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A NOTE ON THE RADIUS OF ITERATED LINE GRAPHS

M. KNOR

Abstract. We prove that almost all i-iterated line graphs are selfcentric with
radius i + 2. This generalizes the well-known result that almost all graphs are
selfcentric with radius two.

Introduction

LetG be a graph. Then by its line graph L(G) we mean a graph whose nodes are

the edges of G, and two nodes are adjacent in L(G) if and only if the corresponding

edges are adjacent in G. We remark that if G has no edges, then L(G) is an empty

graph. The i-iterated line graph of G, the Li(G), is L(Li−1(G)) where L0(G) = G

and i ≥ 1. For an example of iterated line graphs see Figure 1.
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Figure 1.

By d(G) and r(G) we denote the radius and the diameter of D, respectively.

Let G be a graph different from a path, a cycle, and a claw K1,3. Then, as proved

in [2], there are numbers dG, iG, cG, and c′G, such that

d(Li(G)) = dG + i for every i ≥ iG;

i−
√

2 log2 i+ cG ≤ r(L
i(G)) ≤ i−

√
2 log2 i+ c′G for every i ≥ 0 .

These results imply that if G is not a path, a cycle, and a claw, then there is a

number sG such that d(Li(G)) > r(Li(G)) for every i ≥ sG, i.e., the Li(G) is not

selfcentric. In contrast with this we show that almost all i-iterated line graphs are

selfcentric of radius i+ 2.

As a model of random graphs we use the well-established model of Erdős and

Rényi, see [3, the model A]. In this model the node set of the graph is fixed, and
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each pair of nodes is joined by an edge with probability p, or left unjoined with

probability 1− p. A property is said to hold for almost all graphs if the limit of

the probability that a random graph has the property is 1.

Result

We will identify edges in a graph G with the corresponding nodes in L(G).

Hence, if u and v are two adjacent nodes in G then by uv we mean an edge in G,

as well as the node in L(G) corresponding to the edge uv. This notation enables

us to consider a node in Li(G), i ≥ 2, as a pair of adjacent nodes in Li−1(G),

either of these is a pair of adjacent nodes from Li−2(G), and so on. Furthermore,

we can define each node in Li(G) using only edges of G, and such a definition will

be called the recursive definition of v in G.

Let G be a graph and v be a node in Li(G), i ≥ 1. By the j-butt Bj(v) of the

node v in Li(G) we mean a subgraph of Li−j(G) induced by the edges involved

into the recursive definition of v. The butt we will abbreviate to B(v) if i = j. We

have:

Lemma 1 [2]. Let H be a subgraph of a graph G. Then H is an i-butt for

some node in Li(G) if and only if H is a connected graph with at most i edges,

distinct from any path with less than i edges.

The distance dG(H,J) between two subgraphs H and J of a graph G equals to

the length of a shortest path in G joining a node from H to a node from J . The

following lemma enables us to compute distances between nodes in iterated line

graphs:

Lemma 2 [2]. Let G be a connected graph, and let u and v be distinct nodes

in Li(G). Then

(i) dLi(G)(u, v) = i + dG(Bi(u), Bi(v)) if the i-butts of v and u are edge-

disjoint.

(ii) dLi(G)(u, v) = max{t : t-butts of u and v are edge-disjoint} if i-butts of u

and v have a common edge.

For the diameter and the radius of line graphs we have:

Lemma 3 [1]. Let G be a connected graph such that L(G) is not empty. Then

d(G)− 1 ≤ d(L(G)) ≤ d(G) + 1 and

r(G) − 1 ≤ r(L(G)) ≤ r(G) + 1 .

Let H consists of two node-disjoint triangles. Since almost all graphs contain

a prescribed graph as an induced subgraph, see [3, p. 14], the H is an induced

subgraph of almost all graphs. Thus, d(Li(G)) ≥ i + 2 for almost all graphs G,
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by Lemma 1 and Lemma 2. From the other side for almost all graphs G we have

d(G) = 2, see [3, p. 14]. Thus, by Lemma 3 d(Li(G)) ≤ i+ 2 for almost all graphs

G, and hence d(Li(G)) = i+ 2 for almost all graphs. It means that the following

theorem implies that almost all i-iterated line graphs are selfcentric:

Theorem 4. Let i ≥ 0. Then r(Li(G)) = i+ 2 for almost all graphs G.

Proof. By V (G) is denoted the node set of G; and by eG(u) we denote the

eccentricity of the node u in G, i.e., eG(u) = max{dG(u, v) : v ∈ V (G)}.
Let G be a graph on n nodes, n is sufficiently large, in which each edge appears

with probability p, 0 < p < 1. We give an upper bound for the probability

P (r(Li(G)) ≤ i+ 1), i.e. that the radius of Li(G) does not exceed i+ 1.

Let H be a subgraph of G on m nodes. Then V (H) can be partitioned into

bm3 c sets, each consisting of at least three nodes. Thus, for the probability PH
that H contains no triangle we have PH ≤ (1− p3)b

m
3 c.

Let u ∈ V (Li(G)) such that eLi(G)(u) ≤ i+ 1. The B(u) contains at most i+ 1

nodes, by Lemma 1. Let S ⊇ V (B(u)) such that |S| = i + 1. Since eLi(G)(u) ≤
i + 1, there is no v ∈ V (Li(G)) such that dG(B(u), B(v)) ≥ 2, by Lemma 2. In

particular, there is no triangle T in G such that dG(S, T ) ≥ 2. Let v ∈ V (G) \ S.

Then the probability that dG(S, v) ≥ 2 equals (1−p)i+1. Thus, we have:

P (eLi(G)(u) ≤ i+1)

≤
n−i−1∑
j=0

(
n−i−1

j

)(
1− (1−p)i+1

)n−i−1−j(
(1−p)i+1

)j
(1−p3)b

j
3 c

(here j denotes the number of nodes v such that dG(S, v) ≥ 2). Further,

P (eLi(G)(u) ≤ i+ 1)

<
1

(1−p3)

n−i−1∑
j=0

(
n−i−1

j

)(
1− (1−p)i+1

)n−i−1−j(
(1−p)i+1

)j
3
√

1−p3
j

=
1

(1−p3)

(
1− (1−p)i+1 + (1−p)i+1 3

√
1−p3

)n−i−1

=
1

(1−p3)
an−i−1
i .

Since (1− (1−p)i+1 + (1−p)i+1) = 1 and 0 < 3
√

1−p3 < 1, we have 0 < ai < 1.

Since each B(u), u ∈ V (Li(G)), is contained in a subgraph of G induced

by i + 1 nodes, we have P (r(Li(G)) ≤ i + 1) < 1
(1−p3)

(
n
i+1

)
an−i−1
i . Clearly

lim
n→∞

1
(1−p3)

(
n
i+1

)
an−i−1
i = 0, and hence r(Li(G)) ≥ i + 2 for almost all graphs

G. Since r(G) = 2 for almost all graphs G, see [3, p. 14], by Lemma 3 we have

r(Li(G)) ≤ i+ 2 for almost all graphs G. �
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