. If A is n-sop then A is k-sop for 1 ≤ k ≤ n.

Using Lemma 2.6 above we have the following result:

Theorem 3.6. Let A be an algebra with T (A) ⊆ Pol < where > is a finite

chain. Then A is sop if and only if A is 3-sop.

Examples.

3.7. The algebra G = ({0, 1};∧,∨, q) is sop.

3.8. The algebra G = ({0, 1, . . . , k};Pol3 <) is sop.

3.9. By a similar method one can show for the “projective line”Mn; n ≥ 2, that

Mn = (Mn;Pol3 <) is sop.

Remark 3.10. In an unpublished manuscript [6] it has been shown that for

the strict orders (Q;<) and (R;<) the clone Pol < is locally preprimal. Pol <

includes the following operations: x+ y, c · x with c ∈ Q+ or c ∈ R+ respectively,

and min{x, y}, max{x, y}. These algebras are called locally sop.

4. Congruence Distributivity and n-permutability

In our examples the existence of near unanimity operations play an important

role. Therefore we would like to present two examples of strict orders which cause

major obstacles to proofs like those above.

Examples.

4.1. The strict order which is induced by the following lattice order does not admit

a majority function. This is the smallest example with this property.
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Observe that for a majority function h we would have that

h(a3, a4, a5) < h(a5, a5, 1 ) = a5

h(a3, a4, a5) > h(a1, a2, a1) = a1

h(a3, a4, a5) > h(a1, a2, a2) = a2

in contradiction to the fact that there is no element x with a1, a2 < x < a5.

4.2. Let < be the strict order induced by the lattice order (B3;<) where B3 is

the Boolean lattice with 8 elements. Then there exists no near unanimity

function in Pol <. This again is the smallest example with this property.

Notation 4.3. We consider the following strict order “zig zag” (D,D′), D =

{1, . . . , n}, D = {1′, . . . , n′}, presented by the Hasse diagram

A zig zag line is a sequence a0 < a1 > a2 < a3 . . . ≶ an where ai < ai+1 is a

lower respectively ai > ai+1 is an upper neighbor of ai+1 in the zig zag (D,D′),

i = 1, . . . , n− 1.

Theorem 4.4. If A is a sop algebra with a zig zag (D,D′), n ≥ 3 as a subal-

gebra then A generates a variety which is not congruence distributive.

Proof. We carry out the proof for n even; the case when n is odd can be treated

similary. Let n be an even integer, n ≥ 4. Then there is a unique shortest zig

zag line from 1 to n′ and it has n elements. We show the following conditions for



STRICTLY ORDER PRIMAL ALGEBRAS 281

terms d, t ∈ T (A).

α) d(1, 1, 2) = 1

d(1′, 1′, 2′) = 1′

d(x, y, x) = x

 implies

{
d(1′, 2′, 2′) = 1′

d(1, 2, 2) = 1

β) t(1′, 2′, 2′) = 1′

t(1, 2, 2) = 1

t(x, y, x) = x

 implies

{
t(1, 1, 2) = 1

t(1′, 1′, 2′) = 1′

From 1 = d(1, 1, 2) < d(2′, 1′, 3′) > d(3, 2, 4) < d(4′, 3′, 5′) > . . . > d(n − 1, n −
2, n) < d(n′, n′ − 1, n′) = n′ we conclude that d(i, i − 1, i+ 1) = i for 1 < i < n

or respectively 1′ < i < n′. Especially we have d(2′, 1′, 3′) = 2′ and furthermore

d(1, 2, 2) < d(2′, 1′, 3′) = 2′, d(1′, 1′, 1′) = 1′. Hence we have d(1, 2, 2) = 1. In the

same we get d(1′, 2′, 2′) = 1′. Hence α) is proved.

Again we use that there is a unique shortest zig zag line from 1′ to n and it

has n elements and consider 1′ = t(1′, 2′, 2′) > t(2, 1, 3) < t(3′, 2′, 4′) < . . . >

t(n, n − 1, n) = n which implies t(2, 1, 3) = 2. Furthermore we have t(1′, 1′, 2′) >

t(2, 1, 3) = 2 and t(1, 1, 1) = 1. We conclude that t(1′, 1′, 2′) = 1′ and in the same

way that t(1, 1, 2) = 1. Hence β) is proved.

Now we assume that the variety generated by A is congruence distributive.

Then there are ternary terms t0, . . . , tk with t0(x, y, z) = x, tk(x, y, z) = z,

ti(x, y, x) = x (0 ≤ i ≤ k), ti(x, x, z) = ti+1(x, x, z) for i even and ti(x, z, z) =

ti+1(x, z, z) for i odd. Because of the implications α) and β) we have tk−1(1, 2, 2) =

1 for k − 1 odd or respectively tk−1(1, 1, 2) = 1 for k − 1 even. This contradicts

the conditions for congruence distributivity.

Corollary 4.5. If A is a sop algebra with a zig zag (D,D′), n ≥ 3, as a

subalgebra then the variety generated by A has no near unanimity term.

Lemma 4.6. Let < be a bounded strict order on A with a maximal chain

0 ≺ 1 ≺ 2 . . . ≺ n. If A is a sop algebra with T (A) = Pol < then the variety

generated by A is not n-permutable.

Proof. If A generates a variety with n-permutable congruences then there ex-

ist ternary terms p0, p1, . . . , pn such that p0(x, y, z) = x, pn(x, y, z) = z and

pi(x, x, y) = pi+1(x, y, y) (0 ≤ i ≤ n). For x, y ∈ {0, . . . , n} and n > x > y

we have pi(x, x, y) = pi+1(x, y, y) < pi+1(x + 1, x + 1, y + 1). Hence we have

1 = p0(1, 1, 0) < p1(2, 2, 1) < p2(3, 3, 2) < . . . < pn−1(n − 2, n − 2, n − 1) =

pn(n− 2, n− 1, n− 1) = n− 1. This contradicts `(1, n− 1) = n− 2. �

Lemma 4.7. Let A be an algebra on A = {0, 1, . . . , n}. If A is sop with respect

to the strict order of the chain 0 ≺ 1 ≺ . . . ≺ n, then the variety generated by A
is (n+ 1)-permutable.
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Proof. Let Ai = {(t, s, s) | s = i − 1, t ≥ 1} and Bi = {(u, u, w) | u =

n−i, w ≥ n−i+1}. By Lemma 2.5 the function pi(x, y, z) = max{grc(x, y, z) | c =

(c1, c2, c3) ∈ Ai ∪ Bi, r = max{c1, c3}} is a term function of A for i = 1, . . . , n.

This function pi has the following properties

pi(x, y, y) =


x x > y ≥ i− 1 1)

y y > x > n− i 2)

min{x, y} else 3)

pi(x, x, y) =


x x > y > i− 1 4)

y y > x ≥ n− i 5)

min{x, y} else 6)

0) We note that for x ≤ y we have x ≤ pi(x, y, y), pi(x, x, y) ≤ y as pi is a term

function or respectively for y ≤ x, y ≤ pi(x, y, y), pi(x, x, y) ≤ x.

1) For x > y ≥ i − 1 there exists (t, s, s) ∈ Ai such that((t = x) and (s = y)) or

((t = x− 1) and (s < y)). Hence we have gt(t,s,s)(x, y, y) = x ≤ pi(x, y, y) which

implies pi(x, y, y) = x by 0).

2) For y > x > n − i there exists (u, u, w) ∈ Bi such that u < x and w = y − 1.

Therefore gw(u,u,w)(x, y, y) = y ≤ pi(x, y, y) which implies pi(x, y, y) = y by 0).

3) If neither x > y ≥ i − 1 nor y > x > n − i holds then there exists no element

c ∈ Ai ∪ Bi such that (x, y, y) ≥ c. Then grc(x, y, y) = min{x, y} for every

c ∈ Ai ∪Bi. Hence pi(x, x, y) = min{x, y}.

4) For x > y > i− 1 there exists (t, s, s) ∈ Ai such that t = x− 1 and s < y. This

implies gt(t,s,s)(x, x, y) = x ≤ pi(x, x, y) which implies pi(x, x, y) = x by 0).

5) For y > x ≥ n − i there exists (u, u, w) ∈ Bi such that ((x = u) and (y = w))

or ((u < x) and (w = y − 1)). Hence we have gw(u,u,w)(x, x, y) = y ≤ pi(x, x, y)

which implies pi(x, x, y) = y.

6) If neither x > y > i − 1 nor y > x ≥ n − i hold then there exists no element

c ∈ Ai ∪ Bi such that (x, y, y) ≥ c. Then grc(x, y, y) = min{x, y} for every

x ∈ Ai ∪Bi. Hence pi(x, x, y) = min{x, y}.

Theorem 4.8. Let < be a bounded strict order on A = {0, 1, . . . , n} with a

maximal chain 0 ≺ 1 ≺ 2 ≺ . . . ≺ n. If A is a sop algebra with T (A) = Pol <

then the variety generated by A is (n+ 1)-permutable but not n-permutable.

G. Grätzer asks for examples of varieties which show that n-permutability and

(n+ 1)-permutability are not equivalent. (E. T. Schmidt [7]) The above theorem

provides a new series of such examples.
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5. A Duality for a Finite Sop Algebra

In this section we use notions and methods which were developed in B. Davey

and H. Werner [3]. We consider the finite sop algebra A where (A;<) is the strict

order induced by a k-element chain. Since A has a ternary near-unanimity term,

the NU-duality theorem from [3] guarantees that the prevariety generated by A
has a duality given by relations of arity at most two. Theorem 5.1 isolates an

appropriate set of relations.

Theorem 5.1. Let < be the strict order which is induced by a k-element

chain, A = {0, . . . , k − 1}, A = (A,Ω) with T (A) = Pol <, L = ISP (A),

Ã = (A; τ,<,< ◦ <, . . . , < ◦ < ◦ . . . ◦ <︸ ︷︷ ︸
k−1

, 0, 1, . . . k − 1) and R0 = ISP (Ã). Then

the protoduality is a full duality between L and R0.

Proof. By [3] (Davey, Werner) we have to show that A is injective in R0 (INJ)

and fulfills condition (E3F).

(INJ) Let X̃ ⊆ Ãn and let ϕ : X̃ −→ Ã be a morphism. Then ϕ preserves the

relations <,< ◦ <, . . . , < ◦ < ◦ . . . ◦ <︸ ︷︷ ︸
k−1

, 0, 1, . . . k−1. Note that (x, y) ∈ < ◦ . . . ◦ <︸ ︷︷ ︸
i

iff `(x, y) ≥ i in (An, <). Hence ϕ has the following properties

(i) for x = (x1, . . . , xn) ∈ X we have: if min{x1, . . . , xn} = xi 6= 0 then

xi − 1 = ϕ(xi − 1, xi − 1, . . . , xi − 1) < ϕ(x1, . . . , xn).

Hence min{x1, . . . , xn} ≤ ϕ(x1, . . . , xn). Similary we get ϕ(x1, . . . , xn) ≤
max{x1, . . . , xn}.

(ii) for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X, x < y and `(x, y) = r

in (An, <) we have (x, y) ∈ < ◦ . . . ◦ <︸ ︷︷ ︸
r

and hence ϕ(x1, . . . , xn) + r ≤

ϕ(y1, . . . , yn).

Consequently we can extend ϕ by Lemma 2.5 to a length function ψ : An −→ A

in the following way

ψ(x) =


ϕ(x) if x ∈ X

max{`(y, x) + ϕ(y,min{x1, . . . xn})} if x /∈ X and ∃ y ∈ X : y < x

min{x1, . . . , xn} otherwise

(E3F) Let X ⊂ Y ⊆ An, a ∈ Y \X. Then the morphisms ϕ,ψ : Y −→ A defined

by

ϕ(x) =

{
min{x1, . . . , xn} for x 6≥ a

max{x1, . . . , xn} for x ≥ a

ψ(x) =

{
min{x1, . . . , xn} for x 6> a

max{x1, . . . , xn} for x > a
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are such that ϕ|X = ψ|X but ϕ 6= ψ. �

Remark. Since we have a ternary near unanimity function h with h(x, y, z) =

max{min{x, y},min{x, z},min{y, z}} in T (A) the variety V (A) is congruence dis-

tributive. Furthermore A has only simple subalgebras. Hence by B. Jónsson’s

theorem we obtain V (A) = ISP (A), i.e. the full duality of Theorem 5.1 for the

quasivariety generated by A is also a full duality for V (A).

References

1. Davey B. A. and Priestley H. A., Introduction to lattices and order, Cambridge University
Press, Cambridge, 1990.

2. Davey B. A., Quackenbush R. W. and Schweigert D., Monotone clones and the varieties they
determine, Order 7 (1990), 145–167.

3. Davey B. A. and Werner H., Dualities and equivalences for varieties of algebras. Contri-
butions to lattice theory, (Proc. Conf. Szeged, 1980), Colloq. Math. Soc. János Bolyai, 33,
North-Holland, Amsterdam, 1983, 101–275.

4. Grätzer G., Universal algebra, 2nd. ed., Springer-Verlag, New York, 1979.
5. Pixley A. F., A survey of interpolation in universal algebra, Colloqu. Math. Soc. János Bolyai

28 (1979), 203–244.
6. Rosenberg I. G. and Schweigert D., Local clones II, Unpublished manuscript, Montreal, 1985.
7. Schmidt E. T., On n-permutable equational classes, Acta. Sci. Math. (Szeged) 33 (1972),

29–30.
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