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MIXING FOR DYADIC EQUIVALENCE

J. R. HASFURA-BUENAGA

Abstract. The notion of dyadic orbit equivalence for measure-preserving actions
of Γ = ⊕∞1 Z2 on non-atomic probability spaces is introduced and it is shown that
every dyadic equivalence class contains a mixing action. Also, a direct proof of a
theorem of Stěpin’s characterizing the values of entropy across an equivalence class
is given.

1. Introduction

The orbit equivalence of groups acting on a Lebesgue space by ergodic, measure-

preserving automorphisms has attracted the attention of numerous mathemati-

cians in recent years. The earliest result in the subject is Dye’s theorem [D]

which guarantees that any two ergodic actions of the integers are orbit equivalent.

More recently, Connes, Feldman and Weiss [CFW] showed that in fact the result

above still holds if we replace the group of integers by any two countable amenable

groups. Furthermore, several authors have studied the equivalence relations that

arise by considering only those orbit equivalences that satisfy some given restric-

tion. For more precision, assume that G is a group, that T and S are G-actions

and that a notion of restricted orbit equivalence is given. For many such notions

the following relation is an equivalence relation in the class of G-actions: T and

S are related if they are orbit equivalent by an orbit equivalence that satisfies

the given restriction. Examples of equivalence relations defined by restricted orbit

equivalences are isomorphism (an orbit equivalence that conjugates the actions),

Kakutani equivalence and α-equivalence. (For definitions and properties of these

last two equivalences see [F], [Ka], [ORW], [dJR] and [FdJR].)

In [R], Rudolph has developed a very deep, general theory of restricted orbit

equivalence of Z-actions which contains as particular cases the result of Dye’s

mentioned above, Ornstein’s isomorphism theorem and the Kakutani equivalence

theorem. But, while an isomorphism theory that parallels the classical Bernoulli

theory has been developed for a large class of amenable groups by Ornstein and

Weiss [OW], difficulties arise when trying to lift Rudolph’s results beyond the Zd

case (even in the case of discrete abelian groups, [KR], [K]).
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This paper gives a result concerning a special type of orbit equivalence for

actions of the Abelian group Γ = ⊕∞1 Z2 = {(g(n))n∈N | g(n) ∈ Z2 for all n, and

g(n) = 1 for only finitely many n} (under componentwise addition mod2). Recall

that an action of Γ (or a Γ-action) on the non-atomic Lebesgue probability space

(X,B, µ) is a group homomorphism T from Γ to the group Aut (X) of measure-

preserving automorphisms of X. For g ∈ Γ, the automorphism T (g) of X will

be denoted by T g. Also, we will write γi, i ≥ 1, for that element of Γ having

every coordinate except the ith one equal to 0 and Γi, i ≥ 0, for the subgroup

of Γ consisting of those g ∈ Γ with g(n) = 0 for n > i. We say that the Γ-

actions T and S on, respectively, (X,B, µ) and (Y, C, ν) are orbit equivalent if

a measure-preserving isomorphism φ exists with φ(Orb T (x)) = Orb S(φ(x)) for

a.e. x ∈ X. (Here Orb T (x) = {T g(x) | g ∈ Γ}, with an analogous definition

for Orb S(φ(x)).) Finally, T and S are dyadically equivalent if they are orbit

equivalent by an orbit equivalence φ which for every x ∈ X and every i > 0 has

φ(Γi(x)) = Γi(φ(x)). (Γi(x) = {T g(x) | g ∈ Γi}.) When actions T and S are

dyadically equivalent we will write T ∼ S. It is immediately verified that dyadic

equivalence is an equivalence relation in the class of Γ-actions and a result of

Stěpin’s [S, Theorem 2 below] guarantees that there are uncountably many dyadic

equivalence classes. (The work of Vershik’s [V] shows that if we replace in the

definition of dyadic equivalence the condition ‘i > 0’ by ‘for infinitely many i’ we

get an equivalence relation with only one equivalence class, and Belinskaya [B]

used this result to prove an orbit equivalence theorem for Z-actions.) This paper

is partially motivated by a comment in [S] in which the author asserts that the

dyadic equivalence class of a particular Γ-action given there contains actions with

continuous spectrum. We will extend that assertion as follows.

Theorem 1. Given any ergodic Γ-action T0 there is a mixing Γ-action T with

T0 ∼ T .

Further motivation for the study of dyadic equivalence comes, as suggested

above, from the interest in extending the restricted orbit equivalence theory to

large classes of amenable groups. The definition of dyadic equivalence is remi-

niscent of that of Kakutani equivalence of Zd-actions (see [dJR]). It is the belief

of the author that dyadic equivalence is the analogue of Kakutani equivalence in

the Γ-context and Theorems 1 and 2 (which says that entropy is invariant under

dyadic equivalence) provide some evidence supporting this thesis. But, can the

analogy be established more firmly by, for example, establishing an equivalence

theorem like those in [ORW], [Ha] and [KR]? Attempting to do it seems worth-

while given the very simple structure of the group Γ (which includes the presence

of nice Følner sequences) and the possibility that this might shed some light on the

difficulties associated in lifting the restricted orbit equivalence theorem to other

(than Zd) groups. We will proceed to the details now. In §2 we give definitions
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and preliminary results, in §3 we prove Theorem 1 and in §4 we state formally and

prove the result of Stěpin’s on entropy mentioned above.

2. Basic Facts

A Γ-action T on (X,B, µ) is said to be free if µ({x ∈ X | T gx = x}) = 0 for

all g ∈ Γ and ergodic if the only sets in B invariant under each γi are trivial, i.e.

have µ-measure 0 or 1. It is easily seen that ergodicity is an invariant of dyadic

equivalence and that it does not imply freeness. We also notice that the sequence of

subgroups Γi, i > 0 is, in the terminology of Ornstein and Weiss [OW], a special

averaging sequence and, according to the results in that paper, the pointwise

ergodic theorem holds when we average along it.

The following Rokhlin-type result will be used repeatedly in the sequel. Its

proof is standard, so we give only a sketch of it.

Lemma 1. Let T be a free Γ-action and n ≥ 1. There exists a set Bn ∈ B
such that T gBn ∩ T hBn = ∅ for g, h ∈ Γn, g 6= h, and µ(∪g∈ΓnT

gBn) = 1.

Sketch of proof. The existence of B1 satisfying ∪g∈Γ1T
gB1 = X is given in

[H, p. 70]. To construct Bn proceed as follows. Assume that a set Bn−1 with the

properties of the statement has been constructed. Use the result for n = 1 to find

a set B with B ∩ T γnB = ∅ and µ(B ∪ T γnB) = 1. Without losing generality

we can assume that µ(A = B ∩ Bn−1) > 0. Enumerate the elements of Γn−1 as

g1, g2, . . . , gt. Now find a subset A1 of A, µ(A1) > 0, such that T γng1A1 ∩A1 = ∅.
This can be acheived because T is free. Proceed inductively to find Ai ⊂ Ai−1,

with µ(Ai) > 0 and T γngiAi ∩ Ai = ∅, i = 2, . . . , t. Again, freeness allows this.

Now one checks that the set At has T gAt ∩ T hAt = ∅ if g, h ∈ Γn, g 6= h. If

µ(∪g∈ΓnT
gAt) < 1 then carry out the above procedure in the Γn-invariant set

X\ ∪g∈Γn T
gAt – transfinitely if necessary, but at most countably many times.�

In this paper we are interested in a property of actions which is stronger than

ergodicity. We say that the Γ-action T is mixing if given any two sets A,B ∈ B
and ε > 0 one can find n0 ∈ N such that if n > n0 then | µ(A∩T gB)−µ(A)µ(B) |<
ε, for all g ∈ Γn\Γn0 . (Throughout this paper both the back and front slash

symbols will be used. The back slash will always denote set difference, while the

front slash will be used when writing factor groups.) Also, an eigenfunction of

T is a function f : X → C for which a group homomorphism λ : Γ → {−1, 1}
exists satisfying f(T g(x)) = λ(g)f(x) for all g ∈ Γ, a.e. x ∈ X, and T is said to

have continuous spectrum if its only eigenfunctions are the constants. It is very

easy to show that mixing implies ergodicity and continuous spectrum and that

non-mixing, ergodic actions exist. For a sample, assume that f is a non-constant

eigenfunction of the ergodic action T . We can assume without losing generality

that µ(P = {x ∈ X : Re f(x) > 0}) > 0. By the assumed ergodicity there exists i
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such that λ(γi) = −1. Therefore, for infinitely many n we can find g ∈ Γ\Γn with

λ(g) = −1. But for such g, µ(P ∩ T g(P )) = 0 6= µ(P )µ(P ) and T is not mixing.

Now assume that T is a Γ-action and that P is a partition of the space X. If

| dist (T gP ∨ P) − dist (P) × dist (P) |< ε for all g ∈ ΓM\ΓL (here L < M are

positive integers) we say that T is ε-mixing with respect to P on [L,M ]. The

following simple result will be used in the sequel.

Lemma 2. If Pi ↑ B is an increasing sequence of partitions of X, εi > 0

decreases to 0, Li ∈N, Li < Li+1, i > 0 and T is εi-mixing with respect to Pi on

[Li, Li+1] then T is mixing.

For the proof of Theorem 1 we will adopt and adapt the strategy devised by

Fieldsteel and Friedman in the proof of [FF, Thm. 1]. Thus, the action T of

Theorem 1 will be obtained as the limit of a sequence Ti of actions, where Ti is

constructed from Ti−1 by an orbit change. To facilitate the description of these

orbit changes and to explain the sense in which the limit above is taken, the

following notion will be useful. (Here T will be a Γ-action.) A cocycle α is a

measurable function α : X × Γ→ Γ which, for a.e. x ∈ X, satisfies

(i) α(x, ·) : Γ→ Γ is one-to-one and onto, and

(ii) α(x, gh) = α(x, g)α(T g(x), h) (this is called the cocycle condition).

Two actions T and S orbit-equivalent by φ determine a cocycle α by setting,

for a.e. x and all g ∈ Γ, α(x, g) = g if φ(T g(x)) = Sg(φ(x)). Conversely, given

the action T and a cocycle α one can define another Γ-action S, orbit equivalent

to T by an orbit equivalence that preserves orbits, by setting Sg(x) = T g(x) if

g = α(x, g). We say that α is the cocycle for the pair (T, S).

Lemma 3. If for a.e. x ∈ X the cocycle α for the pair (T, S) satisfies α(x, g) ∈
Γn for g ∈ Γn, all n, then T ∼ S.

Proof. With φ : X → X the identity map we get

φ(T g(x)) = T g(x) = Sg(x) = Sg(φ(x))

and by assumption g ∈ Γn if g ∈ Γn. �

Cocycles satisfying the condition of the lemma will henceforth be referred to as

dyadic cocycles.

If α and β are cocycles their composition α ◦ β is the cocycle defined by α ◦
β(x, g) = α(x, β(x, g)). Now assume that αi is a cocycle for each i > 0 and set

βj = αj ◦ αj−1 ◦ · · · ◦ α1. If β(x, g) = limj→∞ βj(x, g) exists for a.e. x ∈ X and

g ∈ Γ then β satisfies the cocycle condition and, for a.e. x, β(x, ·) : Γ → Γ is

injective but need not be surjective. However, the following simple result holds.

Lemma 4. If αi is a dyadic cocycle, i > 0, and limj→∞ βj = β (notation is as

in the preceding paragraph) then β is a dyadic cocycle.
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Proof. Plainly, that αi is dyadic for i > 0 implies that βj , j > 0, is too. Given

g ∈ Γ let n(g) be the smallest positive integer with g ∈ Γn(g). Then, for a.e. x and

for all j > 0 there exists gj ∈ Γn(g) with βj(x, gj) = g. Since Γn(g) is finite there

must be a g ∈ Γn(g) such that gj = g for infinitely many j. But βj → β so that,

in fact, gj = g for all but finitely many j. Thus, β(x, g) = g and β is a dyadic

cocycle. �

Now we can be more precise regarding the limit above. Starting with T0 we will

construct a sequence of dyadic cocycles αi, and Γ-actions Ti, i > 0, with αi the

cocycle for the pair (Ti−1, Ti) (alternatively, βj = αj ◦ · · ·α1 will be the cocycle

for the pair (T0, Tj)). The sequence βj will converge to a dyadic cocycle β and,

as described above, this will give rise to an action T dyadically equivalent to T0.

We will write that T = limi→∞ Ti. Thus, T is the pointwise limit of the sequence

Ti: for a.e. x and all g ∈ Γ, T gi (x) is eventually fixed. T g(x) is defined to be that

point.

3. Proof of Theorem 1

The iterative step of the proof of Theorem 1 is contained in the following lemma.

Before stating it, we make some comments on notation. If P = {p1,p2, . . . ,pt}
is a partition of X and A ⊂ X is measurable, by distA(P) we will mean the

distribution of the partition PA = {p1 ∩ A,p2 ∩ A, . . . ,pt ∩ A} on the set A

with conditional measure µA(·) = µ(·)/µ(A). In symbols, distA(P) = (µA(p1 ∩
A), µA(p2 ∩A), . . . , µA(pt ∩A)). The set {1, 2, . . . , t} is the index set of P . If P ′

is another partition of X with same index set, we identify the index set of P ∨P ′

with the set of pairs [i, j], 1 ≤ i, j ≤ t, in the obvious way. Finally, we will write

P(x) = i if x ∈ pi, so we can think of a partition as a random variable with values

in its index set. In particular, by the above identification, the random variable

(P ∨ P ′)(x) can be thought of as a pair of random variables [P(x),P ′(x)], each

with values in {1, 2, . . . , t}.

Lemma 5. Given a free, ergodic Γ-action T , a finite partition P = {p1,p2, . . . ,

pt} of X and ε > 0 there is L ∈ N, such that for all sufficiently large M a Γ-action

S can be constructed which is dyadically equivalent to T and ε-mixing with respect

to P on [L,M ].

Proof. Let η > 0, a small number, be given. We will see later that by making

it sufficiently small, the conclusion of the lemma is obtained.

(1) Let L be so large that for all x in a measurable set G, µ(G) > 1 − η2, the

distribution of P in the (P , T, L)-name of x is within η of dist(P). The ergodic

theorem guarantees the existence of such L. (The (P , T, L)-name of x is the

function N : ΓL → P given by N (g) = pi if T g(x) ∈ pi.)
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(2) Let M be so large that Mη > L.

(3) Use Lemma 1 to select a measurable set BM with T gBM ∩ T hBM = ∅,
g, h ∈ ΓM , g 6= h and µ(∪g∈ΓMT

gBM ) = 1.

(4) Let B be the set of x ∈ BM for which at least a fraction > (1− η) of the g in

ΓM has T g(x) ∈ G. By (1), µ(B) > (1− η)µ(BM ).

(5) Consider the factor group ΓM/ΓL. The symbol [g] will denote that element

of ΓM/ΓL containing g ∈ ΓM . Let c : ΓM/ΓL → ΓL be any function satisfying

c([e]) = e, where e denotes the identity element in the appropriate group. The

(finite) set of all such functions will be denoted by Ξ. Given one such c, the

mapping π : ΓM → ΓM given by π(g) = gc([g]) is a permutation, as the following

computation shows: π(π(g)) = π(gc([g]) = gc([g])c([gc([g])]) = gc([g])c([g]) = g.

(6) Let Q = {q1,q2, . . . ,qs} be the partition of B (see (4)) determined by

∨g∈ΓMT
gP . For i = 1, 2, . . . , s find a measurable, uniformly distributed map

fi : qi → Ξ. If x ∈ qi ⊂ B, we denote fi(x) by cx. Now fix i and [g] ∈ ΓM/ΓL.

The expression cx([g]), regarded as a function of x ∈ qi, is a random variable

with values in ΓL. Furthermore, by construction, if [g], [gh] ∈ ΓM/ΓL, [g] 6= [gh]

and [g], [gh] 6= [e] then cx([g]) and cx([gh]) are independent random variables. We

denote by πx the permutation of ΓM determined by cx as in (5).

(7) For x ∈ qi and g ∈ ΓM set αM (x, g) = πx(g). If on the other hand, g 6∈ ΓM
but T g(x) ∈ BM we set αM (x, g) = g and if x ∈ BM\B and g ∈ ΓM we will put

αM (x, g) = g. This partial function αM extends to a measurable bijective cocycle

α in the following way: if x ∈ X and g ∈ Γ are arbitrary, we set

α(x, g) = πx0(g0)v(x0, x1)πx1(g1)

where x0, x1 ∈ BM , g0, g1 ∈ ΓM , T g0(x) = x0, T
g1(T g(x)) = x1 and v = v(x0, x1)

is that element of Γ with T v(x0) = x1. As explained above, α determines a Γ-

action S which is orbit equivalent to T .

(8) We now check that the cocycle α is dyadic. We let x ∈ X be arbitrary and

consider three possibilities for g ∈ Γ: (i) if i > M and g ∈ Γi\ΓM then (with

notation as in (6)) α(x, g) = πx0(g0)v(x0, x1)πx1(g1) ∈ ΓMΓiΓM ⊂ Γi, (ii) if L <

i ≤ M and g ∈ Γi\ΓL then α(x, g) = πx0(g0)πx0(g0g) ∈ g0ΓLg0gΓL = gΓL ∈ Γi
and (iii) if g ∈ Γi, i ≤ L, then α(x, g) = πx0(g0)πx0(g0g) = g0c([g0])g0gc([g0g]) =

g. In all three cases, α(x, g) ∈ Γi if g ∈ Γi so that α is indeed dyadic. Lemma 3

implies that T ∼ S.

(9) Now fix qi ∈ Q and let g be an element of ΓM\ΓL. We say that h ∈ ΓM\ΓL
is “good” for g if

(i) gh 6∈ ΓL

(ii) | dist ThΓLqi(P)− dist (P) |< η

(iii) | dist TghΓLqi(P)− dist (P) |< η.
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It follows from (2) and (4) that a fraction larger than 1 − 4η of ΓM consists of

elements which are good for g.

(10) Again fix qi ∈ Q and g ∈ ΓM\ΓL, and let h be good for g and x be an element

of qi. Then πx(h) = hk, with k = cx([h]) ∈ ΓL uniformly distributed on qi. Since

Sh(x) = T hk(x) we get, using (9ii),

(i) | dist Shqi(P)− dist (P) |< η.

Also, by (9i), πx(gh) = ghk, with k = cx([gh]) ∈ ΓL uniformly distributed on qi.

Thus, the element of P containing Sgh(x) is the same one that contains T ghk(x)

and, therefore, (9iii) gives

(ii) | dist Shqi(S
gP)− dist (P) |< η.

(11) We now want to approximate dist Shqi(P∨S
gP). With the hypothesis of (10)

still standing, we have that (recall the comments regarding notation that preceed

the statement of the lemma)

(P ∨ SgP)(Sh(x)) = [P(Sh(x)), SgP(Sh(x))] = [P(Sh(x)),P(Sgh(x))]

= [P(T hcx([h])(x)),P(T ghcx([gh])(x))].

Recalling (see (9)) that [h] 6= [gh] and [h], [gh] 6= [e] we use (6) to conclude that

cx([h]) and cx([gh]) are independent. Thus,

(i) dist Shqi(P ∨ S
gP) = dist ThΓLqi(P)× dist TghΓLqi(P).

(12) Combining (11i) with (10i) and (10ii) we obtain

| dist Shqi(P ∨ S
gP)− dist (P)× dist (P) |< 6η.

(13) Adding over qi, i = 1, 2, . . . , s and over the appropriate h’s and using (3) and

(9) we conclude that

| dist (P ∨ SgP)− dist (P)× dist (P) |< 10η.

Thus, if we take η smaller than ε/10 the conclusion of the lemma will hold. �

We want to single out two features of the construction above that will be used in

the conclusion of the proof of Theorem 1. Firstly, it is an immediate consequence

of (8iii) that for a.e. x, T g(x) = Sg(x) for all g ∈ ΓL. Secondly, since TΓM (x) =

SΓM (x) for a.e. x ∈ X (see (8)), given any partition R of X, the frequencies of

the atoms of R in the (R, T,M)-name of x are equal to their frequencies in its

(R, S,M)-name.
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Proof of Theorem 1. We will use Lemma 5 repeatedly. Let Pi ↑ B and εi ↓ 0.

Apply Lemma 5 to T0, P1 and ε1 to get a Γ-action T1, and natural numbers

L1 < L2 with T1 ε1- mixing with respect to P1 on [L1, L2]. Here, we make sure L2

is so large that a fraction > (1−η2
2) of X is covered with points whose (P2, T0, L2)-

name has distribution of P2 within η2 of dist (P2), where η2 is the value of η in

Lemma 5 that corresponds to ε2. By the comments in the preceding paragraph,

the same is true of the (P2, T1, L2)-names of those points and for all g ∈ ΓL2 ,

T g0 = T g1 a.e.

Now proceed inductively. Assume that natural numbers L1 < L2 < . . . < Li+1

and Γ-actions Tj, 1 ≤ j ≤ i, have been found such that Tj is εj-mixing with respect

to Pj on [Lj , Lj+1], T
g
j = T gj−1 a.e. for g ∈ ΓLj and Lj+1 is so large that at least

1 − η2
j+1 of X is covered by points whose (Pj+1, Tj , Lj+1)-name has distribution

of Pj+1 within ηj+1 of dist (Pj+1), where ηj+1 is the value of η in Lemma 5 that

corresponds to εj+1. Then, further application of that lemma with Ti, εi+1 and

Pi+1 produces a Γ-action Ti+1 and a natural number Li+2, Li+1 < Li+2, with Ti+1

εi+1-mixing with respect to Pi+1 on [Li+1, Li+2] and T gi+1 = T gi for all g ∈ ΓLi+1.

Of course Li+2 is chosen large enough to enable us to continue the induction.

What we have found is an increasing sequence of natural numbers Li and a

convergent sequence Ti of Γ-actions (whose limit T coincides with Ti on ΓLi) such

that, for 1 ≤ j ≤ i ≤ k, Tk — and consequently T — is εi-mixing with respect

to Pj on [Li, Li+1]. By choice of Pi and εi it follows (Lemma 2) that T is mixing

while Lemma 4 guarantees that T0 ∼ T . �

4. Entropy

In this section we prove the following theorem due to Stěpin [S2] which says

that, as in the case of even Kakutani equivalence, entropy is stable with respect

to dyadic equivalence. Formally:

Theorem 2. If T and S are Γ-actions and T ∼ S then h(T ) = h(S).

The proof of Theorem 2 given in [S2] is somewhat indirect, relying on a Sinai-

type result (an action of positive entropy has Bernoulli factors of full entropy) for

periodic subgroups of R/Q. Here we give a direct proof which depends only on the

usual name-counting characterization of entropy and on constructions like those of

the previous section. Recall that for a Γ-action T one defines h(T ) = suph(T,P),

where h(T,P) = limn→∞
1
2nH(∨g∈ΓnT

gP) is the entropy of T with respect to

P , and the supremum is taken over all finite partitions P of X. The Shannon-

McMillan-Breiman theorem for Γ-actions [OW] implies that h(T,P) is given by

the infimum of all h′ ≥ 0 having the property that for every ε > 0, if n ∈ N is

sufficiently large, one can cover at least 1 − ε of X in measure with fewer than

22n(h′+ε) (T,P , n)-atoms. Now assume that T and S are Γ-actions on the space

(X,B, µ), T ∼ S, that P is a finite partition of X, and that 0 < l ∈ N. Let
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Bl ∈ B be such that SgBl ∩ ShBl = ∅ for g, h ∈ Γl, g 6= h and µ(∪g∈ΓlS
gBl) = 1

(Lemma 1). The following two assignments define a new Γ-action Sl on X:

(a) if x ∈ Bl and g ∈ Γl then (Sl)
g(x) = T g(x),

(b) if x, x′ ∈ Bl and Sg(x) = x′ then we set (Sl)
g(x) = x′.

That S and T are dyadically equivalent implies that S and Sl are too. Let α be

the cocycle for the pair (S, Sl). Then, for a.e. x ∈ Bl, the map α(x, ·) restricted

to Γl is a permutation. Call Q = {q1,q2, . . . ,qt} that partition of Bl obtained

by refining ∨g∈ΓlS
gP | Bl (this is the trace of ∨g∈ΓlS

gP on Bl) according to the

permutation of Γl used to get Sl from S. That is, two elements x, x′ of Bl will

be in the same atom of Q exactly when they have the same (P , S, l)-name and

α(x, ·)|Γl = α(x′, ·)|Γl . (Alternatively, x and x′ are in the same atom if and only

if they have the same (P , S, l)-name and the same (P , Sl, l)-name.) Finally, define

Pl to be the partition of X whose atoms are the sets Sgqi, g ∈ Γl, qi ∈ Q. The

defining properties of Bl guarantee that Pl is indeed a partition, and it is easily

seen that Pl refines P . The following equalities also follow from the construction

of Pl: Pl = ∨g∈ΓlS
gPl = ∨g∈Γl(Sl)

gPl. Indeed, if g, h ∈ Γl and p,q ∈ Pl (so that

p = Skqi, q = Smqj) then Sgp ∩ Shq = Sgkqi ∩ Shmqj is empty if i 6= j or if

i = j and gk 6= hm. Of course, if i = j and gk = hm then Sgp∩Skq = Sgkqi ∈ Pl
because gk ∈ Γl. This proves the first equality. To get the second one, it suffices to

recall that, by construction, if x, x′ ∈ qi then α(x, ·)|Γl = α(x′, ·)|Γl and to notice

that this condition implies that, for g ∈ Γl, S
gqi = (Sl)

hqi for some h ∈ Γl. It

follows from these observations that for n > l

(i) dist (∨g∈ΓnS
gPl) = dist (Pl ∨ ∨

i=n
i=l+1S

γiPl)

and

(ii) dist (∨g∈Γn(Sl)
gPl) = dist (Pl ∨ ∨

i=n
i=l+1(Sl)

γiPl).

(Recall from the Introduction that γi denotes that element of Γ having every

coordinate except the ith one equal to 0.)

We wish to show that h(S,Pl) = h(Sl,Pl). To that end, assume that n > l and

that x, x′ ∈ X have the same (Pl, S, n)-name. We prove that for l + 1 ≤ i ≤ n,

(Sl)
γi(x) and (Sl)

γi(x′) are in the same atom of Pl. Fix such i, and consider the

following facts:

(a) Because x, x′ are in the same atom of Pl, there exist x0, x
′
0 ∈ qr ∈ Q and a

unique g ∈ Γl such that x0 = (Sl)
g(x) and x′0 = (Sl)

g(x′).

(b) Since Sγi(x) and Sγi(x′) are in the same atom of Pl (and given that S ∼ Sl),
there exist x1, x

′
1 ∈ qs ∈ Q and h, h′ ∈ Γl such that (Sl)

h(x1) = (Sl)
γi(x) and

(Sl)
h′(x′1) = (Sl)

γi(x′).
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(c) Since x and x′ have the same (Pl, S, n)-name there is a unique k ∈ Γi such

that x1 = Sk(x0) and x′1 = Sk(x′0); but then, by construction, x1 = (Sl)
k(x0) and

x′1 = (Sl)
k(x′0).

Now (a), (b) and (c) together give that (Sl)
γi(x) = (Sl)

ghk(x) and (Sl)
γi(x′) =

(Sl)
gh′k(x′). Thus, γi = ghk = gh′k so that h = h′ and (Sl)

γi(x), (Sl)
γi(x′) ∈

(Sl)
hqs, an atom of Pl. Similarly, if x, x′ are in the same atom of Pl but have

different (Pl, S, n)-names then they have different (Pl, Sl, n)-names. Combining

these facts with (ii) we get that

dist (∨g∈ΓnS
gPl) = dist (∨g∈Γn(Sl)

gPl)

and this certainly implies, because n > l is arbitrary, that h(S,Pl) = h(Sl,Pl).
We now use this construction to give the

Proof of Theorem 2. Let ε > 0, P a finite partition of X, and a positive integer

l be given. Construct Sl and Pl as in the preceding paragraph. Let n > l be

so large that at least 1 − ε in measure of X can be covered with a collection of

(T,Pl, n)-atoms whose cardinality is less than 22n(h(T,Pl)+ε). Let A be one of the

atoms in that collection. We claim that the number an of (Sl,Pl, n)-names in A is

bounded by the solution to the recurrence relation (i) an = a2
n−12

n−1, n > l. We

see this as follows: the value of (Sl)
γn(x) and the Sl-Γn−1-orbits of x and T γn(x)

unambiguously specify the (Sl,Pl, n)-name of x. There are 2n−1 choices for the

first and ≤ an−1 choices for each of the second and third, so the claim holds.

Because Sl and T coincide on Γl we have al = 1. The solution to (i) subject to

this initial condition is given by an = 2bn , where

bn =
n−l−1∑
k=1

k2n−l−k−1 + (2n−l − 1)l .

It follows that at least 1− ε in measure of X can be covered with fewer than

22n(h(T,Pl)+ε)2bn = 22n(h(T,Pl)+ε+
1

2l
(
∑n−l−1
k=1

k

2k+1 +(1− 2l

2n )l))

(Sl,Pl, n)-atoms. But the last quantity is no larger than 22n(h(T,Pl)+ε+f(l)) where

f(l) =
1

2l

(
∞∑
k=1

k

2k+1
+ l

)
=
l + 1

2l
.

Thus, by the name-counting characterization of entropy,

h(S,Pl) = h(Sl,Pl) ≤ h(T,Pl) + f(l)
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where liml→∞ f(l) = 0. To finish the proof, let Pi ↑ B, an increasing generating

sequence of finite partitions, and li ↑ ∞, an increasing sequence of positive integers,

be given. Then

h(S) = lim
i→∞

h(S, (Pi)li) = lim
i→∞

h(Sli , (Pi)li) ≤ lim
i→∞

(h(T, (Pi)li) + f(li)) = h(T ) .

By symmetry h(T ) ≤ h(S) and the theorem follows. �
We close by raising a couple of questions related to the ideas in this paper.

First is the question of whether one can topologize the class of Γ-actions with a

‘size’ (see [R]) on orbit changes so that the dyadic equivalence class of an action T

is the closure of the set of its coboundary changes. Secondly, and more along the

lines of this paper, is the question of whether stronger statistical behavior exists

in all appropriate equivalence classes, e.g. are there actions of completely positive

entropy in all positive entropy equivalence classes?
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