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A CHOICE OF CRITERION PARAMETERS IN A

LINEARIZATION OF REGRESSION MODELS

A. JENČOVÁ

Introduction

There are many results which are obtained in the theory of nonlinear regression

models; nevertheless much more and simpler inferences may be made in linear mod-

els. Thus it is of some importance to analyze situations where a nonlinear model

can be substituted by a linear one. Some rules how to proceed in a linearization

of regression models are given in [K1], [K2]. Several parameters (criterion pa-

rameters) have to be chosen in the mentioned procedures. In the following it is

shown that some relations among these parameters and some natural restrictions

on them exist.

1. Notations and Preliminaries

Let Y ∼ Nn[f(β),Σ], where Y is an n-dimensional normally distributed random

vector with mean value Eβ [Y ] = f(β) and a known positively definite covariance

matrix Var [Y ] = Σ. Here β ∈ Rk is an unknown k-dimensional parameter and

f(·) : Rk → Rn is a known function with continuous second derivatives. According

to [K1], the model is investigated only on a neighbourhood O(β0) (which will be

specified in the following) of a chosen point β0 ∈ Rk. It is assumed that:

(i) it is known that the true value β̄ lies in O(β0)

(ii) the terms δβiδβjδβm
∂3fl(β)

∂βi∂βj∂βm
|β=β0 , l = 1, . . . , n and i, j,m = 1, . . . , k

can be neglected if β0 + δβ ∈ O(β0), so that f has the form

f(β) = f0 + Fδβ +
1

2
κδβ

for β0 + δβ ∈ O(β0). Here f0 = f(β0), F = ∂f(β)
∂β′ |β=β0 is a full rank

matrix, (κδβ)i = δβ′Hiδβ, Hi = ∂2fi(β)
∂β∂β′ , i = 1, . . . , n.
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We will use the following notations:

C = F ′Σ−1F,

∆ =

 δβ′H1

...

δβ′Hn

 ,

H∗i =

 e′iH1

...

e′iHn

 , i = 1, . . . , k,

K
(h)
1 =

h′C−1 1
2 (H∗1 )′Σ−1

...

h′C−1 1
2 (H∗k)

′Σ−1

 , h ∈ Rk,

K
(h)
2 =


1
2L
′
hH
∗
1

...
1
2L
′
hH
∗
k

 =
n∑
i=1

{Lh}iHi, L′h = h′C−1F ′Σ−1,

W (h) = K
(h)
1 (Σ− FC−1F ′)(K

(h)
1 )′ +K

(h)
2 C−1(K

(h)
2 )′.

Here ei ∈ Rk, ei = (01, . . . , 0i−1, 1, 0i+, . . . , 0k)
′. Further, K(int) and K(par) are

the intrinsic and parameter effect curvatures of Bates and Watts at the point β0,

respectively (see [BW]).

The problem is how to decide if, under the given assumptions, it is possible to

use the linear estimator ĥ′β = L′h(Y − f0) for estimation of the linear function

h(β) = h′β of the parameter. All the following criteria and regions of linearization

can be found in [K1], resp. [K2].

Let β̂(Y, δβ) = β0 +[(F +∆)′Σ−1(F +∆)]−1(F +∆)′Σ−1(Y −f0) be the BLUE

of the parameter β in the model Y − f0 ∼ Nn[(F + ∆)δβ,Σ]. The linearization

criteria are based on the adequacy of the model to the measured data and the

difference between the estimators ĥ′β and h′β̂(Y, δβ) and the difference between

their variances.

Definition 1.1. The model is (with respect to the function h(β) = h′β)

(i) cb-linearizable in the domain O(h)
b (β0) if

|Eβ [h
′β̂(Y, δβ)− h′β̂]| = |h′b(δβ)| =

∣∣∣∣12L′hκδβ
∣∣∣∣ ≤ cb√h′C−1h

for β = β0 + δβ ∈ O(h)
b (β0),

(ii) cd-linearizable in the domain Od(β0) if∣∣∣∣∣δβ′ ∂(Var [h′β̂(Y, δβ)]−Var [h′β̂])

∂δβ

∣∣∣
δβ=0

∣∣∣∣∣ ≤ c2dh′C−1h

for β0 + δβ ∈ Od(β0),
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(iii) cU -linearizable in the domain OU (β0) if

Var

[
δβ′

∂(h′β̂(Y, δβ)− h′β̂)

∂δβ

∣∣∣
δβ=0

]
≤ c2Uh

′C−1h

for β0 + δβ ∈ OU (β0),

(iv) the model is (γ, α)-linearizable with respect to its adequacy to the mea-

sured data in the domain O(γα)(β0) if

1

4
(κδβ)

′(MFΣMF )+κδβ ≤ δt

for β0 + δβ ∈ O(γα)(β0), where (MFΣMF )+ = Σ−1 − Σ−1FC−1F ′Σ−1 is

the Moore-Penrose inverse of the matrix MFΣMF and δt is the threshold

value of the noncentrality parameter for which

P{χ2
n−k(δt) ≥ χ

2
n−k(0, 1− α)} = γ(> α)

where χ2
n−k(δt) is a random variable with noncentral chi-square distribu-

tion with n−k degrees of freedom and with the parameter of noncentrality

equal to δt; χ
2
n−k(0, 1−α) is the (1−α)-quantile of the central chi-square

distribution with n− k degrees of freedom.

The linearization domains are determined as follows:

Proposition 1.1.

(i) (a) O(h)
b (β0) =

{
β0 + δβ : |δβ′K(h)

2 δβ| ≤ cb
√
h′C−1h

}
for one function

h(β) = h′β

(b) Ob(β0) =
{
β0 + δβ : δβ′Cδβ ≤ 2cb

K(par)

}
for every function h(β) =

h′β

(ii) O(γ,α)(β0) =
{
β0 + δβ : δβ′Cδβ ≤ 2

√
δt

K(int)

}
(iii) Od(β0) =

{
β0 + δβ : ‖δβ‖ ≤ c2dh

′C−1h

2‖K(h)
2 C−1h‖

}
, (here ‖ · ‖ is the Euclidean

norm)

(iv) OU (β0) =
{
β0 + δβ : δβ′W (h)δβ ≤ c2Uh

′C−1h
}

According to [K2], the domain Ob in Proposition 1.1(i)(a) is replaced by the

ellipsoid {β0 + δβ : δβ′K(h)δβ ≤ cb
√
h′C−1h}, where K(h) =

∑k
i=1 |ηi|pip

′
i, if

K
(h)
2 =

∑k
i=1 ηipip

′
i is the spectral decomposition of the matrix K

(h)
2 . All the

ellipsoids resulting from Proposition 1.1 are written in the form {center, a1, f1,

. . . , ak, fk}, where ai and fi are the length and the direction vector of the i-th

semi-axis, respectively, or in the form {center, radius} in the case of a ball.
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In the case when O(β0) is given, the use of the linear estimator is appropriate

if O(β0) is contained in all the linearization domains, with the constants cb, cd,

cU and (γ, α) chosen according to the requirements of the user. However, in the

examples mentioned in [K1], [K2] or [P], another problem is described: the aim

is to find a region O = O(β0) for given model and point β0 ∈ Rk, such that if

we know that the true value β̄ ∈ O, then the model can be linearized in β0. This

problem is solved by putting O = Ob ∩ Od ∩ OU ∩ O(γ,α) for some values of the

constants. As will be shown below, the values of the constants cannot be chosen

arbitrarily.

2. The Choice of the Constants

We can see that Proposition 1.1 allows us to find the corresponding linearization

domains for any values of the criterion parameters. But if, for example, the chosen

value of the parameter cb is large, then the possible bias can make the probability

that the estimate β̂ lies inside the domain Ob(β0) quite small. On the other hand,

if the value of cb is very small, then the situation may occur that the confidence

region of β̂ is greater than O(β0). Regarding the assumption (i) from Section 1,

it is convenient to exclude both of these cases. Now we will put it more precisely.

The assumption (i) from Section 1 means that we have some a priori information

about the position of the parameter in the parameter space, given by the domain

[O](β0), and that we can regard β0 as an estimate of the true value β̄. The

information we get using the estimator β̂ is given by its confidence region. The

question is if the estimation shows the position of the parameter more precisely

than β0.

First, let O = Ob for every function h(β) = h′β. Without any loss of generality,

we put β0 = 0. Let E = {β : (β− β̂)′C(β− β̂) ≤ χ2
k(1−α1)}. Then E is a (1−α1)

confidence region for Eβ̄ [β̂] = β̄ + b(β̄). According to the proof of Theorem 2.9.

in [K1], we have:

Proposition 2.1. For each β ∈ Ob, b′(β)Cb(β) ≤ c2b , i.e.

β̄ ∈
{
β : (β −Eβ̄ [β̂])′C(β −Eβ̄ [β̂]) ≤ c2b

}
.

Thus the ellipsoid C =

{
β̂ ; cb√

λi
+
√

χ2
k(1−α1)

λi
, fi; i = 1, . . . , k

}
, where C =∑k

i=1 λifif
′
i is the spectral decomposition of C, contains the true value β̄ with

probability at least 1 − α1. On the other hand, β̄ ∈ Ob =
{
β0 ;

√
2cb

K(par)λi
, fi;

i = 1, . . . , k
}
. Hence if C is larger than Ob, i.e. cb√

λi
+
√

χ2
k(1−α1)

λi
≥
√

2cb
K(par)λi

,

for i = 1, . . . , k, then the a priori estimate β0 is more precise than β̂ and the

estimation has no sense.
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The aim is to find such value of the criterion parameter cb that

(1) cb +
√
χ2
k(1− α1) <

√
2cb

K(par)
.

Proposition 2.2. Condition (1) can be satisfied iff

δ2 = 2K(par)
√
χ2
k(1− α1) < 1

i.e.

K(par) <
1

2
√
χ2
k(1− α1)

.

The needed cb ∈ (cb1, cb2), where cb1,2 = 1
2K(par) [1±

√
1− δ2]2.

Proof.

(1)⇔ c2b + 2cb

(√
χ2
k(1− α1)−

1

K(par)

)
+ χ2

k(1− α1) < 0 .

The rest of the proof is obvious. �

Remark 2.1. Here the question may arise of how more accurate than β0 the

estimate β̂ may possibly be, i.e. what is the smallest ratio of the lengths of the

semi-axes of C to that of Ob. As can be easily verified, the smallest ratio is δ and

it is attained for cb =
√
χ2
k(1− α1).

Now, let O = Ob ∩ O(γα). Similarly as for Ob we get a condition

(3) cb +
√
χ2
k(1− α1) <

√
2
√
δt

K(int)

where cb ∈ (cb1, cb2).

Proposition 2.3. Condition (3) can be satisfied iff

(4) K(int) <
K(par)

√
δt

cb1
=

δ2
√
δt

cb12
√
χ2
k(1− α1)

.

Proof. The condition in question can be satisfied iff it is satisfied for the smallest

possible cb = cb1, i.e. iff

1

2K(par)

[
1−

√
1− δ2

]2
+
√
χ2
k(1− α1) <

√
2
√
δt

K(int)
.
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Using the equality K(par) = δ2

2
√
χ2
k(1−α1)

we get, after some rearrangements

√
K(int) <

4
√
δtδ

2

√
2
√
χ2
k(1− α1)[1−

√
1− δ2]

which yields the inequality (4). �
In the case when only one function h(β) = h′β is estimated, we consider the

interval Ih = [minβ∈O h
′β,maxβ∈O h

′β]. Obviously h′β̄ ∈ Ih. This interval deter-

mines the a priori information about the true value of h′β̄ contained in O. For

reasons described in the beginning of this section, the length of Ih will be compared

to the length of the (1 − α1) confidence interval for h′β̄, given by the estimator

h′β̂.

Let O = Ob for h(β). We suppose that h ∈ M(K(h)), because if h /∈ M(K(h))

then Ih = (−∞,∞) and O contains no information about the value of h′β̄.

Proposition 2.4. Under the above assumptions,

Ih =

{
x : |x| ≤

√
cb
√
h′C−1hh′[K(h)]+h

}
where [K(h)]+ =

∑k
i=1

1
|ηi|

pip
′
i is the Moore- Penrose inverse of the matrix K(h) =∑

|ηi|pip′i (the spectral decomposition of K(h)).

Proof. It is obvious, that minβ∈Ob h
′β = min

β:β′K(h)β=cb
√
h′C−1h

h′β. (The

same holds for maximum). By the use of the Lagrange multipliers:

Φ(β) = h′β − λ(β′K(h)β − cb
√
h′C−1h)

∂Φ(β)

∂β
= h− 2λK(h)β = 0

β′K(h)β = cb
√
h′C−1h .

Using the supposition h ∈ M(K(h)) we easily get the statement of the proposi-

tion. �
The (1 − α1) confidence interval for Eβ̄ [h

′β̂] is Eh = {x : |x − h′β̂| < u(1 −

α1/2)
√
h′C−1h}; here u(1− α1/2) is the (1− α1/2) quantile of the normal distri-

bution N [0, 1]. Moreover, for β̄ ∈ O, h′β̄ lies in the interval {x : |x− Eβ̄ [h
′β̂]| ≤

cb
√
h′C−1h}. It follows that |h′β̄ − h′β̂| ≤

√
h′C−1h(cb + u(1−α1/2)) with prob-

ability at least 1− α1. This leads to the condition

(5) cb
√
h′C−1h+ u(1− α1/2)

√
h′C−1h <

√
cb

4
√
h′C−1h

√
h′[K(h)]+h .

Let us denote

Ch =


2
√
h′C−1h

h′[K(h)]+h
for h ∈M(K(h))

0 otherwise.
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Proposition 2.5. Condition (5) can be fulfilled iff δ2 = 2Chu(1− α1/2) < 1,

i.e.

(6) Ch <
1

2u(1− α1/2)
.

The constant cb must then lie in the interval (cb1, cb2), where cb1,2 = 1
2Ch

[1 ±
√

1− δ2]2.

Proof. The same as Proposition 2.2. �

Remark 2.2. As can be seen, the value Ch plays a similar role here as the

parametric curvature K(par) in Proposition 2.2. For a one-parameter model, i.e.

for k = 1, these values are equal (for each h ∈ R). The value δ has the same

interpretation for cb = u(1− α1/2) (=
√
χ2

1(1− α1)) as in Remark 2.1.

If O = Ob ∩Od for the function h′β, then according to Proposition 1.1, |h′β̄| ≤

‖h‖ c2dh
′C−1h

2‖K
(h)
2 C−1h‖

and the condition for cb and cd is

(7) c2d >
2‖K(h)

2 C−1h‖
√
h′C−1h‖h‖

(cb + u(1− α1/2)).

Proposition 2.6. Condition (7) can be satisfied iff

(8) c2d >
1

Ch

[
1−

√
1− δ2

] 2‖K(h)
2 C−1h‖

√
h′C−1h‖h‖

.

Proof. It can be easily verified, taking into account that cb ∈ (cb1, cb2). �

If O = Ob ∩Od ∩OU for the function h′β, similar arguments as in the proof of

Proposition 2.5 give

Ih =

{
x : |x| ≤ cU

√
h′C−1hh′[W (h)]+h

}
and the condition is

(9) cU >
cb + u(1− α1/2)√

h′
[
W (h)

]+
h

for h ∈ M(W (h)) and cb ∈ (cb1, cb2).
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Proposition 2.7. Condition (9) can be satisfied iff

(10) cU >
1

Ch

[1−
√

1− δ2]√
h′
[
W (h)

]+
h

.

Proof. Exactly the same as before. �

We can conclude that (2) resp. (6) gives a necessary condition for a model to

be linearized with respect to the bias, while (4) gives a necessary condition for

linearization with respect to the adequacy of the model. Further, the conditions

(8) and (10) give the lower bounds for c2d and cU , respectively. If the necessary

conditions for bias and adequacy are fulfilled and the values of c2d and cU satisfying

(8) and (10) are acceptable for the users, then the values of the criterion parameters

that will be used in the procedure of finding the linearization domains may be

found using (1) resp. (5), (3), (7) and (9).

The values of the parameters obtained in the described way determine neigh-

bourhoods of the point β0 with the following properties:

(i) the linear estimator and its characteristics linked with any point of this

neighbourhood differ from the best estimator and its characteristics in

bounds which are admissible for the user;

(ii) the used linear estimators give better value of β that β0 (the a priori

information on β, given by β0, is smaller than the information given by Y .
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