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MEASURABILITY OF SOME SETS OF
BOREL MEASURABLE FUNCTIONS ON [0, 1]

M. SMIDEK

Abstract. In the paper we show that the space of injective Borel measurable
functions and the space of functions, which norm attains supremum at exactly one
point, with supremum metric are coanalyticly hard by using the space of trees.

In this paper we show that the set of injective functions is not Suslin in the space
of Borel measurable functions f: [0, 1] — [0, 1] with the supremum metric. This
answers a question of A. H. Stone posed after the problem of [DS], whether the
set of injective functions is Borel measurable in the space of Lebesgue measurable
functions f: [0,1] —- [0, 1] with the supremum metric, was solved by Miroslav
Chlebik.

We say that M is a Polish space if M is a complete separable metric space.
Let M be a topological space and P be a metric space. Then By(M, P) de-
notes the space of all bounded Borel measurable functions f: M —- P with
the supremum metric. The space of continuous bounded functions is denoted by
Co(M,P) for P = R it is a normed Iﬁar space endowed with the supremu
norm. Further, we put M_(M,R) = f b(M@; X M [F(X)| = Eﬂ_ﬂl—l
M.(M,R) = M_(M,R) nC,(M,R), I,(M,P) = f [BL(M,P); f is injective ,
and I_,(M,P) =1,(M,P) nCy(M,P).

Cﬁt N = NN denote the Baire space of sequences of natural numbers and S =
=1 N™ {T}denote the set of all finite sequences of element of N.

For s = (st,...,s') 3 let |s| = i denote the length of sequence s and for
p=(u,p?...) [N and k [N let plk = (U, ..., k) 3 denote the first k
members of the sequence p. We say that t = (t!,...,t') 3 is a extension of
s=(s%,...,s) CSlif j slj__find (th,...,t) =s. B)ﬁlhe metric on the Baire space
we understand [({i,v) = min{k ; Uk B8 vlk}  for p 8 v and [, p) =0.
For s [Sldenote N (s) = {v [N; v4s| =s}. Let G [CNlbe an open nonempty set
in N, then spaces N, N x N and G are homeomorphic, denote N [CNIx N [GI

Let M be a metric SPpce- VHy that S [CM is a Suslin set if it can be
written in the form S = |, ¢ , F (VIN), where F(s) [CM is closed for s [S1
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The set C [CM is co-Suslin if M \ C is Suslin. The preimages of Suslin sets
under a Borel measurable mapping are Suslin.

Let A be a subset of a metric space M. We say that a point x is a
condensation point of the set A if, for every neighbourhood U of the point
X, A n U is uncountable. The set A is condensed if it is nonempty and each of
its points is a condensation point. For separable A, let B be a set of all conden-
sation points of A. Then the set B is condensed and the set A\ B is countable,
[K, Chapter 2.B, §23, IlI, p. 260].

Proposition 1. For every separable absolute Borel metric space A (i.e. Borel
in its completion), which is condensed, there is a continuous one-to-one mapping
f of N onto A.

The proof of this proposition in the special case A is in [S]. To prove
Proposition 1 in the general case we follow closely the procedure of [S] using the
following two lemmas. The proof of Lemma B can follow the case M = R from
[S] (Lemma 3) almost word by word and we omit it.

Lemma A. Let M be a metric space, a subset A of the space M be an injective
continuous image of the space N and x be a condensation point of the set A.
Then A X} is an injective continuous image of N.

Lemma B. Let M be a Polish space and A be a condensed Borel measurable
subset of M. Then there exists a family of pairwise disjointlﬁ (An),, o, M
which are condensed, Borel measurable, dense in A and A= _; An.

Proof of Proposition 1. Let us denote M = ALet (An)n be a fam-
ily from Lemma B. There exists sets D, M and B, [CM such that A, =
Bn [Dl,, Dy are at most countable and By, are continuous injective Iﬁﬁllges of N,
[K, Chapter 3, 8§37, Il, consequence 1c, p. 462]. Denote D = | _, D, and
{X1,X2,...} = D finite or infinite sequence and C, = B, [{k,} for n [N if
card D = oo and, if card D = ng, C, = B, for n > ng. The sets D, are at most
countable, A are condensed and dense in A, hence By, are condensed and dense
in A. Then each point of D is a condensation point of B,. Then, by Lemma A,
the s?t__cln is injective continuous image of N. And now we easily obtain that
A= xLn isinjective continuous image of the space N as N [CNI(k) for every
k [N. —1

Proof of Lemma A. Let x IA], otherwise the proof is easy, and f: N — M be
an injective continuous mapping such that f(N) = A. Since x is a condensation
point of A, there existﬁ)l sequence ?Xn)nn@ such that x, — Xx. Denote
vn =F71(Xn), = % CXn, {X} e {Xi} , where [ metric of the space M.

Then An = U (Xn, ) (open ball of centre x, and radius r,) are pairwise
disjoint. As rn — 0, for arbitrary sequence y, [CAn, we get yn — X. Since T is
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continuous, there is a sequence (In),, l%o that %I (vnlln) DIIL. Denote
Hn = N(vnhlln) forn =1 and Hp = N \ H,. For n =1, the set Hy, is open
and closed, hence Hp is closed.

The set Hg is open. If it was not open, then there exist (n;), ., CN (1), o, CNI
and p [N such that p [CHop, pi CHp, and[';';‘:l" M. If there is [N so
that n; < m for eaElz;il LN, then (Wi), ., L—Jj=; Hj. Hence p [_1;2, Hj, and
1 FHp as the set =1 Hj is closed. Thus there exists a subsequence n;; — oo.
Since T(uj;) IIInij, we get T(Ui;) - x, and it implies f(u) = x and x A what
is contradiction. The sets H,, are open, hence H, NI for each n = 0.

Let us choose an arbitrary p and denote K, =|__N.‘u|n) \ N (u|n + 1) for
n = 0. The sets K, are pairwise disjoint open sets and |, Kn = N \{u}. Hence
Kn [Nl and K, [CH}, denote by ¢,: K, — Hp some homeomorphism. Now
let us define a mapping g: N \ {u} — M by g(DF= f(, (D) for CI'K,,. The
mapping g is injective, continuous on N \ {u} and g(N \{u}) = f(N) = A. Itis
easy to see that we can extend the function g to the point p by g(i) = x and g is
continuous. —1

n=1

A metric space C is called coanalyticly hard if for every Polish space P
and every its co-Suslin subset E [PI there exists a Borel measurable mapping
f: P —. d-ihto the completion &-f the space C such that E = f~1(C).

Recall that usually a subset C of Polish space M is said to be coanalyticly
hard (in M), if for every Polish space P and every its co-Suslin subset E [Pl
there exists a Borel measurable mapping f: P —— M so that E = f~1(C), [KL].
A subset C of a Polish space P is coanalyticly hard if and only if C is a coanalyticly
hard space.

Moreover, C is a coanalyticly hard space if and only if it contains a separable

subset E such that C nE* is a coanalyticly hard subset of Polish space EC
C is coanalyticly hard space, then by Lemma 4 bellow the set L of well-founded
trees is coanalyticly hard and co-Suslin in the Polish space T . Hence there is Borel
measurable mapping f: T — d-such that f~3(C) = L. By [F, Theorem 1] a

set E = f(T) is separable and by Lemma 3 bellow the set C n E " is coanalyticly
hard.

Lemma 2. Let M be a complete metric space and A be a coanalyticly
hard space. Then A is not the Suslin subset of M.

Proof. There exists a co-Suslin set C [, which is not Suslin in N,
[K, Chapter 3, 838, VI, p. 472]. Since A is a coanalyticly hard space and M
is a complete metric space, there exists a Borel measurable mapping f: N — M
such that C = f~1(A). If A was Suslin in M, f~%(A) = C would be Suslin in N. ]

Lemma 3. Let f: P — M be a Borel measurable mapping of a complete
metric space P to a metric space M and B [CM be a set such that f~1(B) = A
is a coanalyticly hard space. Then B is a coanalyticly hard space.
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Proof. Let E be a co-Suslin subset of a Polish space L. Then there exists Borel
measurable mapping g: L — P so that E = g~1(A). Let us define a mapping h
from L into the completion Nt—efkhe space M by h = f - g. The mapping h is
Borel measurable and h™%(B) = g71(A) = E. We need to find a Borel measurable

mapping k1L — B™ Such that h=1(B) = E.
There is a point x CH'"\B, otherwise the set B is closed in i, hénce f~1(B) =

A is Borel measurable which is a contradiction WLE% Lemma 1. Let us define the
mapping k-1 — §'\Dby k) = h(z) if h(z) and h¢) = x otherwise. [

We say that T [CSlis a tree if for every t [Tl and for every s such that
t is an extension of s, s [CTl. Let us denote the space of trees by T. Recall that
the space T is a compact metric space endowed with such a metric that T, - T
in its metric means that s [CT1if and only if there exists ng [CNIso that s [T}, for
N =ng. The space T corresponds to the stopping times defined in [D, p. 235].
Fors [SIv [N and T [Tl let us denote:

1
T(s)={T 1L, s I} and T(v)= T (v|n),

T(v) = oo if v|i CTlforevery i [Nl and
T(v) = min{i; v|i LI} otherwise.

We put P ={T [T], MICN: T (v) = oo} the set of ill-founded trees, L =T \ P
the set of well-founded trees, M = {T [Tl; [ CN: T(v) = oo }, and, finely,
Bi(T) ={s; s [11 & |s| =k}. The family {T (s); s Sk [T \T (s); s Sk is
a countable subbasis of topology of T.

Lemma 4. The spaces L, M and L [CIM1 are coanalyticly hard and they are
co-Suslin subsets of T .

Proof. Let us denote F = {(v,T) CN xT; T(v) =cc}andm: T XN — T
be the projection. The set F is obviously closed in the space T < N. Since
m(F) =P =T \L and the spaces T and T < N are Polish, the set L is co-Suslin,
[K, Chapter 3, §39, II, p. 493]. O O 3

Denote f =m [F. Then M = T [I; card F~3(T) =1 s co-Suslin in
space T, [K, Chapter 3, §39, VII, p. 504]. The set L M is the union of two
co-Suslin sets, hence it is co-Suslin.

For every co-Suslin subset E of a Polish space P, exists a upper semicontinuous
mapping f: P — T such that f~}(P) =P \E, [D, p. 239]. Since mapping f is
Borel measurable and f~1(L) = E, the space L is coanalyticly hard.

Let us define a continuous mapping H: T — T by

| a1
H(T)= (2,s); s CTI 1 i,
i (N0
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where g = (1,1,...). It holds that L = H™'(M) and, moreover, H(T) [H,
hence HY(M 1) = H™}(M) = L. Since L is coanalyticly hard, both sets M
and L [CIMI are coanalyticly hard. 1

Let us define a mapping ®: C,(N,R) — T by
1 1
o(f)= s [St %EN(S)E— 5 il I

Obviously ®o(f) Tl for f CCI(N,R).
Lemma 5. The mapping ® is Borel measurable of the first class.

Proof. Since the family {T (s); s [SI} [T \ T (s); s [SI} forms a countable
subbasis of topology T, it is su [cieht to prove that, for every s [3, the set
®~(T (s)) is closed. Let f, C@ (T (s)) and f, [E_1For arbirary € there
exists an i [Nisuch that F—f = £. Sing, forevery n [N, [N (s) £, C
there exists a p [N (s) such that [FJ[ =3 ()< 5. Hence

%(M)E”' = %(M)E[Ea(u)%%(u)atﬂté%}gm

every g 0, we found a p [N (s) such that (I = E(u)EL €. It means that
N (s) L and f CO (T (s)). 1

Proposition 6. The sets M_(N,R) and I_.(N,R) are co-Suslin in the space
Co(N,R).

Proof. It is easy to see that ®~1(M) = M_(N, R) because E(u)az F1if and
only if ®(F)() = oco. The mapping is Borel measurable and T \ M is Suslin. So

<2IZEI—fE—I§ <e.

O HT \M)=Cy(N,R)\® (M) =Co(N,R)\ M.(N,R)

is Suslin in M. (N, R).

The spaces N x N and N are homeomorphic, let §: N — N < N be a
homeomorphism. Let us denote D = {(v,v) [N xN;v [N}. AsN\¢ (D) is
an open set in N, the spaces N and N \ ¢~*(D) are homeomorphic, let ¢: N —
N \ ¢~ 1(D) be a homeomorphism.

Now, let us define a continuous mapping F1: Ch(N,R) — C,(N,R) by

Fi(F)(v) = éf)ﬂl cheyv)—fem °¢°LU(V)§

where 11, is the projection on the first coordinate and 1, on the second coordinate
of the space N x N.

It is easy to see that a function f CC}(N, R) is injective if and only if the func-
tion F1(F) does not attain zero. Moreover, for every f CCJ(N, R), infy, maF1(F)(V)
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= 0 because there exist (Un), o LN and p EEI such that-y, 8 g and pn - .
(n

For v = ¢~ (@ (1, kn)), it is F1(F)(vn) = M(W) — F ()T~ 0.

Let us define a continuous mapping F{* Co(N,R) — C,(N,R) by F{f)(v) =
[FI3f(v) and denote F, = F*F;. A function f CCJ(N, R) is injective if and only
if the function F»(F) does not attain its norm. Hence F, (M. (N,R)) = I.(N,R)
and because F, is a continuous mapping, the set

(- 1
F;1 G(N,R)\M_(N,R) =Cp(N,R)\I_(N,R)

is Suslin. 1

Let us define a mapping ©: T — RN. Given T [Tland v [N put

OM)MV)=2"T" if T(v) <o and
o(M)(v)=0 otherwise.

The mapping © is obviously injective. For S,T [T1, S & T, there existsav [N
so that S(v) B T (v), thus O(S)(v) 8 O(T)(v).

Lemma 7. For every T [, ©(T) [C&(N,R). The mapping © is Borel
measurable of the first class.

Proof. Let T [T and v,vn, [N, vy - v, denote f = ©(T). For any k [N
there exists np [N such that vylk = v[k for n = ng. If T(v) <k, then f(v,) =
f(v). If T(V) > Kk oFT (v) = oo, then F(v,) < 27K and f(v) < 27K, Therefore in
both cases we have E(Vn) —f(v)l< 2.27% for n = ng. Hence f(v,) - f(v) and
f [CI(N,R).

Now we show that ©(T ) is-gepargble. Let T LTI, k [Nibe arbitrary. For every
v [N it holds that 0 < © By(T) (v) — f(v) < 271 Thus O(R) is dense in
e(T.), whﬁ,éI ={T DI%I [nl CN: [s] Dﬁﬂ <n}isa countfflble set. N

Since U ©(T),27K; T R,k [N is a countable ba5|s|:0|f O(T), it is

|
obviously su [Cieht to prove that, forevery T [CTlandk [N, @1 U ©O(T),27K

. 1
is closed. Denote f =O(T), U =U f,2717K and

1 1
A= S LTI B(S) = Bi(T)

- 1
= S [ LN Oi<k:v|j CSI CICHj CO .

(| (|
A tree S [Tl belongs to A if and onlyif, for every v , min k,Sv)—1 =
L] L] k=S(v) — ok=T ()

min k, T(v) —1 . This is equivalent to

%(S)(v) - e(T)(v)éz E—SM — 2-T<V>§F 2717k,

5 and hence also to
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Both happens if and only if S @ *(U). Thus A = @~ 1(U).

It remains to prove that the set A is closed. Let S, — S and Bk(Sn) = Bk(T).
We will prove that Bk(S) = Bk(T). Let s be so that |s| < k. If s [S] then,
for some n [N, it is s S}, hence s [CTI. Conversely, if s [T, then, for every
n [N, it is s S}, hence s [S1 That means Bk(S) = Bk(T). 1

Proposition 8. The spaces M_.(N,R) and I_.(N,R) are coanalyticly hard.

Proof. Let us define an injective Borel measurable mappingW¥1: T — Cp(N,R)
by Wi(T)(v) =1 —2"V"O(T)(v) for v = (v1,v2,...) CN. Itis [P (T) = 1 for
every T LTl Because W1(T) CIMI_(N,R) if and only if T [\, it holds that

M.(N,R) nWi(T) = ¥;(M) and W7*(M.(N,R)) =M.

The space M is coanalyticly hard, hence M_(N, R) is coanalyticly hard.

Let ¢: N — (1,2) be an injective continuous function. Let us define an injec-
tive Borel measurable mapping W2: T — Cop(N,R) by Wo(T)(V) = ¢(V)O(T)(v).
Let T [Tl be an arbitrary tree and denote f = W,(T).

We show that if a function f attains zero in at most one point, then f is
injective. It means that a function W,(T) is injective if and only if T [0 [CIMI.
For suppose not. Then there exist sequences u,v [N such that p & v and
f(u) = f(v) 8 0. Since f(u) & 0 8 f(v) it must be ©(T)(L) B 0 B O(T)(v).
Moreover ¢ is injective, it means that ©(T)(L) & ©(T)(v). Thus lﬁre exis
i,j [NIso t@l Ej,_%T)(u) =2""and O(T)(v) =277, hence f(u) 2211
and f(v) 273,210 \@ich are pao disjoint intervals, but f(u) = f(v).

This means that Wz‘l I.(N,R) =L M. Thus the space I.(N,R) is coana-
lyticly hard. 1

Proposition 9. Let M and L be absolute Borel, separable, uncountable spaces.
Then the spaces M_(M,R) and I,(M,L) are coanalyticly hard. Thus the sets
M. (M,R) and 1,(M, L) are not Suslin subsets of B,(M, R) and B,(M, L).

Proof. Let My and L; [Llbe some countable sets, M, M \ M; and
L, [CI\L; be sets of points from the sets M\M; and L\L; which are condensation
points of M and L. There exist injective continuous mappings ¢1: N — Mo,
Wi: N — Lyand g: N — R so that $1(N) = My, Y1 (N) =L, and g(N) =R,
Let D [Nl be a countable closed set. The spaces N and N \D are homeomaorphic;
let n: N\D — N be a homeomorphism. Denote ¢ = ¢ onand ¢ = Y1 = n.
As the sets M \ M, and L \ L, are countable, we can define the mapping ¢ and
Y on the set D such that §(N) = M, Y(N) = L. Then the mappings ¢ and
y are Borel measurable. As ¢~ and g~ are Borel measurable ([K, Chapter 3,
§39, V, Theorem 3, p. 500]), we can define an injective Borel measurable mapping
F:Co(N,R) —= By(M,L) by F(f) = g og™tof o™t As the mappings ¢p~1,
g~ ! and Y are injective, F1(1,(M, L)) = I.(N,R), and it means that the space
I, (M, L) is coanalyticly hard.
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For M (M, R) we define the mapping F by F(f) = f-¢~1. Again, it holds that
F~1(M_.(M, L)) = M.(N,R), and the space M_ (M, R) is coanalyticly hard. [

This paper was written on base of my thesis. | would like to thank my supervisor
Petr Holicky for his helpful comments.
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