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ADJOINTS OF SOLUTION SEMIGROUPS AND

IDENTIFIABILITY OF DELAY DIFFERENTIAL

EQUATIONS IN HILBERT SPACES

M. MASTINŠEK

Abstract. The paper deals with semigroups of operators associated with delay
differential equation:

ẋ(t) = Ax(t) + L1x(t− h) + L2xt,

where A is the infinitesimal generator of an analytic semigroup on a Hilbert space X
and L1, L2 are densely defined closed operators in X and L2(−h, 0;X) respectively.

The adjoint semigroup of the solution semigroup of the delay differential equation
is characterized. Eigenspaces of the generator of the adjoint semigroup are studied
and the identifiability of parameters of the equation is given.

1. Introduction

The purpose of this paper is to consider the delay differential equation (DDE)

of the form:

ẋ = Ax(t) +A1x(t− h) +

∫ 0

−h
a(s)A2x(t+ s) ds, t > 0(1.1)

x(0) = φ0, x(s) = φ1(s) a.e. on [−h, 0)

where A is the infinitesimal generator of an analytic semigroup on a Hilbert

space X, A1 and A2 are densely defined closed operators in X and a(·) is scalar

valued function.

Equations of this type were considered by Di Blasio, Kunisch and Sinestrari

in [5], [6]. They have given results on existence, uniqueness and stability of the

solution. In the study of DDE (1.1) in Rn Bernier, Delfour and Manitius have

introduced so-called structural operators in order to describe the evolution of the

trajectories as well as to characterize the adjoint semigroup of the solution semi-

group of (1.1); see [3], [4]. Their results have been later generalized to infinite-

dimensional spaces, see [8], [13], [15], [19] for example. The adjoint semigroup for

Received January 21, 1994.
1980 Mathematics Subject Classification (1991 Revision). Primary 34G10, 34K30, 47D03.



194 M. MASTINŠEK

the DDE (1.1) where a(·) is Hoelder’s continuous and A is defined by a sesquilin-

ear form was first characterized by Tanabe in [19]; (see also [7] and [8]). In [16]

Nakagiri and Yamamoto solved the identifiability problem for (1.1) where A1, A2

are bounded operators in X. It is an inverse problem, its objective is to show

the injectivity of the parameter to the solution mapping. In [7] Yeong showed the

identifiability of parameters for the case where A = A1 = A2.

In this paper the characterization of the adjoint semigroup of DDE (1.1) is

obtained in a different way by using Yosida — type approximations. Here it

is assumed that a(·) is a square integrable function and A generates a bounded

analytic semigroup on X. In the second part of the paper, eigenspaces of the

infinitesimal generator of the adjoint semigroup are considered. It is shown that

the identifiability results of Nakagiri and Yamamoto [16] can be generalized for

the case where A1 and A2 are unbounded operators in X.

The notation is as follows. Let X denote a complex Banach space with norm

‖·‖X . For real numbers a < b, L2(a, b;X) denotes the vector space (of equivalence

classes) of strongly measurable functions x from [a, b] to X such that t→ ‖x(t)‖2X
is Lebesgue integrable on [a, b]. If X is a Hilbert space with inner product 〈·, ·〉
then L2(a, b;X) is a Hilbert space with inner product

〈x, y〉L2(a,b;X) =

∫ b

a

〈x(t), y(t)〉 dt.

The space of continuous functions on [a, b] with values inX is denoted by C(a, b;X)

and W 1,2(a, b;X) denotes the space of absolutely continuous functions f from [a, b]

to X with ḟ ∈ L2(a, b;X). Given a function x from [−h, τ ] to X and t ∈ [0, τ ], a

segment of a trajectory x is defined by xt(s) : =x(t+ s) for s ∈ [−h, 0].

If Y is a Banach space, then (X,Y ) is the space of linear bounded operators

from X to Y and the inclusion X ↪→ Y means that X is continuously and densely

embedded in Y . If A : D(A) ⊂ X → X is a closed linear operator, D(A) will be

regarded as a normed space equipped with the graph norm ‖x‖D(A) : = (‖x‖2X +

‖Ax|2X)1/2. As usual R(λ,A) = (λI − A)−1 for every λ ∈ ρ(A) — the resolvent

set of A. The spectrum and the kernel of A are denoted by σ(A) and ker(A)

respectively.

If A is the infinitesimal generator of an analytic semigroup S(t), then the in-

termediate vector space V between D(A) and X is defined as follows

(1.2) V : =

{
v ∈ X

∣∣ ∫ ∞
0

‖AS(t)v‖2 dt <∞

}
with norm

(1.3) ‖v‖V : =

(
‖v‖2 +

∫ ∞
0

‖AS(t)v‖2 dt

)1/2

.
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The following relations are satisfied: D(A) ↪→ V ↪→ X. It is known that the space

L2(0, τ ;D(A))∩W 1,2(0, τ ;X) is continuously embedded in C(0, τ ;V ) so that there

exists c0 such that

(1.4) ‖x‖C(0,τ ;V ) ≤ c0‖x‖L2(0,τ ;D(A))∩W1,2(0,τ ;X)

for each x ∈ L2(0, τ ;D(A)) ∩W 1,2(0, τ ;X). For the details see e.g. [10, p. 23].

2. Solution Semigroups

Let X be a Hilbert space with norm ‖ · ‖ and let A : D(A) ⊂ X → X be the

infinitesimal generator of a bounded analytic semigroup {S(t); t ≥ 0} on X. Let

Ai ∈ (D(A),X) for i = 1, 2, and let V be the intermediate space, D(A) ⊂ V ⊂
X, defined by (1.2) and (1.3).

We consider the delay differential equation (DDE):

ẋ(t) = Ax(t) +A1x(t− h) +

∫ 0

−h
a(s)A2x(t+ s) ds(2.1)

x(0) = φ0, x(s) = φ1(s) a.e. on [−h, 0),

for almost every t ∈ (0, τ) and φ = (φ0, φ1) an element from the product space

M2 : =X × L2(−h, 0;X). We assume h > 0, τ > 0 and a ∈ L2(−h, 0;R).

This form of the DDE (2.1) was studied by Di Blasio, Kunish and Sinestrari

in [5], [6]. By Theorems 3.3 and 4.1 in [5] we have the following result: For every

φ ∈ Z : =V × : =V × L2(−h, 0;D(A)) the solution x of (2.1) exists uniquely

and the following estimate holds

‖x‖L2(0,τ ;D(A))∩W1,2(0,τ ;X) ≤ c1(‖φ
0‖V + ‖φ1‖ ),

for some constant c1 dependent of τ . Moreover, the family of operators {T (t);

t ≥ 0} defined by

T (t)φ : = (x(t), xt)

is a strongly continuous semigroup on Z.

In order to obtain the characterization of the adjoint semigroup T ∗(t) of the

solution semigroup T (t), we introduce approximative DDEs of the equation (2.1).

We define approximating bounded operators by using the resolvent R(λ,A) of

the operator A:

Rλ = λR(λ,A), A1λ = A1Rλ and A2λ = A2Rλ,

for λ > 0. Let us note that ‖Rλ‖ (X) ≤M <∞ and lim
λ≤∞

‖Rλx−x‖ = 0 ∀x ∈ X.

Thus the following estimates hold:

(2.2) lim
λ→∞

‖Aiλx−Aix‖ = 0 for x ∈ D(A) and i = 1, 2.
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We consider the following approximative delay differential equation (ADDE):

ẋλ(t) = Axλ(t) +A1λxλ(t− h) +

∫ 0

−h
a(s)A2λxλ(t+ s) ds(2.3)

xλ(0) = φ0, xλ(s) = φ1(s) a.e. on [−h, 0).

Since the operators in (2.3), excluding A, are bounded in X we can use known

results on DDEs: For every φ ∈M2 the mild solution xλ of (2.3) exists uniquely;

i.e. xλ solves the integral equation

xλ(t) = S(t)φ0 +

∫ t

0

S(t− s)

[
A1λxλ(s− h) +

∫ 0

−h
a(r)A2λxλ(s+ r) dr

]
ds .

Moreover, the family of operators {Tλ(t); t ≥ 0} defined by

Tλ(t)φ = (xλ(t), xλt)

is a strongly continuous semigroup on M2 for every λ > 0, (see e.g. [13], [15]).

Proposition 2.1. i) The restriction of Tλ(t) to Z is a strongly continuous

semigroup on Z and

‖Tλ(t)φ‖Z ≤ c2‖φ‖Z , 0 ≤ t ≤ τ,

for every φ ∈ Z. The constant c2 is independent of λ.

(ii) For every φ ∈ Z the following equation holds

(2.4) lim
λ→∞

‖Tλ(t)φ− T (t)φ‖Z = 0 .

uniformly over bounded time intervals.

Proof. The proposition can be proved analogously to Corollary 2.4 and Propo-

sition 2.5 in [12] and [13], so we omit the details. �

The next objective is to introduce the so-called transposed semigroup which

allows a characterization of the adjoint semigroup {T ∗(t); t ≥ 0} of the solution

semigroup {T (t); t ≥ 0} of DDE (2.1). It is well known that the adjoint oper-

ator A∗ of A is the infinitesimal generator of the semigroup of adjoint operators

{S∗(t); t ≥ 0} of S(t). The spectrum of the adjoint A∗ is just the conjugate of

the spectrum of A. Therefore the operator A∗ is itself the generator of a bounded

analytic semigroup (see e.g. [2], [17]).

We consider the dual or transposed DDE associated with the equation (2.1)

ẏ(t) = A∗y(t) +A∗1y(t− h) +

∫ 0

−h
a(s)A∗2y(t+ s) ds(2.5)

y(0) = ψ0, y(s) = ψ1(s) a.e. on [−h, 0),
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for a.e. t ∈ (0, τ). The initial value ψ = (ψ0, ψ1) is an element of the product

space Z∗ : =V∗ × L2(−h, 0;D(A∗)), where

V∗ : =

{
w ∈ X

∣∣ ∫ ∞
0

‖A∗S∗(t)w‖2 dt <∞

}
with norm

‖w‖V∗ =

(
‖w‖2 +

∫ ∞
0

‖A∗S∗(t)w‖2 dt

)1/2

is the intermediate space between D(A∗) and X and D(A∗) is equipped with the

graph norm. We assume that the operators A∗i , i = 1, 2 belong to (D(A∗),X).

Thus the operators appearing in (2.5) are of the same type as those given in the

original equation (2.1). Therefore by Theorems 3.3 and 4.1 in [5] we have the

following result:

For every ψ ∈ Z∗ there is a unique solution y of (2.5). Moreover, the family of

operators {T T (t); t ≥ 0} defined by

T T (t)ψ : = (y(t), yt)

is a strongly continuous semigroup on Z∗. It is called a transposed semigroup.

Let us denote the approximating adjoint operators byR∗λ = (Rλ)
∗, A∗iλ = (Aiλ)

∗

i = 1, 2 for λ > 0. We note that A∗iλy = (AiRλ)
∗y = R∗λA

∗
i y for every y ∈ D(A∗)

(see e.g. [9, p. 168]).

Consider the approximative dual DDE of equation (2.5):

ẏλ(t) = A∗yλ(t) +A∗1λyλ(t− h) +

∫ 0

−h
a(s)A∗2λyλ(t+ s) ds(2.6)

yλ(0) = ψ0, yλ(s) = ψ1(s) a.e. on (−h, 0),

for a.e. t ∈ (0, τ) and ψ ∈M2.

The approximative equation (2.6) is of the same type as ADDE (2.3) Therefore

the unique mild solution yλ of (2.6) exists for every ψ ∈M2 and λ > 0. Also the

family of approximative transposed semigroups {T Tλ (t); t ≥ 0} is defined by

T Tλ (t)ψ : = (yλ(t), yλt), ∀ψ ∈M2.

By the same argument as given above for Proposition 2.1 we conclude: the restric-

tion of T Tλ (t) to Z∗ is a strongly continuous semigroup on Z∗ and

(2.7) lim
λ→∞

‖T Tλ (t)ψ − T T (t)ψ‖Z∗ = 0, for every ψ ∈ Z∗

uniformly over bounded time intervals.
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3. Structural Operators, Adjoint Semigroups and Generators

In this section we introduce structural operators which provide the essential con-

nection between the adjoint and transposed semigroups associated with equations

(2.1) and (2.3). First we define the structural operator F : Z → M2 associated

with DDE (2.1):

Fφ : = (φ0,Hφ1) for φ ∈ Z,

where

(Hφ1)(s) : =A1φ
1(−h− s) +

∫ s

−h
a(r)A2φ

1(r − s) dr .

We note that F ∈ (Z,M2). Let Z ′ and Z ′∗ denote dual spaces of Z and Z∗
respectively. Then the following relations hold:

Z ↪→M2 = (M2)′ ↪→ Z ′ and Z∗ ↪→M2 = (M2)′ ↪→ Z ′∗.

Therefore, it follows that F ∈ (Z,Z ′∗) and F ∗ ∈ (Z∗, Z
′).

By a change of variables the following characterization of the adjoint operator

F ∗ can be obtained (for the proof see e.g. [12], [13]):

F ∗ψ = (ψ0,H∗ψ1) for ψ ∈ Z∗ and

(H∗ψ1)(s) = A∗1ψ
1(−h− s) +

∫ s

−h
a(r)A∗2ψ

1(r − s) dr .

Next we define structural operators Fλ : M2 →M2 associated with ADDE (2.3):

Fλφ : = (φ0,Hλφ
1) where Hλφ

1 = HRλφ
1 and φ ∈M2.

We note that Fλ ∈ (M2) for λ > 0 and thus F ∗λ ∈ (M2).

The product space M2 is a Hilbert space, so that the elements of the topolog-

ical dual (M2)′ can be identified with the elements of M2 itself. Therefore the

adjoint semigroup {T ∗λ(t); t ≥ 0} is a strongly continuous semigroup on M2 for

every λ > 0.

DDE (2.3) with bounded operators acting in the delays has the same form as

the DDE studied in [13, Section 2]. Therefore the following characterization of

the adjoint semigroup T ∗λ(t) is a direct consequence of Theorem 2.1 in [13] (see

also Theorem 4.2 in [15]):

Proposition 3.1. For λ > 0 let {T ∗λ(t) : t ≥ 0} be the adjoint semigroup asso-

ciated with DDE (2.3) and {T Tλ (t); t ≥ 0} be the transposed semigroup associated

with (2.5). Then we have

(3.1) T ∗λ(t)F ∗λψ = F ∗λT
T
λ (t)ψ, t ≥ 0,

for every ψ ∈M2.
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By using relations (2.2) we can conclude that for φ ∈ Z, Fλφ converges to Fφ

and for ψ ∈ Z∗, F
∗
λψ converges to F ∗ψ in M2. Therefore we get the following

result:

Theorem 3.1. Let {T ∗(t); t ≥ 0} be the adjoint semigroup of DDE (2.1) and

let {T T (t); t ≥ 0} be the transposed semigroup associated with dual equation (2.5).

Then the following equation holds for every ψ ∈ Z∗:

(3.2) T ∗(t)F ∗ψ = F ∗T T (t)ψ, for t ≥ 0 .

Proof. The equation (3.2) follows from (2.4), (2.7) and equation (3.1). For the

details see e.g. [12, Theorem 4.5]. �
Solution semigroups {T (t); t ≥ 0} and {T T (t); t ≥ 0} are strongly contin-

uous semigroups. We will denote their infinitesimal generators by and T

respectively. The following characterization of is proved in [5, Theorem 4.2.]:

D( ) =

{
φ ∈ Z | φ1(0) = φ0, φ1 ∈W 1,2(−h, 0;D(A)) and(3.3)

(Aφ0 +A1φ
1(−h) +

∫ 0

−h
a(s)A2φ

1(s) ds) ∈ V

}
,

φ =

(
Aφ0 +A1φ

1(−h) +

∫ 0

−h
a(s)A2φ

1(s) ds, φ̇1

)
.

The operators appearing in the transposed equation (3.1) are of the same type

as those in the equation (2.1), so we have an analogous characterization of the

operator T :

D( T ) =

{
ψ ∈ Z∗ | ψ

1(0) = ψ0, ψ1 ∈W 1,2(−h, 0;D(A∗)) and(3.4)

(A∗ψ0 +A∗1ψ
1(−h) +

∫ 0

−h
a(s)A∗2ψ

1(s) ds) ∈ V∗

}
,

Tψ = (A∗ψ0 +A∗1ψ
1(−h) +

∫ 0

−h
a(s)A∗2ψ

1(s) ds, ψ̇1).

As noted the infinitesimal generator of the adjoint semigroup {T ∗(t); t ≥ 0} is

the adjoint operator ∗ of . By the definition of the infinitesimal generators

the following equation can be directly obtained from the equation (3.2):

(3.5) ∗F ∗ψ = F ∗ Tψ, for ψ ∈ D( T ).

This means that the generator ∗ can be characterized by the generator T and

the structural operator F ∗. In the next section this relation will be used for the

characterization of eigenspaces of ∗.
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4. Eigenspaces and Identifiability

The description of the eigenvalues of can be given by introducing a family

of operators ∆(ω). For ω ∈ C the operator ∆(ω) : D(A)→ X is defined by

(4.1) ∆(ω)x : = (ωI −A)x− e−ωhA1x−

(∫ 0

−h
a(s)eωs ds

)
A2x

for every x ∈ D(A). The equation ∆(ω)x = 0 is known to be the generalization

of the characteristic equation for delay equations when X = Rn (see e.g. [6],

[7], [15]). The following result is readily obtained (see e.g. [6]):

Proposition 4.1. Let ω ∈ C. Then φ belongs to the set ker(ωI − ) if and

only if φ = (φ0, eωsφ0) and ∆(ω)φ0 = 0.

The description of the eigenvalues of the generator T can be given analogously

to that of . We define the family of operators ∆T (ω) : D(A∗)→ X by

(4.2) ∆T (ω)x = (ωI −A∗)x− e−ωhA∗1x−

(∫ 0

−h
a(s)eωs ds

)
A∗2x

for x ∈ D(A∗) and ω ∈ C. We have the following characterization of σP ( T ), the

point spectrum of T :

Proposition 4.2. Let ω ∈ C. Then ψ ∈ ker(ωI − T ) if and only if ψ =

(ψ0, eωsψ0) and ∆T (ω)ψ0 = 0.

Let us denote

Mω = ker(ωI − ), NT
ω = ker(ωI − T ),(4.3)

N∗ω = ker(ωI − ∗), for ω ∈ C.

We will consider the case where the eigenspaces of are finite-dimensional. We

will assume the following hypothesis:

(4.4) ω ∈ σP ( ) and dimNω = d <∞ .

Proposition 4.3. Let ω ∈ C satisfy (4.4) and let ω be its conjugate. Then

ω ∈ σP ( )T and dimNT
ω = d.

Proof. Let ∼= denote the linear isomorphism between two vector spaces. By

Propositions 4.1 and 4.2 we have relations:

Nω ∼= ker∆(ω) and NT
ω
∼= ker∆T (ω).
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The operators defined by RλAiRλ, i = 1, 2 are bounded in X for λ > 0. By

assumption Ai ∈ (D(A),X) and A∗i ∈ (D(A∗),X). Thus we have relations:

(4.5) (RλAiRλ)
∗ = (Rλ(AiRλ))

∗ = (AiRλ)
∗R∗λ = R∗λA

∗
iR
∗
λ, i = 1, 2 .

The action of the operator ∆(ω) can be given by

(4.6) ∆(ω)x = [(ωI −A)− f1(ω)A1 − f2(ω)A2]x ,

where

f1(ω) = e−ωh, f2(ω) =

∫ 0

−h
a(s)eωs ds .

We note that the operator Rλ∆(ω)Rλ is a sum of bounded operators on X. Thus

we have following relations:

(Rλ∆(ω)Rλ)
∗ = [Rλ((ωI −A)− f1(ω)A1 − f2(ω)A2)Rλ]

∗

= R∗λ [(ωI −A∗)− f1(ω)A∗1 − f2(ω)A∗2]R
∗
λ = R∗λ∆

T (ω)R∗λ.

Since Rλ∆(ω)Rλ is a bounded operator on X it follows that

dimker(R∗λ∆
T (ω)R∗λ) = dimker(Rλ∆(ω)Rλ) = d ,

see e.g. [9, p. 184]. By the fact that R∗λ is bijective operator and D(∆T (ω)) =

D(A∗) we conclude that dimker∆T (ω) = d. By Proposition 4.2 then it follows:

dimNT
ω = d and ω ∈ δP ( T ). �

Theorem 4.1. Let ω ∈ C satisfy (4.4). Then the eigenspace N∗ω is character-

ized by:

(4.7) N∗ω = F ∗(NT
ω ).

Proof. By equation (3.5) the following relation holds:

(ωI − ∗)F ∗ψ = F ∗(ωI − T )ψ

for every ψ ∈ D( T ). Hence we have the inclusion:

(4.8) F ∗(NT
ω ) ⊂ N∗ω .

Note that if ψ ∈ NT
ω and F ∗ψ = 0, then it follows ψ = 0. This means that the

operator F ∗ restricted to NT
ω is an injective linear operator.

By the operator theory (see [9, p. 184]) an by assumption (4.4) we also have

ω ∈ σP ( ∗) and dimN∗ω = dimNω = d. Thus we can conclude that dimN∗ω =
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dimNT
ω . Hence by injectivity of F ∗ on NT

ω from the inclusion (4.8) the equation

(4.7) follows. �

By the operator theory we have the following representation of the projector P

from the space Z to the finite-dimensional eigenspace Nω:

Pz =
d∑
i=1

〈z, ηi〉φi, z ∈ Z,

where the set {φi; i = 1, 2, . . . , d} forms a basis in Nω, the set {ηj; j = 1, 2, . . . , d}
forms a basis in N∗ω and the following identities hold:

〈φi, ηj〉Z×Z′ = δi,j .

For the details see e.g. [9, p. 25, p. 184].

By Theorem 4.1 there exists a basis {ψj; j = 1, 2, . . . , d} in NT
ω such that

(4.9) Pz =
d∑
j=1

〈z, F ∗ψj〉φj =
d∑
j=1

〈Fz, ψj〉φj for z ∈ Z.

Suppose that {gi; i = 1, 2, . . . , r} is a finite set of elements of the space Z. Then

the condition

Span{Pgi; i = 1, 2, . . . , r} = Nω

can be equivalently expressed by the following rank condition:

(4.10) rank

(
〈Fgi, ψj〉 ,

i→ 1, 2, . . . , r

j ↓ 1, 2, . . . , d

)
= d .

In [16] Nakagiri and Yamamoto solved the identifiability problem for DDE

(2.1) with A1, A2 ∈ (X) provided that the set of initial functions satisfies rank

conditions (4.10). By using Theorem 4.1 the identifiability problem for DDE (2.1)

can be solved in the same way. More specifically, let us denote

σ0( ) = {ω ∈ C | ω ∈ σP ( ), dimMω <∞},

where Mω = ker(ωI − )k denotes the generalized eigenspace of and where k

is the order of the pole of the resolvent R(λ, ) at λ = ω. Let us assume that

satisfies the following hypothesis on the spectrum:

σ( ) = σ0( ) is a countable set and(4.11)

Cl (span {Mω;ω ∈ σ( )}) = Z,(4.12)
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where Cl denotes the closure in Z. This means that the system of eigenfunctions

of is complete. For ωn ∈ σ( ), n = 1, 2, 3, . . . we will denote by

{φn,i; i = 1, 2, . . . , dn}

the basis in Nωn and by

{ψn,j; j = 1, 2, . . . , dn}

the basis in NT
ωn

. Note that Nωn ⊂Mωn .

We consider the problem of the identifiability of parameters of (2.1). We define

the model equation (2.1)m as the equation (2.1) in which the parameters A, A1

and a(s) are replaced by Am, Am1 and am(s) respectively. We assume that A2 is

a priori known operator, that is A2 = Am2 .

Let {gi; i = 1, 2, . . . , r} be the finite set of initial values and let x(t; gi) and

xm(t; gi) be solutions of (2.1) and (2.1)m respectively. Then the operators A, A1

and the function a are called identifiable when the following implication holds:

(4.13)
If x(t; gi) = xm(t; gi) for i = 1, 2, . . . , r and t > 0, then

Ax = Amx, A1x = Am1 x for x ∈ D(A) and a = am.

Theorem 4.2. Let and m satisfy (4.11) and let m satisfy (4.12). If the

initial functions {gi; i = 1, 2, . . . , r} satisfy the following rank condition:

(4.14) rank

(〈
Fmgi, ψ

m
n,j

〉
,
i→ 1, 2, . . . , r

j ↓ 1, 2, . . . , dn

)
= dn ,

for every n ∈ N , then A, A1 a are identifiable.

Proof. By Proposition 3.1 in [16] and by Proposition 3 in [18] it follows that

= m. By the same argument as that given in the proof of Theorem 3.1 in

[16] the identifiability of A, A1, a(s) can be readily obtained. �
Remark. In the case where A1 and A2 are bounded the hypothesis (4.11)

of Theorem 4.2 are fulfilled, whenever A has a compact resolvent (see e.g. [16,

p. 320]). When A1, A2 are unbounded an analogous result on identifiability under

approximation can be obtained by using ADDE (2.3):

Let us denote by λ and T
λ infinitesimal generators of approximate semigroups

Tλ(t) and T Tλ (t) on M2 for some λ > 0. Let us assume that A has a compact

resolvent. Then

σ( λ) = σ0( λ)

is a countable set and we can denote by

{ψλ,n,j; j = 1, 2, . . . , d}

the basis in

NT
λ,ωn = ker(ωnI −

T
λ ).
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We define the model equation (2.3)m as the equation (2.3) in which the param-

eters A, A1λ and a(s) are replaced by Am, Am1λ and am(s) respectively.

Theorem 4.3. Let A and Am have compact resolvents and let us assume that

the system of generalized eigenfunctions of m
λ is complete in M2 for some λ > 0.

If the initial functions {gi; i = 1, 2, . . . , r} satisfy the following rank condition:

(4.15) rank

(〈
Fmλ gi, ψ

m
λ,n,j

〉
,
i→ 1, 2, . . . , r

j ↓ 1, 2, . . . , dn

)
= dn ,

for every n ∈ N , then Ax = Amx, A1x = Am1 x for x ∈ (A) and a = am.

Proof. The operators A1λ and Am1λ are bounded, so we can apply Theorem 3.1

in [16] to the equations (2.3) and (2.3)m. We obtain identities A = Am, A1λ = Am1λ
and a = am. This means: R(λ,A) = R(λ,Am) and Am1 R(λ,A) = A1R(λ,A).

Hence it follows Am1 x = A1x for every x ∈ D(A). �

5. Example

We consider the partial functional differential equation of the form:

(5.1) ut(t, x) = cuxx(t, x) + bu(t− h, x) +

∫ 0

−h
a(s)ux(t+ s, x) ds

for t > 0, x ∈ (0, 2π) with boundary conditions

u(t, 0) = u(t, 2π), ux(t, 0) = ux(t, 2π)

u(0, x) = g0(x), u(s, x) = g1(s, x) a.e. [−h, 0]× [0, 2π],

where g0 ∈ X = L2(0, 2π), g1 ∈ L2(h, 0;X), c > 0, b 6= 0 and a(s) ∈ L2(−h, 0;R).

The space X is a Hilbert space with inner product 〈f, g〉 =
∫ 2π

0
f(x)g(x) dx.

The operator A : X → X is defined by

Af = cf ′′ for f ∈ (A),

(A) = {f ∈ X | f, f ′ ∈W 1,2(0, 2π;R) and f(0) = f(2π), f ′(0) = f ′(2π)}

The operators Ai, i = 1, 2 are defined by

A1 = bI and A2f = f ′ for f ∈ (A2),

(A2) = {f ∈ X | f ∈W 1,2(0, 2π;R) and f(0) = f(2π)}.

Thus the partial functional differential equation (5.1) can be written in the

form (2.1).
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It is known that the operator A is self adjoint and that it is the infinitesi-

mal generator of a compact analytic semigroup S(t) in X, (see e.g. [1, p. 214],

[17, p. 234]. The eigenvalues of A are given by µn = −cn2, n = 0, 1, 2, . . . and

the eigenfunctions {sinnx, cosnx;n = 0, 1, 2, . . .} form a complete orthogonal sys-

tem in X. Let Xn = Span{sinnx, cosnx} denote the associated eigenspace for

n = 0, 1, 2, . . . . If Pn is a projector from X to Xn, then

(5.2)
∞∑
n=0

Pn = I

and

(5.3) S(t)fn = eµntfn for fn ∈ Xn.

By the compactness of the semigroup S(t) it can be shown that the solution

semigroup T (t) of DDE (2.1) is compact for t > h, (see e.g. [21, p. 134]). This

means that the spectrum of its infinitesimal generator is countable and is equal

to the point spectrum. Moreover, the generalized eigenspaces Mω( ) of are

finite dimensional (see e.g. [17, p. 46], [20, p. 408]). For the characterization of

generalized eigenvectors of see e.g. [14, p. 97].

In order to show the completeness of generalized eigenfunctions of we will

proceed analogously to the proof of Theorem 2 in [7]. The restrictions of operators

A and Ai to Xn will be denoted by An and Ain:

An = A
∣∣
Xn

and Ain = Ai
∣∣
Xn

.

The range of these restrictions is in Xn. Thus we can consider DDE (2.1) with

operators A, Ai replaced by An and Ain for any initial value φ ∈ M2
n = Xn ×

L2(−h, 0;Xn). Let Tn(t) denote the solution semigroup of this restriction initial

value problem and let n be its infinitesimal generator. By (5.3) it follows

Tn(t) = T (t)
∣∣
M2
n

and n =
∣∣

( n)
,

which means that ωn,j( ) = ωn,j ( n) for every eigenvalue ωn,j of An, j ∈ N.

Since Xn is finite dimensional and b 6= 0 Theorems 5.1 and 5.4 in [11] imply that

elements of ωn,j( n) form a complete system in M2
n for every n = 0, 1, 2, . . . .

Hence by (5.2) it follows that (4.12) holds and the assumptions of Theorem 4.3 are

fulfilled. Therefore when the set of initial functions {gi, i = 1, 2, . . . , r} satisfies

rank conditions (4.14) the parameters c, b, a(s) are identifiable.
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