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THE FRACTAL DIMENSION OF INVARIANT SUBSETS
FOR PIECEWISE MONOTONIC MAPS ON THE INTERVAL

F. HOFBAUER

Abstract. We consider completely invariant subsets A of weakly expanding piece-
wise monotonic transformations T on [0, 1]. It is shown that the upper box dimen-
sion of A is bounded by the minimum ta of all parameters t for which a t-conformal
measure with support A exists. In particular, this implies equality of box dimension
and Hausdor Cdimension of A.

1. Introduction

During the last years the fractal dimension of invariant subsets in dynamical
systems has attracted much interest. Dilerkent notions of dimension have been
considered. The best known are box dimension, Hausdor Cdimension and packing
dimension. We need here only the definition of box dimension of a subset X of
[0, 1]. Let N(X) be the number of closed intervals of length r required to cover X.
The lower and upper box dimension of X are defined by

log N+ (X)
—logr

log N-(X)

BD™ (X) = liminf
) me —logr

and BD'(X)=Ilim S(L),Ip
r-

If BD™(X) = BD™(X) this number is called the box dimension BD(X) of X. The

definitions of Hausdor Cdimension HD(X) and of packing dimension PD(X) of a

set X can be found in [1] or in [3]. It is well known that HD(X) =< PD(X) <

BD™(X) and that HD(X) < BD™ (X) < BD"(X).

In this paper we investigate the fractal dimension of invariant subsets of piece-
wise monotonic transformations on the interval. A map T: [0,1] - [0,1] is called
piecewise monotonic, if there are ¢; [J0,1]for0 =i < N with0 =c¢y <c¢; <

- < ¢n = 1 such that T](ci—1,¢i) is monotone and continuous for 1 < i < N.
Since T is allowed to be discontinuous at the points in P: = {co,C1,...,Cn}, WE
call a closed subset of [0, 1] invariant, if T(A\P) [CA] and completely invariant, if
X [CAlis equivalent to T (x) Al for all x [Jd, 1]\ P. For equivalent definitions of
completely invariant subsets see Lemma 4 in [7]. One goal of this paper will be to
find conditions under which BD"(A) < HD(A), which implies equality of notions
of dimension introduced above.
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The investigation of the dimension of an invariant subset A usually involves
the derivative of T. In this pape[_r—b? measurable function T [0,1] — R is called a
derivative of T, if T(b)—T(a) = _ T'dx for all a and b satisfying ci—1 <a <b < c;
for some i. A function f: [0,1] — R is called regular, if f(x+): = limy,x f(y) for
x [0,1) and £(x—): = limy;x F(y) for x (0, 1] exist. We shall always assume
that T has a derivative, which is regular.

For an invariant subset A of a piecewise monotonic transformation T various
quantities associated with the dynamical system (A, T |A) have been introduced in
order to prove results about dimension. We give a short review.

The essential Hausdor Cdimension was introduced in [2] (see also [10]). For an
invariant subset A let Mt (A) be the set of all T-invariant probability measures
pn with pu(A) = 1, and let Et (A) be the set of all p M+ (A) which are ergodic.
For a probability measure p define HD(u) = inf{HD(B) : w(B) = 1}. Then one
defines the essential Hausdor Cdimension of an invariant subset A by

HDess(A) = sup{HD(W) : p [Ekr (A), h,, > 0}

where hy, denotes the entropy of p. It is clear from the definition that HDess(A) <
HD(A).

Now let A be a completely invariant subset which is topologically transitive.
For a meaﬁrable function f: [0,1] - R we define the pressure p(T|A,f): =
supfhy + fdu : u CEr(A)}. We fix a regular derivative THof T and set
n(t) = p(T|A, td), where & = —log|T'{. Then m is a convex function on R*
with p(0) = 0. It is shown in [6] that za := inf{t = 0 : n(t) = 0} exists if
ITY = 1 or if T is continuous, and that za < HDess(A) if |TY is of bounded
variation or if inf [T > 0. It is not known whether za exists in general. In the
general case one can define a modified pressure q(T |A, ) exhausting (A, T|A) by
Markov maps (see [9]). Again we set TT(t) = q(T |A, td). Theorem 1 in [9] implies
that Z5 = inf{t = 0 : Ti(t) = 0} exists under seme weak assumptions on T.
Furthermore, if |TY is of bounded variation, then Za = HDess(A) (Theorem 5 in
[9]) and Za = za Whenever z exists (remark after Theorem 5 in [9]).

Now we consider conformal measures. A probability measure m is called t-
conformal, if

1
(1.1 m(TB)=  |T%dm for all B contained in (ci—1, c;) for some i
B

Lemma 5 in [7] says that the support of a conformal measure is a completely
invariant subset. For a completely invariant subset A let ta be the infimum of all
t = 0 for which a t-conformal measure with support A exists. Theorem 2 in [9]
implies that ta < Za and hence ta < za whenever za exists, if hyp(T|A) = 0 and
(A, T|A) is topologically transitive.
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Therefore, under the assumptions on T used in [9], for a completely invariant
topologically transitive subset A with hep(T|A) = 0 we have that ta < Za <
HDess(A) < HD(A) < BD"(A). The question arises under which conditions
we have BD*(A) < ta holds. We consider this for weakly expanding piecewise
monotonic transformations. Let F* be the set of all x []Q,1) with T(x+) = x
and T{x+) = 1 and let F~ be the set of all x (D, 1] with T(x—) = x and
THx—) = 1. These sets need not be disjoint. Set F = F* CHE~. We say that
a piecewise monotonic map T is weakly expanding, if the following properties are
satisfied.

(a) F isfinite

(b) there is & > 0, such that THY(p — 8, p) is decreasing, if p H~, and
T +9) is increasing, if p CEI*
i ) i 1 .

() inf |TXy)|:y [P C e (P—8,p] L g [p,p+3) > 1 for each
d=>0.

We shall prove the following theorem.

Theorem. Let A be an invariant subset of a weakly expanding piecewise mono-
tonic transformation T with regular derivative. Suppose that there is a t-conformal
measure with support A. Then BD"(A) <'t.

This theorem implies that for a weakly expanding transformation T, such
that TYis equicontinuous on f|(ci—1,c;) for all i (then the assumptions of [9]
are satisfied), and a completely invariant topologically transitive subset A with
hiop(T |A) = 0 we have ta = za = HD(A) = PD(A) = BD(A).

Under the assumption, that T is expanding, which means that F = [ the above
theorem is already proved in [8]. In this paper also an example of a transformation
T and a set A is given, for which all assumptions of the above theorem are satisfied
except (b) in the definition of a weakly expanding transformation, but for which
HD(A) < BD™"(A). Therefore it cannot expected that the above theorem holds
under weaker assumptions.

For the proof of the the above theorem we have to construct suitable covers of
A by intervals. In Section 2 we define a directed graph, called Markov diagram,
whose paths can be used to define such covers of A. In Section 3 we deal with
indi [Cerent fixed points. Estimates of the lengths of halfneighbourhoods of the
points in F are given. Together with estimates of the cardinality of certain sets
of paths in the Markov diagram, which are given in Section 4, this gives upper
bounds of N(A) used in the definition of BD™ (A).

2. Intervals Defined By Paths of a Graph

In order to estimate box dimension, we have to construct covers by intervals.
To this end we construct a directed graph, called Markov diagram, whose finite
paths correspond to certain intervals.
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In this paper a finite collection of open intervals, which cover A up to a finite
set, is called a cover of A. A cover of [0, 1], which consists of open disjoint intervals,
is called a partition.

Set W ={(p—206,p): p CH} CLp,p+0):p CH"} where 6 > 0 is chosen
so small that the intervals in W are disjoint and that (b) holds. For each W [\W
let Vo(W) =W [V4(W) CMIA(W) 1 be the uniquely determined open inter-
vals with an indi Lerent fixed point as common endpoint, such that T (Vij(W)) =
Vi_l(\&l‘or i = 1. Furthermore, for i = 0 set Uj(W) = Vi(W) \ Vj+1(W) and
Vi = WmVI(W)

We fix a regular derivative T of T and set ¢ = log |T{=0. Set ' = sup¢ and
y =inf, ,g5¢ > 0. We fix e [(0,y) and 8 = 6(¢) [N, such that sup, vy ¢ < £
We fix a partition Z such that

2.1) T|Z is monotone and continuous for each Z [CZ

2.2) Vo(W) A for each W W

(2.3) if Z 2, W W and 0 < i <6 then Z n Uj(W) = [Cdr Z CU}(W)
(2.4) sup o —inf ¢ < % for all Z CZA\{Ve(W) : W W}

We define the Markov diagram of ([0, 1], T) with respect to the partition Z. If
D is an open interval contained in an element of Z, the nonempty sets among
T(D) n Z for Z A4 are called the successors of D. These successors are again
open intervals contained in elements of Z, so that one can iterate the formation of
successors. We write D — C if C is a successor of D. Set Dp = Z. For n=1 let
Dn be the union of Dh—1 and the set of all successors of elements of D—;. Since
the number of successors of an Iifjﬂfval is always bounded by card Z, the sets Dp,
for n = 0 are finite. Set D = __,Dp. The directed graph (D, -) is called the
Markov diagram of ([0, 1], T) with respect to thetpirltition Z.

If DoD; ...Dk—1 is a path in (D, -), then i=0 T™IDj is a nonempty open
interval by the definition of a successor. We shall use intervals of this kind to
define covers of an invariant subset A. We begin with the definition

L1 Lol
(2.5) h(DgD;...Dk—1) = o |3f¢ where Q; = i=i T'ID;

Observe that Qp = jgzolT‘J' D;j and that Q; = T'(Qo) for 1 <i < k —1 by the

definition of a successor. We define also F(DoDl ...Dk—1) = {= SUpg, ¢ We
have

Lemma 1. For a path DgD; ...Dk—1 in (D, -») we have

() h(DeDs ... Dk-1) = h(DoDs ... Dk-2)

(i) h(DgDy...Dk—1) =h(DgD;y...Dg—p)+T
(iii) D(DoDl ...Dk—1) = D(DoDl ...Dj—p) + D(D|D|+1 ...Dk=1)
(IV) h(DoDl ce Dk—l) = h(DoDl ce D|_1) + h(D|D|+1 ce Dk—l)



BOX DIMENSION 239

Proof. This follows easily from the definitionsusing0<¢ <T. 1

Set G ={D [O:DnV; = [}land let P, be the set of all paths DgD; ...Dk—1
in (D, -») with k = 1 satisfying

(2.6) h(DoDy ... Dk—2) < yn < h(DoDs . .. Dx_1)
2.7) Do [Z1= Dy and Dy_; [Gl

Dl
(2.8) An _ TTDiB ]

If k = 1weset h(DgD; ...Dk—2) =0. By Lemma 1 for each infinite path DgD; . ..
in (D, —) there is at most one k such that (2.6) holds.

Now we can estimate length and measure of the intervals associated with paths
in Py. Let || denote the length of the interval 1.

Lemma 2. For DoD;...Dx_1 [P, Vﬁ:Pave h(DgDy1 ...Dk_2) —
h(DgDs ...Dk—2) < en. Furthermorﬁ;wle have | 1= T7'Di n TKJ| < e7™|J|
for any interval 3 []0,1] and m( ;—5 T 'Di) = m(Dk—1)e "+ for any
t-conformal measure m.
Proof. Set Qi = ET—G—DDJ for0<i<k—2 Letij<ip<- <

ir = k—1 be all elements i of {0,1,...,k — 1} with D; Q. Consider some

s = 1 with is—; < is — 1, where we set ip = —1. Then there is W [CW such
that Dy V(W) for is—1 < j < is and D;, CUh(W). By (2.3) we have then
Qi.—j [D,—; CUJ(W) for 0 < j < min(is — is—1,0). Since T(Q;) CQl+, this
implies that Q; [ —j(W) for is—1 < j < is. Set Y = supg, ¢ — infq, d
for 0 =1 <= k—=2and Q-1 = supp, , ¢ —infp,_, ¢. The sets U;(W) are
disjoint. Hence izic 1 Vi < % by the choice of 8, provided tlr_mii_if_l <is—80.
Furthermore, Y; < ;5 for max(is—8, is—1) < j < is. Therefore izie Wi < 5.

If ig = is—1 + 1 then ;< 4_89 < % We have shown that E(DoDl...Dk_z) —
h(DgD;...Dk—2) = j=o Vi < r%. Since Dj, [Gland hence infp,_ ¢ =y for all

s, we have (r — 1)y < h(DgD; ... Dk—2) <yn and hence r < n+ 1. This implies
the first assertion.

Now set Rj = [ T~U7YD; for 0 < i < k — 1, which are intervals con-
tained in elements of Z. The sets S; := Rj n T~&"DJ satisfy T(S;j) = Sij+1. By
the mean value theorem and (2.5) we get that |So| < |T (Sk—1)|e~"(PoP1---Dk—1),
As T(Sk—1) = T(Dk-1) n J we get |So| < |[J[e”Y" by (2.6). This is the sec-
ond assertion. Similarly we get for a t-conformal measure m that m(Ro) =
m(Rg—1)e th(PoD1--Dk—2) By (2.6) and the first assertion of this lemma we have
h(DoDs ... Dk—2) < yn + &n proving the last assertion. 1



240 F. HOFBAUER

3. Estimates Near Indifferent Fixed Points

In this section we use the existence of a t-conformal measure to estimate the
length of halfneighbourhoods of indi Cerent fixed points. This leads to an estimate
of Nr(A) for r = yn and n [N in terms of t and the cardinality of the sets P;.
We begin with

Lemma 3. Fix W [OW and set ¢;(W) = SUPy; (w) ¢.

M L=
(i) VW)= Zem =MW for k>0
(iii) if mis % E—Sonformal measure and m(W) > 0 then m(U;(W)) > 0 for all
iand 2 et i=m®W) <o,
Proof. Let m be a t-conformal measure with m(W) > 0. By (1.1) and (b) we
get

e+ MWIm(U; (W) < m(T Uj(W)) < e ™Im(u;(W))

Since T(Uj(W)) = Uj—1(W) for j 2|ijwe get m(Uij(W)) = 0 for all i or
m(Ui(W)) > 0 for all i. Since W = ;Z,U;i(W) the first assertion of (iii) fol-
lows. Furthermore,

Cival (=

et 1= U MWImU;(W)) = m(TU(W)) and m(Uo(W)) et i=+ B m(u;(w))
Lo, G

The first inequlity gives m(Vi(W)) = o, e =t ® W) since m(T Ug(W)) < 1.

This shows (ii), since Lebesgue measure is a 1-%8nformgl measure with m(W) >0

forall W [CW. The second inequlity gives o, et i=®MW) < w which

gives (iii). Taking for m again the Lebesgue measure, itgives -, e~ =t %M <

oo for all W [\, which implies (i). 1

Lemma 4. Set Wa = {W W : W n A E [Hand let m be ﬂonfermal
measure with support A. There is d > 0 with |Vi(W)| < de@™0 iz ®iW) for
all k=1 and all W [O\Wa, where ¢;(W) is as in Lemma 3.

C_1_ 51
Proof. Setd =supy rw. joi€ & 3= ®™) which is finite by Lemma 3 (iii)
since m has support A. We have
v C—1 2 ]
e HPW W) s e 1Tk ®W) by Lemma 3 (ii)
< et 1= @MW) ast<land =0

i=k
G 1
<det =1 ®MW) by definition of d.

This gives the desired estimate. 1
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Lemma 5. For each u > 0 there is v [N such that each path DoD;...Dy—1
of length v in (D, -) with Dy—1 n Vg = [Satisfies h(DgD; ...Dy—1) = u.

Pr rw CW and j =0 let ¢; (W) be as in Lemma 3. ]Z_'I:Eemma says
that j=o ¢j (W) = oo. For fixed u > 0 choose | > 6 such that i=o oi(W)=u
holds for each W [\W. Then choose an integer v > “7'

By (2.3) for a path DgD; ...Dy—1 in (D, -) with Dy—; n Vg = [there are two
cases. Either the number of D; satisfying D; n V; = [i§ greater than % or there
is i <v—1such that D;+; V4 for 0<i <1 and Dj+ n Vg = [in the first case
we get h(DgD; ...Dy—1) = \“7y = u by definition of y. In the second case there is
W W and s with i =s < i+, such that Qs+; U} j— (W) for0=j=<I1-96
by (2.3) and the definition of the sets Uj(W), where Q; is as in (2.5). By (b)
we get infq_,; ¢ = ¢ (W) for 0 < j < | — 8. Therefore we have again that
h(DoD:...Dk-1)= g ¢i(W)=u. 1

Now we can give a first estimate of N.(A) for r = e™Y",

Proposition 1. Let m be a t—cowal measure with support A. There is
¢ > 0 such that Ne—vn(A) < ce?" 1= pie"™=D for all n, where po = 1 and
py =card Py for | = 1.

Proof. Let ¢i(W) be as,i mma 3. Forl < nand W W let j(I, W) be
the minimal j such that {_; $;(W) = (n—I)y —en —T. The existence of
j(IIj;V:vl) follows from Lemma 3 (i). We write R{(W) for Vjqw)(W). Set U, =
{ =y T7'Di:DgD;...Dx—1 [PL} W [CWa :={W W :W nAE [Flset
Uo(W) = {Ro(W)} and Ui(W) = { =, T 'Di T_br_iﬁ% : DoD;1...Dyk— [
P} for 1 <1< n—1. We show first that U := Up, =0 w g Y1(W) covers A
To this end choose g = sup;<p, SUPy g, J (I, W) such that h(CoCy...Cq—1) >yn
for all paths CoC; ...Cy—1 with Cq—1 LGl This is possible by Lemma 5. FoLet k
be maximal such that Cx—; [Gland h(CyC;...Ck—2) < yn. If no such k exists
set k =0. If k >0 and h(CpC;...Ck—1) =yn then CoC;...Cx—1 [[Ph and Z is
contained in an element of Uy.

Therefore suppose that k = 0 or that h(CoC; ...Ck—1) <yn. Ifk =0set | =0.
Ifk=1, thereis| [{1,2,...,n—1} such that CyC; ...Ck—1 B, since Cx—; [GI
and hence infc,_, ¢ =y. We consider two cases.

Suppose first that there is no i = k with C; [Cd@. Hence there is W [CW
with C; [CW((W) fork =i < s — By the choice of q and by Lemma 1 we
have k < ¢. Since s = 29 we get ;_, T*7IC; [Vd_(W) [3(W) and hence
TK(Z) CJ(W). Since TX(Z) n A 8 [ hs A is invariant, V4(W) and hence also
W has none intersection with A. By the choice of q we get Vq(W) CRI(W).
Thus Z Ty T'Ci n T"KRy(W) and we have found an element of U;(W),
which contains Z (empty intersections have to be considered as absent).

Now suppose that u > k is minimal such that Cy—; [®. Because of
h(CoC;...Ck—1) < yn and the choice of k we have Cx Y Gl Hence Cx [NI(W)
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for some W [CW. As above we get that ;izkiTk‘iCi [V}—k—1(W) for some

W [Wa. The choice of k implies that h(CoC; ...Cy—2) = yn. Using Lemmas 1
and 2 we get

$i(W) = h(CkCuu1 - - Cu—2)

=h(CoCy...Cu_2) —h(CoCy...Cxn)—T
=h(CoCy...Cy—2) —h(CoC;y...Cx—2)—T—¢€n
=yn—yl—T—¢n

i=1

This says that Vy—k—1(W) CR}(W). As above we get that Z is contained in an
element of Uy(W). Tf“ﬁe have proved that U covers A.

We consider | := —T7'Dj n TR (W) (W) and estimate the length
[1] of the interval 1. If | = n we have [0,1] instead of Ri(W), and if | = 0 then
k = 0, which means that | = Ro(W). By Lemma 2 we have |I| < e Y'|R;(W)|.
By Lemma 4 we get |Rj(W)| < de~ @D (=h=en=T) for | < n. Setting b = de”
we get [1] < be™Y"etY("=Dee"  The number of intervals of length e~Y™ necessary
to cover | is bounded by be®("~Deen . Since p; = card Uj(W) for | = n—1 and
pn = card Up, the desired result follows with ¢ =bcard Wa. 1

4. The Cardinality of Certain Sets of Paths

Proposition 1 leaves us with the problem of estimating the cardinality of the
sets P,. For E [ and B [ Dllet QE(B) be the set of all paths DoD; ... Dk—1
with k = 1 satisfying (2.6), such that D; CB for 1 =i <k—1and Dg is a
successor of E. We begin with

Lemma 6. For each a > 0 there is a finite subset E containing Z = Dy such
that card QE(D \ E) < 4e%" for all n and all E [D.

Proof. Fix u= %Iogz and let v be as in Lemma 5. Set E = D,. Let Hy be the
set of all D [ which have a common endpoint with some Z [ and let H; be
the set of all D [CH; which satisfy D n Vg = L_For C [ we show the following.
(i) There are j = 1 and Co = C,Cy,...,Cj—1 in D such that C; is the only
successor of Cj—; in D\E for 1 =i =< j—1and Cj—; has at most two successors
in D\ E, which are in H;. If C [H; then either j = v or Cj—1 has no successor
in D\E.

(ii) For each successor B of Cj—; in D\E thereare | = 1and Bo = B,B4,...,B|-1
in D, such that B; is the only successor of Bj—; in D\E for 1l <i<I|—1and
either Bj—; [CH> or Bj—; has no successor in D \ E.

Assuming (i) and (ii) it is easy to prove the lemma. Each path DgD; ...Dg—; [
QE(D \E) is made up of segments C;C;... Cj—1BoB1...Bj—-1, where j = v ex-
cept in the first segment, and Bj—; [H, except in the last segment, where the
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Bi may be missing. For all segments except the first and the last one we have
h(C1C>...Cj—1BoB1...Bj—1) =u = %IogZ by Lemma 5, since j = v and B|—1
has a successor in D\E and is therefore in Hy by (ii). Since h(DgD3 ...Dk—2) <yn,
Lemma 1 implies that DgD; ... Dk—1 can consist of at most 2+% such segments.
Since all successors in these segments are uniquly determined except that of Cj—1,
which can have two successors in D \ E, the number of paths in QE(D \ E) is
bounded by 2%* 165> = 4e0n,

It remains to show (i) and (ii) for C [CO. Lemmas 12 and 13 of [4] give the
existence of j and C; for 0 < i < j — 1 such that (i) holds. In order to show (ii)
let B [H; be a successor of Dj—; in D\E. If B nVg = [then B [Hy, and (ii)
holds with | = 1 and By = B. Hence using (2.3) we can assume that B [\d(W)
for some W [C\W. Let p and y be the endpoints of Vg(W), where p [CH. One of
these points is also an endpoint of B.

Suppose first that p is an endpoint of B and denote the other endpoint of B
by x. Choose s minimal such that TS(x) ¥\ (W). SetB; = TBfor0<i<s—1.
Then B; is the only successor of Bi—; in D for 1 < i < s— 1. Furthermore, let
Bs be that successor of Bs—1, which has TS(x) as endpoint. Since T (Bs—;1) has
endpoints p and TS(x) we have B [CH; and all other successors of Bs—1 are in
Z [CE1 Either there is | < s such that B; CO\E for i <1 and B, [Elso that
Bi—1 has no successor in D\E or B; CIO\E for all i < s. In the second we set
I =s+1and (ii) is shown.

Now suppose that p is not an endpoint of B. Then B has endpoint y. We
denote its other endpoint by z. Choose s minimal such that TS(z) F'\h(W). Set
Bo = B and Bj = TBj—1 n Vg(W) for 1 < i < s — 1. The successors of Bj—; for
1 <i<s—1arethen B; and all Z A contained in T (Vg(W)) \ Vg(W). Let
Bs be that successor of Bs—; which has T*(z) as endpoint. Since T (Bs—1) has
endpoints T (y) and T3(z), all successors of Bs—; are in Z [Elexcept Bs which is
in Ho. Either there is | < s such that B; CID\E for i <| and B; CElso that Bj—;
has no successor in D \E or B; CIDO\E fori<s. In the second we set | =s+1
and again (ii) is shown. 1

For B let PL(B) be the set of all DgD;...Dk—1 [HA, with Dx—; [CB.
Then we have

Proposition 2. For each a ere is a finite subset F of D and a constant
a such that card P, < ae®®™v " "card P,(F)e®™"~" for all n.

Proof. For fixed a > 0 let E [CDlbe as in Lemma 6. For each E [ contained
in some W [W and each path EgE; ... in (D, - ) with Eq = E one shows using
similar arguements as in the second part of the proof of Lemma 6 that there is a
minimal s = 0 such that either Es [\/d(W) and hence Es [Glor Eg = V(W) [CZ.
For each E [Elcontained in some W [\W and each path EgE; ... with Eg = E
we add E; for 1 < i < s to E and denote the resulting set by F. This set is still
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finite and contains E and hence also Z, as Z [Elby Lemma 6. Let F be the set
of all D [CH, which have a successor outside F. Then F [Glby the construction
of F, since each Vg(W) has all its successors in Z by (2.3).

For each path DgD;...Dk—1 [Hp let g be minimal, such that D; I B for
qg<i=<sk-—1. Since Do [Z1 [CElby (2.7), this q exists and satisfies 1 < q < k.
Set Ry = {DoD1...Dk—1 [Ph g5k, DoD1...Dg—1 [R(F)}forl<l<n—1
We show that P, CPh(F) 1,2, Ry. If DgD;...Dk—1 B, and q = k then
DoD;...Dk—1 EBW(F). If g < k then h(DgDy ... Dg-1) < yn and, since Dg—1
is in F and its successor Dy is not in F, we get Dg—y [H [G] which implies
infp,_, ¢Iﬂ' Thus there is | [1,2,...,n — 1} with DgD; ... Dg—1 [, since
also An g TiD; Eﬁﬂy (2.8). Hence DDy ... Dg—1 [PY(F). We have shown
that P, [CPh(F) 1,2, Ry. Hence the lemma is proved if we have shown that

card Ry < ae®™ card Py(F)e®™ D for 1 <|<n—1witha=4".
To this end consider some DoD;...Dkx—1 [CR;. As Dy—; [Q@ and hence
infp,_, ¢ = vy, there is j such that DgDg+1 ... Dk—1 l:(l)Pq‘l(D \ E). Using

J
Lemmas 1 and 2 we get

yl + yj = h(DoDl ce Dq—l) + h(Dqu+1 ce Dk_]_) = h(DoDl ce Dk_]_)
<h(DgD;:...Dy_2)+ T <h(DgD;...Dx_) +en+T
<yn+en+T

Hence j=n—1I+ E”y—““r Since card QJ-Dq‘l(D \E) < 4e%" bt/ Lemma 6 and since
DoDs ... Dg—1 [PI(F), we get card Ry < card P(F) =, U 40 | where u(e)
is the largest integer less than or equal to ”‘y—*r This easily implies the estimate
for card R, stated above. 1

Now we use again t-conformal measures.

Proposition 3. Let m be a t-conformal measure with support A. For each
finite subset F of D there is a constant b such that card P,(F) < betY"*" for all
n=1.

Proof. Set g = min{m(D) : D [CH,DnA B [} Since F is finite and supp m =
A we have q > 0. For DgD; ...Dk—1 [CBL(F) [P} we have Dx—1 n A 8 [y
(2.8), since A is invariant. Therefore we get

—1
m o T_iDi > m(Dk_l)e—t(yn+sn) > qe—tyne—tsn
i=

by Lemma 2. Since the intervals L:—:OIT“Di are disjoint for dilerent paths
DgD;...Dk—1 in P, by Lemma 1 and (2.6), we get the desired result with
b=1/q. 1

The three propositions together give now
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Theorem. Let A be an invariant subset of a weakly expanding piecewise mono-

tonic transformation T with regular derivative. Suppose that there is a t-conformal
measure with support A. Then BD"(A) <t.

Proof. Choosing a = ty the three propositions imply that there is a constant ¢

such that Ng—yn(A) < cn2e@+Denetyn holds for all n. Hence

Since € can be chosen arbitrary small, the desired result follows.

10.

. logN:(A) _ .. log Ne—yn (A) (2t +1)e
| —— </ — = "~ L <t+— 7
Ingp —logr 'ﬂsiip —loge—v(—D t %
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