Acta Math. Univ. Comenianae 43
Vol. LXIV, 1(1995), pp. 43-46

A NOTE ON TOPOLOGICAL D-POSETS OF FUZZY SETS

V. PALKO

Abstract. Kopka and Chovanec in [KCH] defined the di[erknce poset (D-poset)
as a partially ordered set with a partial di [erence operation. We show in this paper
that every di Lerence operation on a dense subset of [0] 1[is continuous with respect
to the usual topology of the real line. We prove also some consequences for the
continuity of the di Lerknce operation on D-posets of fuzzy sets.

Di [erknce posets were defined by Kdpka and Chovanec in [KCH] and they are
investigated in many recent papers (see for example [DR], [NP], [P] and [RB]).

Definition 1. Dilerence poset (briefly D-poset) is a couple (D, L), Where
D is a partially ordered set with the largest element 1 and the dilerknce [islthe
partial operation, which defines for every a,b [, a < b, an element b [adn such
a way that the following conditions are satisfied:
)b Cakhb
ii)b C(ICA)=a
iii)ifasb<c, thenc [h¥c [Cahnd (c [Ca) [C(cl[h=b [Al

Special cases of D-posets are orthomodular posets and another example are
D-posets of fuzzy sets defined in [K]. D-poset (F, [)i3 a D-poset of fuzzy sets,
if elements of F are functions defined on a nonempty set X with values in [Q] 1]
and the largest (smallest) element of F is the function identically equal to 1 (0).
Moreover, the partial ordering of F is given via: for f,g CEl, f < g, if f(t) < g(t)
for every t [CX.

The continuity of [Cwith respect to various topologies was studied in [P]. There
was also introduced the notion of a topological D-poset. If a D-poset D with a
topology T forms a topological space (D, T) and T x T is the usual product
topology, let Ty be the relative topology on the set G = {(a,b) O x D; a < b}
induced by T < T.

Definition 2. (D, [LTI) is called a topological D-poset, if (G, Tg) -
(D, T) is a continuous mapping.
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We use the following notation. For X, X, [CH, X, — X denotes lim X, = X
n - oo

and x, [X@x, [X)Imeans that x5, — X and Xp is increasing (decreasing).
Let F be a dense subset of [0 1L containing 0 and 1. Let F be ordered by the
standard order of real numbers and let (F, [)_He a D-poset.

Lemma 3. Let X, y, X, [CEl. Then
a) Xn [ XXy impliesy [ X [y Ix]
b) xn X, X=X, <y impliesy [xX] [y Ixl

Proof. a) Obviously, y X} is decreasing. If y [xJ} would not converge to
[X] then there exists p [CH such that y [ X} > p >y [x]1 This implies
y M X)) =x, <y [pky [y [X)]= X, a contradiction.
b) Clearly, y [Xqlis increasing. If it does not converge to y X Ithen there exists
p CH, y X4 <p <y [X]land this implies x, >y [p¥ X, a contradiction. [

<

A simple consequence of this lemma is
Lemma 4. If Xn, X,y [FL, Xq - X, Xn <Yy, X<V, theny [XJ - y [X]

Lemma 5. Let X, y, yn CFEl. Then
a) X<y, [yimplies y, X1y Ix]
b) yn Ly 2 x implies y, xXJLy Ixl1

Proof. a) We have 1 [y ¥k 1 [yd<1 [xhnd, by Lemma 3a), 1 [yd 1Tyl
Then by Lemma 3b), (1 [ LI Lyd) = yn XA LA LY)I=y [X]

b) We have 1 [yd <1 Lyk 1 [xdand, by Lemma 3, (1 IxX) (@ [yd) =
yn DAL CAICYI=y X L1

An immediate consequence is
Lemma 6. If X,y,yn [CH, ynh - Y, X<y, X<VYpn, theny, [ X1 y X1

Lemma 7. LetX, Y, Xn, Yn CFEl, X4 <Yyn, X <Yy. Let arbitrary of the following
conditions be satisfied:

a) Xxn [y [y, 1

b) xn X, Wn [y 1

c) Xn (X, yn [y 1

d) xn XV, Ly

Theny, [Xd - y X1

Proof. a) In this case y, [Xd is decreasing and y, [ XJ =y [X1If it does not
converge to y [ X]lthere exist p, ¢ [CFl such that y, [ XJ >p >q >y [x]Then
yn LA [Xd) = Xn <yn [pK yn L4k yn [ [X). Since Xn - x and, by
Lemma 6, yn [pl- y [plyn L1 y [qlyn LU LX) - y L LX) = X, we
obtain x <y [Cpky [Cg¥x x, a contradiction.

b) The case x =y is trivial. Let us assume X <y. Theny, =y [Xfor n = nj.
Obviously, yn [Xd is increasing, yn [ Xd <y [X1If it does not converge toy X1

=]
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then there again exist p, ¢ [CH such that y, [ XJ < p <q <y [l Then for

N =no, yn LVh CXd) = Xn >y [pF yn L P yn LX) Hence, by Lemma 6,
x=y [pry gy CHLX)]=X, a contradiction.

c) Let us assume the case x =y. Then 0 <y, [XJ < x [XJ. Since x [ xXd -
x X0, we obtainy, [XJ -~ 0=y [x1
If X <y, we can assume X < yn. Then we have X, < X <y, <Yy. This implies
y [ Xd =y, [Xd =y, [X1Since both of y [X] and y, [ Xtonverge toy [X]Iwe
obtainy, [xXd - y X1

d) If x =y, theny, [ XEy, [XJ=0andy, [ xX1- 0impliesy, [xXd - 0.
If X <y, wecanassume X < Xp <y <Yynh Theny, [ XI=y, [xX] =y [Xl.
Immediately, yn [Xd - y [xXJLemma is proved. 1

Theorem 8. If [1d an arbitrary diLerknce operation on F and Xn, Yn, X,
y [H, then Xn > X, ¥n - YV, X =<V, Xy < Y, implies y, [ X} - y [X]i.e.
(F, 1), where T is the topology induced by the standard topology on the real
line, is a topological D-poset.

Proof. If y, X would not converge to y [X] then there would exist sub-
sequences Xn,, Yn,., €ach of them increasing or decreasing, such that x,, - X,
Yn — Y andyn, X4, [y Ix1This is a contradiction with Lemma 7. 1

Previous result gives some simple consequences for the continuity of di [erence
operations on some D-posets of fuzzy sets.

In the following, (F, D)denotes a D-poset of fuzzy sets and X is the domain of
elements of F.

Definition 9. We say that the dilerknce operation [ah F is coordinate
dependent, if for every f1, f5, g1, g2 CFEland t [X, f1(t) = f2(t), gu(t) = g2(t),

f1 < g1, f2 = g2 implies (g1 CHD(L) = (g2 CEA(D).

Example. Let F = [ 19 and let for every t [CX a continuous strictly increas-
ing function u¢ : M1 R, uy(0) = 0, be given. Let us define the dilerknce
operation [ah F in the following way: for f, g [CH, f < g, (g CE)({) =
ug L (ue(F (1)) — ue(g(t))), t CX. Then [Cislcoordinate dependent. 1

Let T, be the topology of pointwise convergence on F, i.e. a net f of elements
of F converges to f [CEl i (T, (t) converges to f(t) for every t [X.

For every f, g [H, let us define function ¥ [glas follows: (f Cg)(t) =
max{f(t), g(t)}.

Theorem 10. Let f Cgl[H for every f, g [CH. Let for every t [X the set
{f(t); f CH} be dense in [@ 1[1Then for every coordinate dependent di [erence
operation L (F, [LT)c) is a topological D-poset.

Proof. Let us prove the continuity of [y contradiction. If [CisInot continuous
in (fp,go) [Q, then there exist € > 0 and ty [X such that for every n [N there
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exist fn, gn [H, f < gn such that, [fn(to) — fo(to)| < &, 19n(to) — go(to)| < §
and |(gn CFH)(to) — (90 [ED(to)| = €.

Let us denote Fo = {f(tp); f CFI}. If X,y [Fh, x <y and x = f(tp), y = g(to),
where f, g [CF, then g(tp) = (f Cg)(ty) and f < f [gl So, if x = f(ty), then we
can choose g [El, g = f such that y = g(to).

Let us define the dilerence operation [, bn the set Fo = {f(ty); f [CH} in
the following way. For X, y [CEb, X <V, let us define y L, X = (g CEN(to), where
x = f(to), y = g(to), f, g [H, ¥ < g. Since [islcoordinate dependent, [, Js
well defined. The verification of the di Lefknce properties of L, 1s a routine.

Then we have fr(to) — fo(to), 9n(to) — do(to) and gn(to) LeoTn(to) [golto) Lol

fo(to), what is a contradiction to the Lemma 7. Theorem is proved. 1
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