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POSITIVE SOLUTIONS OF VOLTERRA

INTEGRO–DIFFERENTIAL EQUATIONS

YUMEI WU

Abstract. Sufficient conditions for existence of positive solutions of integro-dif-
ferential equations of Volterra type are given and existence of solutions with zero

crossing (0,+∞) of integro-differential equations is investigated.

Introduction

In this paper, we investigate existence of positive solutions and existence of zero

points of solutions on (0,∞) of the Volterra integro-differential equations

(1) ẋ(t) +

∫ t

0

P (t, s)x(g(s)) ds = 0 , t ≥ 0 .

The functions P ∈ C(R+ × R+,R+) and g ∈ C(R+,R+). The function g satisfies

the following conditions:

g is nondecreasing, g(t) < t for t ∈ (0,∞) and

lim
t→∞

g(t) = lim
t→∞

(t− g(t)) = +∞ .
(2)

We present some sufficient conditions such that Eq. (1) only has solutions with

zero points in (0,∞). Moreover, we also obtain some conditions such that Eq. (1)

has a positive solution on [0,+∞).

The motivation of this work comes from the work of Ladas, Philos and Sfi-

cas [5]. They discussed the oscillation behavior of Eq. (1) when P (t, s) = P (t− s)
and g(t) = t. They obtained a necessary and sufficient condition under which

every solution of the equation is positive on [0,+∞). Note that Eq. (1) is not a

generalization of the equation in [5] because of the condition g(t) < t, which we

require here.

From (2), we see that the function g is nondecreasing and g(0) = 0, so, Eq. (1)

has a lag with a finite fixed point t = 0. Karakostas [4] has studied linear delay

differential equations with delays having fixed point and obtained that solutions
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of such equations are well defined by giving an initial point instead of an initial

function as for general delay differential equations.

By a solution of Eq. (1), we mean that x ∈ C1(R+,R) and satisfies Eq. (1). For

the fundamental theory of integro-differential equations, we refer to [1], and for

some related work, we refer to [3].

Main Results

Before giving the main results, we present some lemmas which will be used in

the proofs of theorems.

Lemma 1. The function g has the properties

g(g(t)) ≤ g(t), t > 0 ,

and

lim
t→+∞

g(g(t)) = lim
t→+∞

(t− g(g(t)) = +∞ .

Proof. By assumption (2), g is nondecreasing, and

g(t) < t for t > 0 .

So we have

g(g(t)) ≤ g(t), for t > 0 .

Moreover, by this inequality, we can see easily that

t− g(t) ≤ t− g(g(t)), t > 0 ,

taking limit on both sides, we obtain

+∞ = lim
t→+∞

(t− g(t)) ≤ lim
t→+∞

(t− g(g(t))) .

By g(t)→∞ as t→ +∞, it is obvious that g(g(t))→ +∞ as t→ +∞. �

Lemma 2. Assume that

lim inf
t→+∞

∫ t

0

P (t, s) ds 6= 0 .

Then we have

lim
t→+∞

∫ t

g(t)

∫ s

0

P (s, u) du ds = lim
t→+∞

∫ t

g(g(t))

∫ s

0

P (s, u) du ds = +∞ .
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Proof. Since P (t, s) ≥ 0, for t ∈ R+, s ∈ R+, by assumption, we have

lim inf
t→+∞

∫ t

0

P (t, s) ds > 0 .

On the other hand, by mean value theorem, we have

∫ t

g(t)

∫ s

0

P (s, u) du ds = (t− g(t))

∫ t

0

P (t, s) ds, t > 0 ,

where t ∈ [g(t), t]. Thus t→ +∞ as t→ +∞. Then it is clear that

lim
t→+∞

∫ t

g(t)

∫ s

0

P (s, u) du ds = +∞ .

Since ∫ t

g(t)

∫ s

0

P (s, u) du ds ≤

∫ t

g(g(t))

∫ s

0

P (s, u) du ds ,

we have

lim
t→+∞

∫ t

g(g(t))

∫ s

0

P (s, u) du ds = +∞ .

�

Let us see the main theorem.

Theorem 1. Assume that

lim inf
t→+∞

∫ t

0

P (t, s) ds 6= 0 .

Then every solution of Eq. (1) has, at least, one zero point on (0,+∞).

Proof. For the sake of contradiction, assume that there exists a positive solu-

tion x on (0,+∞). For the case that there is a negative solution y, we simply let

x = −y. So here we only consider the case x(t) > 0, for t ∈ (0,+∞). Then we see

that ẋ(t) ≤ 0, t ≥ 0, so x is a nonincreasing function on [0,+∞). Thus we have

0 < x(t) ≤ x(g(t)), for t > 0 .

Dividing both sides of Eq. (1) by x(t), we obtain

ẋ(t)

x(t)
+

∫ t

0

P (t, s)
x(g(s))

x(t)
ds = 0 , t > 0 .
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Hence, by using the facts that x is noincreasing an g is nondecreasing, we have

ẋ(t)

x(t)
+
x(g(t))

x(t)

∫ t

0

P (t, s) ds ≤ 0 , t > 0 .

Integrating both sides of this inequality from g(t) to t, we have

ln
x(t)

x(g(t))
+

∫ t

g(t)

x(g(s))

x(s)

∫ s

0

P (s, u) du ds ≤ 0 , t > 0 .

a Setting W (t) := x(g(t))
x(t) , it is clear that W (t) ≥ 1, t > 0.

So by the last inequality, we have∫ t

g(t)

W (s)

∫ s

0

P (s, u) du ds ≤ lnW (t), t > 0 .

Let ` := lim inft→+∞W (t), then 1 ≤ ` ≤ +∞. Now we divide our discussion into

the following two cases: α) ` 6= +∞, β) ` = +∞.

α) ` is finite.

There exists a sequence (tn) such that

lim
n→+∞

tn = +∞, and lim inf
t→+∞

W (t) = lim
n→+∞

W (tn) = ` .

Thus

` · lim inf
t→+∞

∫ t

g(t)

∫ s

0

P (s, u) du ds ≤ lim inf
t→+∞

∫ t

g(t)

W (s)

∫ s

0

P (s, u) du ds

≤ lim inf
t→+∞

lnW (t) = ln ` .

On the other hand, since g(t) is nondecreasing and P (s, u) is nonnegative, so it

follows

lim inf
t→+∞

∫ t

g(t)

∫ s

0

P (s, u) du ds = lim
t→+∞

∫ t

g(t)

∫ s

0

P (s, u) du ds .

Therefore we have

lim
t→+∞

∫ t

g(t)

∫ s

0

P (s, u) du ds ≤
ln `

`
≤

1

e
.

By Lemma 2, we see that it is a contradiction.

β) ` = +∞.

Thus

(3) lim
t→+∞

x(g(t))

x(t)
= +∞ .
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Integrating (1) on both sides from g(g(t)) to g(t), we have

x(g(t))− x(g(g(t))) + x(g(g(t)))

∫ g(t)

g(g(t))

∫ s

0

P (s, u) du ds ≤ 0, t > 0 .

Dividing both sides of this inequality by x(g(g(t))), we have

(4)
x(g(t))

x(g(g(t)))
− 1 +

∫ g(t)

g(g(t))

∫ s

0

P (s, u) du ds ≤ 0, t > 0 .

And by (3), we know

lim
t→+∞

x(g(t))

x(g(g(t)))
= lim
t→+∞

x(t)

x(g(t))
= 0 .

Taking limit on both sides of inequality (4), in view of Lemmas 1 and 2, we have

a contradiction.

The proof is complete. �

Example 1. Consider the integro-differential equation

ẋ(t) +

∫ t

0

−2s

αt2
x(αs) ds = 0 , t > 0 ,

where α ∈ (0, 1). Thus, we see that g(t) = αt, g(g(t)) = α2t, g satisfies all

conditions in Theorem 1. It is easy to check that x(t) = t is a solution of the

equation, and x(t) has no zero point in the interval (0,+∞). It is clear that the

function P (t, s) is negative. Thus P does not satisfy the conditions in Theorem 1.

We can also see that Eq. (1) could have positive solution when the kernel P (t, s)

is negative no matter what the function g is. In above example, even if α takes

value in the interval [1,+∞), x(t) = t is always a solution of the equation.

Example 2. Consider the following integro-differential equation

(5) ẋ(t) +

∫ t

0

P (s)x
( s

2

)
ds = 0 , t > 0 ,

where P ∈ C(R+,R+).

As we can see, this integral equation is equivalent to the following second order

functional differential equation

(6) ẍ(t) + p(t)x

(
t

2

)
= 0 , t > 0

if we only consider the solutions which belong to C2(R+,R) and satisfy the initial

condition ẋ(0) = 0. The oscillation of this equation has been studied in [2] where
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sufficient conditions have been established. Thus if we have (see Corollary 2.4

in [2]), ∫ ∞
tαP (t) dt = +∞, for some α ∈ (0, 1) ,

then every solution of Eq. (6) with the condition ẋ(0) = 0 is oscillatory. So for

Eq. (5), if the function P (t) is nonnegative and no identically zero on [0,+∞),

then all the conditions in Theorem 1 hold. Hence, every solution of Eq. (5) has,

at least, zero point on (0,+∞).

From the proof of Theorem 1, we can have the following results without giving

further proof.

Corollary 1. Assume that

lim inf
t→+∞

∫ t

0

P (t, s) ds 6= 0 .

Then the integro-differential inequality

(7) ẋ(t) +

∫ t

0

P (t, s)x(g(s)) ds ≤ 0 (or ≥ 0), for t > 0 ,

does not have positive (or negative) solutions on [0,+∞).

Corollary 2. Assume that

(8) lim
t→+∞

∫ t

g(t)

∫ s

0

P (s, u) du ds > 1 .

Then every solution of Eq. (1) has, at least, one zero in (0,+∞) and every solution

of inequality (7) is not positive (or negative) on [0,+∞).

Proof. For Corollary 2, we can see that in the proof of Theorem 1, if x(t) > 0

on (0,+∞), when ` is finite, then we have

lim
t→+∞

∫ t

g(t)

∫ s

0

P (s, u) du ds ≤
1

e

which contradicts (8). When ` = +∞, in view of (4), we have

lim
t→+∞

∫ g(t)

g(g(t))

∫ s

0

P (s, u) du ds ≤ 1 .

Since g(t)→ +∞ as t→ +∞, it follows

lim
t→+∞

∫ g(t)

g(g(t))

∫ s

0

P (s, u) du ds = lim
t→+∞

∫ t

g(t)

∫ s

0

P (s, u) du ds ≤ 1 ,

which contradicts (8). Thus the result of Corollary 2 holds. �
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Note that the condition (8) is much weaker than the condition in Theorem 1.

We can see this from Lemma 2.

Consider the following Volterra integro-differential equation

(9) ẋ(t) +

∫ t

0

f(t, s, x(g(s)))ds = 0 , t > 0

and the inequality

(10) ẋ(t) +

∫ t

0

f(t, s, x(g(s)))ds ≤ 0 (or ≥ 0), t > 0 .

The function f ∈ C(R+×R+×R,R) satisfies the following conditions: f(t, s, v)v >

0 for s ≤ t, v ∈ R, v 6= 0 and

f(t, s, 0) = 0, |f(t, s, v)| ≥ p(t, s)|v|, v ∈ R, t, s ∈ R+,

where P (t, s) is as the function appeared in Eq. (1) and satisfies all the conditions

mentioned at the beginning of this paper.

It follows a similar way to prove the following results.

Theorem 2. Assume that

lim inf
t→+∞

∫ t

0

P (t, s) ds 6= 0 .

Then every solution of Eq. (9) has, at least, one zero point on (0,+∞) and no

solution of inequality (10) is positive (or negative) on (0,+∞).

As a matter of fact, if there exists a positive solution x of Eq. (9), then by

Eq. (9), we have

ẋ(t) +

∫ t

0

P (t, s)x(g(s)) ds ≤ ẋ(t) +

∫ t

0

f(t, s, x(g(s)))ds = 0 , t > 0 .

Then the rest proof can follow the one that we have done in the proof of Theorem 1.

It has similar steps if we have a negative solution x to Eq. (9). Indeed, if x(t) < 0,

t ∈ (0,+∞), we have

ẋ(t) +

∫ t

0

P (t, s)x(g(s)) ds ≥ ẋ(t) +

∫ t

0

f(t, s, x(g(s)))ds = 0

for t > 0. Let x(t) = −y(t), then y(t) > 0, t > 0, it follows

ẏ(t) +

∫ t

0

P (t, s)y(g(s)) ds ≤ 0 , t > 0 .

In the following, we investigate existence of positive solutions of Eq. (1) and

Eq. (9).
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Theorem 3. Assume that∫ +∞

0

∫ s

0

P (s, u) du ds ≤
1

e
.

Then Eq. (1) has a positive solution on [0,+∞).

Proof. For the convenience, we set

(11) x(t) = exp
(∫ t

0

λ(u) du
)
, t ≥ 0 ,

where x is a solution of Eq. (1). By this form, from Eq. (1), we have the following

integral equation

(12) λ(t) = −

∫ t

0

P (t, s) exp
(
−

∫ t

g(s)

λ(u) du
)
ds, t > 0 .

If we can prove that Eq. (12) has a solution λ(t), then by the form of x(t) in (11),

we see that Eq. (1) has a positive solution on [0,+∞).

Construct a sequence as follows

λ0(t) = −e

∫ t

0

P (t, s) ds,

λ1(t) = −

∫ t

0

P (t, s) exp
[∫ t

g(s)

−λ0(u) du
]
ds,

. . .

λn(t) = −

∫ t

0

P (t, s) exp
[∫ t

g(s)

−λn−1(u) du
]
ds.

Using the induction, we can prove that λn(t) is a nondecreasing sequence, namely

λn(t) ≥ λn−1(t), n = 1, 2, . . .

and we also have

−e

∫ t

0

P (t, s) ds ≤ λn(t) ≤ 0 , t ∈ [0,+∞),

for n = 1, 2, . . . .

Using the monotone convergence theorem, we know that there exists a function

λ(t) such that λn(t)→ λ(t) as n→ +∞, and

lim
n→+∞

∫ t

g(s)

λn(u) du =

∫ t

g(s)

λ(u) du, s ≤ t.

Hence

lim
n→+∞

∫ t

0

P (t, s) exp
[∫ t

g(s)

−λn(u) du
]
ds =

∫ t

0

P (t, s) exp
[∫ t

g(s)

−λ(u) du
]
ds, t > 0 .

It concludes that λ(t) is a solution of Eq. (12). �
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Theorem 4. Assume that the function f(t, s, v) is nonincreasing in v and

f(t, s, v)v > 0, v 6= 0, and∫ +∞

0

∫ t

0

f
(
t, s,

1

e

)
ds dt ≤

1

e
.

Then Eq. (9) has a positive solution on [0,+∞).

Proof. We can prove this result by a similar way as we have done in the proof

of Theorem 3. Set

x(t) = exp
(∫ t

0

λ(s) ds
)
, t ≥ 0 ,

where x is a solution of Eq. (9). Then by Eq. (9) and the form of x, we have the

integral equation

(13) λ(t) = −

∫ t

0

f(t, s, exp[
∫ g(s)
0

λ(u) du])

exp[
∫ t
0
λ(u) du]

ds, t ≥ 0 .

If Eq. (13) has a solution λ(t) on [0,+∞), then it follows that Eq. (9) has a positive

solution on [0,+∞). Construct a sequence as follows

λ0(t) = −e

∫ t

0

f
(
t, s,

1

e

)
ds,

λn(t) = −

∫ t

0

f(t, s, exp[
∫ g(s)
0 λn−1(u) du])

exp[
∫ t
0 λn−1(u) du]

ds,

for t ≥ 0, n = 1, 2, . . . .

In view of the assumption, we see that λn(t) ≤ 0, for t ≥ 0, n = 1, 2, 3, . . . .

Furthermore by using the induction, we can prove that

−e

∫ t

0

f
(
t, s,

1

e

)
ds ≤ λn−1(t) ≤ λn(t), n = 1, 2, 3, . . . , t ≥ 0 .

Indeed,

exp
[∫ t

0

λ0(u) du
]

= exp
[∫ t

0

−e

∫ s

0

f
(
s, u,

1

e

)
du ds

]
≥

1

e
,

for t ≥ 0, and since f is nonincreasing in v, we have

f
(
t, s, exp

[∫ g(s)

0

λ0(u) du
])
≤ f

(
t, s,

1

e

)
, t ≥ s ≥ 0 .
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Thus

λ1(t) ≥ −e

∫ t

0

f
(
t, s,

1

e

)
ds = λ0(t), t ≥ 0 .

Now assume that λn−1(t) ≥ λn−2(t), t ≥ 0. Then

0 < exp
[∫ t

0

λn−2(u) du
]
≤ exp

[∫ t

0

λn−1(u) du
]
,

and

f
(
t, s, exp

[∫ g(s)

0

λn−2(u) du
])
≤ f

(
t, s, exp

[∫ g(s)

0

λn−1(u) du
])

> 0 .

Thus, it is clear that λn(t) ≥ λn−1(t).

By the monotone convergence theorem, there exists a function λ(t) such that

λn(t)→ λ(t) as n→ +∞. So there exists a solution λ(t) of Eq. (13).

The proof is complete. �
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