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ON THE RELATIONSHIP BETWEEN PROJECTIVE

DISTRIBUTIVE LATTICES AND BOOLEAN ALGEBRAS

M. PLOŠČICA

Abstract. The main result of this paper is the following theorem: If a projec-
tive Boolean algebra B is generated by its sublattice L, then there is a projective
distributive lattice D which is a sublattice of L and generates B.

1. Preliminaries

The operations of Boolean algebras will be denoted by ∧ (meet), ∨ (join),
′ (complement), 0 (the least element) and 1 (the greatest element). If B is a

Boolean algebra (we do not distinguish between the algebra and its underlying set)

and H ⊆ B, then 〈H〉 denotes the subalgebra of B generated by H. For Boolean

algebras A, C we will write C ≤rc A and say that C is relatively complete in A,

if C is a subalgebra of A and for every a ∈ A there exists the greatest c ∈ C with

c ≤ a. We denote this element by aC . If C ≤rc A then for each a ∈ A there exists

the least c ∈ C with a ≤ c. This element will be denoted by aC . Thus, aC = (a′C)′.

By C ≤rcω A we understand that C ≤rc A and A = 〈C ∪X〉 for some countable

set X. The following statement is easy to prove (see [8]):

1.1. Lemma. Let A and C be subalgebras of a Boolean algebra B.

(i) If A ≤rc B, A ⊆ C ⊆ B, then A ≤rc C.

(ii) If A ≤rc B, x ∈ B, then 〈A ∪ {x}〉 ≤rc B.

A chain {Aα |α < τ} of Boolean algebras (where τ is an arbitrary ordinal

number) is said to be continuous if Aλ =
⋃
{Aα |α < λ} holds for each limit

ordinal number λ < τ .

For the sake of brevity, by a distributive lattice we understand in this paper a

bounded lattice satisfying the well-known distributivity identities. Consequently,

all lattice homomorphisms are assumed to preserve the universal bounds. Ana-

logically, saying that C is a sublattice of a distributive lattice D we mean that

C is closed under ∧ and ∨ and contains the universal bounds of D. Free dis-

tributive lattices are the free objects in the category of bounded distributive lat-

tices and 0, 1-preserving lattice homomorphisms. For every distributive lattice D
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there is unique (up to isomorphism) Boolean algebra B(D) that contains D as

a sublattice and 〈D〉 = B(D). Each a ∈ B(D) can be expressed in the form

a = a0 + a1 + · · · + an, where a0, . . . , an ∈ D, a0 ≤ a1 ≤ · · · ≤ an and + is

the operation of symmetric difference (i.e. x+ y = (x′ ∧ y) ∨ (x′ ∧ y)). For every

Boolean algebra B, the set B with the operations +, ∧ is a ring satisfying the

identities a + a = 0, a ∨ b = a + b + (a ∧ b), and a′ = a + 1. Every homomor-

phism f : D1 −→ D2 of distributive lattices can be extended to a homomorphism

f∗ : B(D1) −→ B(D2) of Boolean algebras. (See [4, Ch. II.4.])

An object P of a category K is E-projective (where E is some class of epimor-

phisms) if, for every e ∈ E , e : A −→ B and every morphism f : P −→ B, there

exists a morphism g : P −→ A with eg = f . Injective objects are defined dually.

A projective Boolean algebra (distributive lattice) is a E-projective object of

the category B of Boolean algebras (D of distributive lattices) and their homo-

morphisms, where E is the class of all surjective homomorphisms. Basic facts

about projective Boolean algebras are summarized in the following assertion. For

the proofs see [5] and [6]. Recall that an object A is a retract of B if there are

morphisms f : A −→ B, g : B −→ A such that gf = id (A).

1.2. Theorem.

(i) A Boolean algebra is projective iff it is a retract of some free Boolean

algebra.

(ii) Any free product of projective Boolean algebras is projective.

(iii) Every retract of a projective Boolean algebra is projective.

(iv) Every countable Boolean algebra is projective.

According to 1.2 every projective Boolean algebra is a subalgebra of a free

Boolean algebra, hence it cannot contain an uncountable chain. We will use the

following characterization of projective Boolean algebras proved by Koppelberg in

[8]. Analogical result for Boolean topological spaces can be found in [7].

1.3. Theorem. Let A be a Boolean algebra. The following statements are

equivalent:

(i) The Boolean algebra A is projective.

(ii) There exists a continuous chain {Aα |α < τ} of subalgebras of A such that

A0 = {0, 1},
⋃
{Aα |α < τ} = A and Aα ≤rcω Aα+1 holds for each α with

α+ 1 < τ .

(iii) There exists a family S of subalgebras of A with the following properties:

(S1) {0, 1} ∈ S ;

(S2) if S ∈ S then S ≤rc A;

(S3) if C ⊆ S is a non-empty chain under set inclusion then
⋃
C ∈ S ;

(S4) for each S ∈ S and a countable subset X of A, there is S′ ∈ S such

that S ∪X ⊆ S′ and S ≤rcω S′.
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In the next theorem we summarize some facts about projective distributive

lattices. Proofs of (i), (iii) and (iv) can be found in [1], [2], (ii) is contained in [3].

For a lattice L, let J(L) and M(L) denote the set of all non-zero ∨-irreducibles

and the set of all non-unit ∧-irreducibles respectively.

1.4. Theorem.

(i) A distributive lattice is projective iff it is a retract of some free distributive

lattice.

(ii) A distributive lattice D is projective iff it satisfies the following conditions:

(1) J(D) is a ∧-subsemilattice of D;

(2) both J(D) and M(D) generate D;

(3) for each a ∈ D there are two finite sets A(a) ⊆ {d ∈ D | d ≥ a} and

B(a) ⊆ {d ∈ D | d ≤ a} such that A(a) ∩B(b) 6= ∅ for every a ≤ b.
(iii) A finite D ∈ D is projective iff it satisfies (1).

(iv) A countable D ∈ D is projective iff it satisfies (1) and (2).

The last four assertions of this section are technical lemmas about Boolean

algebras. For the proof of 1.5 see [4, p. 73].

1.5. Lemma (Sikorski’s extension criterion). Let A and B be Boolean algebras,

A generated by its subset G. Let f be a map of G into B. The map f can be

extended to a homomorphism of A into B iff, for arbitrary x1, x2, . . . , xn, y1,

y2, . . . , ym ∈ G, the equality x1 ∧ · · · ∧ xn ∧ y′1 ∧ . . . y
′
m = 0 implies f(x1) ∧ · · · ∧

f(xn) ∧ · · · ∧ f(ym)′ = 0.

1.6. Lemma. Let Boolean algebras A and C satisfy C ≤rc A and let a ∈ A,

b ∈ C. Then (a∨b)C = aC∨b, (a∧b)C = aC∧b, (a∨b)C = aC∨b, (a∧b)C = aC∧b.

Proof. We will show the first two equalities.

I. Denote x = (a ∨ b)C , d = (aC ∨ b′) ∧ x. Clearly aC ∨ b ≤ x ≤ a ∨ b, aC ≤ d.

From d ≤ (aC ∨ b′)∧ (a∨ b) ≤ a it follows that d = aC = max{c ∈ C | c ≤ a} . We

obtain that aC ∨ b = d ∨ b = ((aC ∨ b′) ∧ x) ∨ b = x.

II. We have aC ∧ b ≤ (a ∧ b)C , because a∧ b ≥ aC ∧ b ∈ C. On the other hand,

(a ∧ b)C ≤ aC , (a ∧ b)C ≤ bC = b, hence (a ∧ b)C ≤ aC ∧ b. �

1.7. Lemma. Let Boolean algebras A and C satisfy C ≤rc A. Let x1, x2, . . . xn
be distinct elements of A such that (xi)

C ≤ (xi+1)C for each i = 1, 2, . . . , n − 1.

Let M and N be disjoint subsets of {1, 2, . . . , n}. Denote B = {xi | i ∈ M} ∪
{x′i | i ∈ N}. Then (

∧
B)C =

∧
{xC |x ∈ B} .

Proof. Let us denote j = min(M) and k = max(N), provided M 6= ∅ and

N 6= ∅ respectively. In the case M = N = ∅ the assertion is evident. (We set∧
∅ = 1.) If M = ∅ , N 6= ∅ (the case M 6= ∅ , N = ∅ is analogous), we have

(
∧
B)C = (x′k)

C =
∧
{xC |x ∈ B} . Finally, assume that M,N 6= ∅ . We obtain

(
∧
B)C = (xj ∧ x′k)

C ≤ (xj)
C ∧ (x′k)

C =
∧
{xC |x ∈ B} . The inverse inequality
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is evident if j < k, because in this case (xj)
C ∧ (x′k)

C ≤ (xk)C ∧ (x′k)
C = 0.

Now suppose that j > k. By 1.6 we have both (xj ∧ x′k)
C ≥ (xj)

C ∧ (x′k)C and

(xj∧x′k)
C ≥ (xj)C∧(x′k)

C . Since (xj)
C∨(x′k)

C ≥ (xj)C∨(x′k)C ≥ (xk)
C∨(x′k)C =

1, we get (xj ∧ x′k)
C ≥ ((xj)

C ∧ (x′k)C) ∨ ((xj)C ∧ (x′k)
C) = (xj)

C ∧ (x′k)
C . �

1.8. Lemma. Let a Boolean algebra A be generated by its sublattice L. Let

a, b ∈ L, a ≤ b. Then the interval [a, b] of A is generated (as a Boolean algebra)

by its subset [a, b] ∩ L.

Proof. The algebra [a, b] is a homomorphic image of A under the map f(x) =

(x ∨ a) ∧ b. Hence, it is generated by f(L) ⊆ L ∩ [a, b]. �

2. The Main Results

2.1. Lemma. Let D be a projective distributive lattice. Then B(D) is a pro-

jective Boolean algebra.

Proof. Let f : B1 −→ B2 be an epimorphism of Boolean algebras (i.e. surjective

homomorphism) and g : B(D) −→ B2 an arbitrary homomorphism. Then we

have the lattice homomorphism g∗ = g � D and, from the projectivity of D, a

lattice homomorphism h∗ : D −→ B1 with fh∗ = g∗, which can be extended to

a homomorphism h : B(D) −→ B1 = B(B1). The homomorphisms fh and g

coincide on D, hence fh = g. �

Of course, a projective Boolean algebra can be generated by its non-projective

sublattices as well. Notice that no Boolean algebra with more than two elements is

a projective distributive lattice. Now we are going to prove that if for a distributive

lattice L, B(L) is a projective Boolean algebra, then there exists a projective

sublattice D of L with B(D) = B(L).

2.2. Lemma. Let A be a projective Boolean algebra generated by its sublat-

tice L. Suppose that S is a family of subalgebras of A with the properties (S1)–

(S4). Then for each S ∈ S and countable X ⊆ A there is a S′ ∈ S such that

S ∪X ⊆ S′ and S ≤rcω S′ = 〈S ∪ Y 〉 for some countable Y ⊆ L.

Proof. By induction we define an increasing chain {Sn |n < ω} ⊆ S such that

S ≤rcω Si for each i < ω. By (S4) there is S0 ∈ S such that S ∪ X ⊆ S0 and

S ≤rcω S0. Suppose now that we have defined Si ∈ S with Si = 〈S ∪ {sk | k <
ω}〉. For each k there exists a finite set Y ik ⊆ L such that sk ∈ 〈Y ik 〉 . Denote

Y i =
⋃
{Y ik | k < ω} . Using (S4) we get Si+1 ∈ S such that S ∪ Y i ⊆ Si+1 ,

S ≤rcω Si+1 . Moreover, the subalgebra of Si+1 generated by S ∪ Y i contains Si.

Let us set S′ =
⋃
{Si | i < ω} . We have S′ ∈ S (by (S3)), S ≤rc S′ (by (S2) and

1.1), X ⊆ S′ and S′ = 〈S ∪ Y 〉 , where Y =
⋃
{Y i | i < ω} . �
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2.3. Lemma. Let A be a projective Boolean algebra generated by its sublat-

tice L. Then there exists a continuous chain {Aα |α < τ} of subalgebras of A with

the following properties:

(i) A0 = {0, 1} ;

(ii)
⋃
{Aα |α < τ} = A;

(iii) for each α < τ there is x ∈ L such that Aα ≤rc Aα+1 = 〈Aα ∪ {x}〉 ;

(iv) Aα = 〈Aα ∩ L〉 holds for each α < τ .

Proof. Let S be a family of subalgebras of A with the properties (S1)–(S4).

First we construct a continuous chain {Bα |α < γ} ⊆ S satisfying (i), (ii), (iv)

and

(iii’) for each α < γ there is a countable Y ⊆ L with Bα ≤rc Bα+1 = 〈Bα ∪Y 〉.

We proceed by induction. Let us set B0 = {0, 1} and suppose that we have a

chain {Bα |α < λ} ⊆ S. If
⋃
{Bα |α < λ} = A, we can set γ = λ . Otherwise

we have x ∈ A \
⋃
{Bα |α < λ} . For limit λ we set Bλ =

⋃
{Bα |α < λ} ∈ S.

For λ = β + 1, 2.2 yields Bλ ∈ S and a countable Y ⊆ L with Bβ ∪ {x} ⊆ Bλ
and Bβ ≤rc Bλ = 〈Bβ ∪ Y 〉 . It is clear that the chain {Bα |α < γ} has the

desirable properties. Now we get the chain {Aα |α < τ} by inserting the algebras

〈Bα ∪ {y1}〉, 〈Ba ∪ {y1, y2}〉,. . . , (where Y = {yi | i < ω} ⊆ L, Bα+1 = 〈Bα ∪ Y 〉)
between Bα and Bα+1. Validity of (i),(ii) and (iv) is evident, (iii) follows from

(iii’) and 1.1. �
2.4. Lemma. Let x, a0, a1, . . . , a2n be elements of a Boolean algebra A such

that x ≥ a0 + a1 + · · · + a2n, a0 ≤ · · · ≤ a2n. Then x ∈ 〈Y 〉 , where Y =

{a0, . . . a2n, x ∨ a2n, (x ∧ a2n−1) ∨ a2n−2, . . . , (x ∧ a1) ∨ a0} .

Proof. Since x is the complement of a2n in the interval [x ∧ a2n, x ∨ a2n], it

suffices to prove that x ∧ a2n ∈ 〈Y 〉 . By induction we show that x ∧ ai ∈ 〈Y 〉 for

each i = 0, 1, . . . , 2n.

We have x∧a0 ≥ (a0 + · · ·+a2n)∧a0 = a0 +a0 + . . . a0 = a0, hence x∧a0 = a0,

x ∧ a0 ∈ 〈Y 〉. Suppose now that x ∧ ak−1 ∈ 〈Y 〉 , k ≤ 2n.

I. If k is odd, then x∧ak is the complement of ak−1 in the interval [x∧ak−1, (x∧
ak) ∨ ak−1] and x ∧ ak−1 ∈ 〈Y 〉 implies that x ∧ ak ∈ 〈Y 〉.

II. If k is even, we get ak ≥ ak−1 ∨ (x ∧ ak) ≥ ak−1 ∨ ((a0 + · · ·+ a2n) ∧ ak) =

ak−1∨(a0+· · ·+ak) = ak−1+a0+a1+· · ·+ak+a0+a1+· · ·+ak−2+ak−1+ak−1 = ak.

Hence, x ∧ ak is the complement of ak−1 in [x ∧ ak−1, ak], x ∧ ak ∈ 〈Y 〉 . �
2.5. Lemma. Let x, b0, b1, . . . b2n−1 be elements of a Boolean algebra A such

that x ≤ b0 + · · · + b2n−1, b0 ≤ · · · ≤ b2n−1. Then x ∈ 〈Y 〉, where Y =

{b0, . . . , b2n−1, (x ∧ b1) ∨ b0, . . . , (x ∧ b2n−1) ∨ b2n−2} .

Proof. We have x′ ≥ (b0+· · ·+b2n−1)
′ = b0+· · ·+b2n−1+1 = b′2n−1+· · ·+b

′
0+1.

Now 2.4 yields that x′ ∈ 〈{b′0, . . . b
′
2n−1, (x

′ ∧ b′0)∨ b
′
1, . . . , (x

′ ∧ b′2n−2) ∨ b
′
2n−1}〉 =

〈Y 〉, which implies that x ∈ 〈Y 〉. �
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2.6. Lemma. Let K and L be sublattices of Boolean algebras C and A respec-

tively, such that C = 〈K〉 , A = 〈L〉 , K ⊆ L, C ≤rc A and A = 〈C ∪ {x}〉 for

some x ∈ L. Then there exist x1, x2, . . . xm ∈ L with the properties

(i) (xi)C , (xi)
C ∈ K for each i = 1, 2, . . .m;

(ii) (xi)
C ≤ (xj)C for each i < j;

(iii) A = 〈C ∪ {x1, . . . , xm}〉 .

Proof. Let xC = a0 + · · · + ak, where a0, . . . , ak ∈ K, a0 ≤ · · · ≤ ak. We

can suppose that k = 2n (otherwise we add 0 to the sum). By 2.4 we have

A = 〈C∪{y0, . . . yn}〉, where yn = x∨a2n, yi = (x∧a2i+1)∨a2i for i = 0, . . . , n−1.

From 1.6 we get (yi)C = ((a0 + · · ·+ a2n) ∧ a2i+1) ∨ a2i = a2i (this holds also for

i = n). Element yi (i = 0, . . . , n − 1) belongs to the interval Ii = [a2i, a2i+1],

yn ∈ In = [a2n, 1]. By 1.8, each Ii is, as a Boolean algebra, generated by Ii ∩K.

Clearly (yi)
C ∈ Ii, hence (yi)

C = b0∗· · ·∗bq, where b0, . . . , bq ∈ Ii∩K, b0 ≤ · · · ≤ bq
and ∗ is the addition in the Boolean algebra Ii. We can suppose that q = 2p− 1.

Now 2.5 yields that yi ∈ 〈C ∪ {yi1, . . . , yip}〉 , where yij = (yi ∧ b2j−1) ∨ b2j−2.

This holds in Ii as well as in A. (The complementation in Ii can be expressed by

means of the operations of A.) We have (yij)C = (a2i ∧ b2j−1) ∨ b2j−2 ∈ K and

(yij)
C = ((b0 ∗ · · · ∗ bq) ∧ b2j−1) ∨ b2j−2 = b2j−1 ∈ K. The set {x1, . . . xm} will

consist of all elements yij. �

2.7. Theorem. Let a projective Boolean algebra A be generated by its sublat-

tice L. Then there exists a projective distributive

Proof. Let {Aα |α < τ} be the chain of subalgebras of A constructed in 2.3.

By induction we find a sequence {Fα |α < τ} of free Boolean algebras (Fα with

the free generating set Mα ) and two sequences {fα |α < τ} and {eα | a < τ} of

homomorphisms (fα : Fα −→ Aα, eα : Aα −→ Fα) with the following properties:

(i) fαeα = id(Aα), fα(Mα) ⊆ L, eα(fα(Dα)) ⊆ Dα, for each α < τ , where

Dα is the lattice generated by Mα in Fα;

(ii) Ma ⊆Mβ, fα ⊆ fβ , eα ⊆ eβ , for each α < β < τ .

We set F0 = {0, 1}, M0 = ∅ and define e0 and f0 by the obvious way. Let us

suppose that we have constructed Fα , eα , fα for all α < λ < τ .

I. Let λ be a non-limit ordinal, λ = β+1. Then we have Aβ ≤rc Aλ = 〈Aβ∪{x}〉
for some x ∈ L∩Aλ, Aλ = 〈L∩Aλ〉, Aβ = 〈fβ(Dβ)〉 . We apply 2.6 with Aλ, Aβ ,

L∩Aλ and fβ(Dβ) playing the roles of A, C, L and K respectively.Let x1, . . . xm
be the elements of L ∩ Aλ with the properties (i)–(iii) of 2.6. Take an arbitrary

set Z = {z1, . . . zm} of the cardinality m with Z ∩ Aβ = ∅ . Let Fλ ⊇ Fβ be the

free Boolean algebra with the free generating set Mλ = Mβ ∪ Z. Let fλ : Fλ −→
Aλ be the homomorphism uniquely determined by the conditions fλ � Fβ = fβ
and fλ(zi) = xi. Clearly fλ(Mλ) ⊆ L. Using 1.5 we show that there exists a

homomorphism eλ : Aλ −→ Fλ with eβ ⊆ eλ and eλ(xi) = (zi ∧ eβ(bi)) ∨ eβ(ai)
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(i = 1, . . . ,m), where ai = (xi)Aβ , bi = (xi)
Aβ . Suppose that Y is a finite

subset of Aβ ∪ {x1, . . . , xm, x
′
1, . . . , x

′
m} with

∧
Y = 0. We have to verify that

d =
∧
{eλ(y) | y ∈ Y \ {x′1, . . . , x

′
m}} ∧

∧
{eλ(y′)′ | y ∈ Y ∩ {x′1, . . . , x

′
m}} = 0.

This is trivial if {xk, x′k} ⊆ Y for some k. If there is no such k, by 1.6 and 1.7

we obtain that 0 = (
∧
Y )Aβ =

∧
{yAβ | y ∈ Y }. Since eβ is an homomorphism,

we have 0 = eβ(
∧
{yAβ | y ∈ Y }) =

∧
{eβ(yAβ ) | y ∈ Y }. For y ∈ Aβ we have

eβ(y
Aβ ) = eβ(y) = eλ(y). If y = xi then eβ(y

Aβ ) = eβ(bi) ≥ (zi ∧ eβ(bi)) ∨
eβ(ai) = eλ(y). Similarly, if y = x′i then eλ(y

′)′ = eλ(xi)
′ = (z′i ∨ eβ(bi)

′) ∧
eβ(ai)

′ ≤ eβ(ai)
′ = eβ(a

′
i) = eβ(((xi)Aβ )

′) = eβ((x
′
i)
Aβ ) = eβ(y

Aβ ). We obtain

that d ≤
∧
{eβ(yAβ ) | y ∈ Y } = 0. Thus, there is a homomorphism eλ fulfilling the

above conditions. From ai, bi ∈ fβ(Dβ) and eβ(fβ(Dβ)) ⊆ Dβ ⊆ Dλ we deduce

that eλ(fλ(zi)) = (zi ∧ eβ(bi)) ∨ eβ(ai) ∈ Dλ, hence eλ(fλ(Dλ)) ⊆ Dλ. Further,

fλ(eλ(xi)) = fλ((zi ∧ eβ(bi)) ∨ eβ(ai)) = (fλ(zi) ∧ bi) ∨ ai = xi, hence fλeλ is the

identity on a generating set, which implies that fλeλ = id(Aλ).

II. Let λ be a limit ordinal. Let us set Mλ =
⋃
{Mα |α < λ}, Fλ =

⋃
{Fα |α <

λ}, fλ =
⋃
{fα |α < λ}, eλ =

⋃
{eα |α < λ}. Validity of (i) and (ii) is evident.

Finally, set D =
⋃
{f(Dα) |α < τ}, f =

⋃
{fα |α < τ}, e =

⋃
{eα |α < τ}. It

is clear that D ⊆ L and 〈D〉 = A. Moreover, D is a retract of the free distributive

lattice Dτ =
⋃
{Dα |α < τ} via e � D and f � Dτ . �

In particular, every projective Boolean algebra is generated by some of its pro-

jective distributive sublattices.

We can also formulate the consequence of 2.7 for ordered topological spaces,

using the Priestley duality (see [9]). By this duality, projective Boolean algebras

are associated with injective Boolean spaces (also called Dugundji spaces), i.e.

retracts of powers of a two element discrete space. Duals of projective distributive

lattices are injective Priestley spaces (with respect to the class of all embeddings),

i.e. retracts of powers of a two element chain.

2.8. Corollary. If the topology of a Priestley space P is injective, then we can

extend the ordering on P in such a way that we get an injective Priestley space.

Finally, let us present some problems. First, every free distributive lattice is

a free product of three element lattices (i.e. free distributive lattices with one

generator). Projective distributive lattices are just retracts of such free products.

Free products of arbitrary finite (or countable) distributive lattices need not be

projective, but they still generate projective Boolean algebras. The question now

arises, whether the converse of this is true.

2.9. Problem. Let a distributive lattice D generate a projective Boolean alge-

bra B(D). Is D a retract of the free product of some finite (or countable) distribu-

tive lattices?

Another kind of problems is connected with a possible generalization of what we

have proved for Boolean algebras and distributive lattices. Suppose that V is any
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variety (equational class) of algebras and W its subvariety. (Or, more generally,

let V be a category and W its full epireflective subcategory.) For every algebra

A ∈ V there exists the least congruence θ on A such that the algebra A/θ (the

reflection of A) belongs to W. It is easy to prove that if A is projective in V then

A/θ is projective in W. The question is whether all algebras projective in W are

of this form.

2.10. Problem. Given a variety V and its subvarietyW, decide whether every

algebra projective in W is the reflection of some algebra projective in V.
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