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ON DECOMPOSABILITY OF NAMBU-POISSON TENSOR

D. ALEKSEEVSKY and P. GUHA

Abstract. In this paper we find some interesting algebraic structure of Nambu
Poisson manifold and also we prove Takhtajan’s conjecture that Nambu-Poisson
tensor which defines Nambu bracket in Nambu mechanics is decomposable.

1. Introduction

Nambu mechanics is a natural generalization of Hamiltonian mechanics [1, 2,
3, 4]. It is defined by Nambu bracket, R-multilinear completely antisymmet-
ric operation {fy,...,fm} in the space C*=°(M) of functions on a manifold M,
which generalizes the bilinear Poisson bracket {f;,f,}. Any m — 1 functions
Hi,...Hmn—1 Q> (M) (Nambu-Hamiltonians) determine a Nambu-Hamiltonian

flow o
a = {f, H]_,... ,Hm_]_}

on the manifold M. The Jacobi identity for Poisson bracket is replaced by funda-
mental (or generalized Jacobi) identity which states that a Nambu-Hamiltonian
flow preserves the Nambu bracket.

An example of Nambu bracket is the canonical Nambu bracket on M = R™

with the standard coordinates X, ... ,Xm given by
o(f1,...,Tm)
f,...., fn}=—0—"7"-—"-—"—"=
. T} (X1, ..., Xm)’

where the right hand side stands for the Jacobian of the mapping
f=(f,...,fm) :R™B- R™.

Itis clear from the definition of Nambu bracket that it contains an infinite family
of “subordinated” Nambu structure of lower degree, including Poisson structure.
Fundamental identity imposes strong condition on the possible form of Nambu
bracket, hence the structure of Nambu bracket is more rigid than Poisson bracket.
In addition to quadratic di[erkntial equations, it also satisfy an overdetermined
system of quadratic algebraic equations for Nambu bracket tensor.
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We prove than in fact any Nambu bracket is locally isomorphic to the canonical
Nambu bracket of the above example, as it was conjectured by L. Takhtajan [5].
Let us begin with the definition of Nambu-Poisson manifold.

Definition 1. Let M be a smooth finite n-dimensional manifold with algebra
of functions C*°(M) and Lie algebra of vector fields x(M). M is called Nambu-
Poisson manifold if there exists a multi-linear map

Xt [C= (M) T — x(M)
Iﬂ1f21 LR 1f2m—1 E]oo(l\/l)v

(F1, ..., Fm—1) B> X, fry-
such that the bracket defined by

{flf].! e ,fm—l} = Xfl...fm_lf

is skew symmetric in all arguments and is invariant under any Hamiltonian vector
fields X = X¢,. £, I.€.

(1) x{gla 1gm}:{Xgll vgm}++{gla qum}

Similar to a Poisson structure, Nambu-Poisson structure is defined by a m-
multivector
P=pP'Im [TI[TTM)

by
Xfl,... ,fm—lf = {f! fl! e 1fm—l} = P (dfl dfll EC dfm—l)
= plotudm—10; £0;,f1 ... 0, , Fm—1,
where (X1, ... ,Xm) are local coordinates and 0;,, = 32.

The equation (1) means that the bracket {fy,...,fm—1, fm} satisfies the fol-
lowing fundamental identity:

()] {{f1,... . fm—1. T}, Fm+1, ..., Fom—1}
+ {fm, {f1,... Fm—1, Fm+1}, Fm+2, ..., Tom—1}
+o A+ {fm, .. Fom—2, {f1, ..., Tm—1, Fom—1}}
={f1.... . fm—1.{fm,... . Fom-1}}.

Incidentally Takhtajan has written fundamental identity in this form.
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Takhtajan [5] proved that the fundamental identity (2) is equivalent to the
following di Lerkntial and algebraic constraint equations of Nambu-Poisson tensor
P i1,... ’im(X)Z

(3) Pkiz-..im M -+ ijki3___imw
k=1 an an
i1 dm—aim [
e Pz SR
an
_ Mgy dph
k=1 an !
for all iz, ... ,im, j1,---,dm =1,---,n, and
(4) Sij + P(Sij) =0,
where
(5) Sij = Pil-..im pjl...jm + iji1i3“'im_1Pj1~~-jm_1i2

+ o+ ijiz---im—lpjl---jm—lil — ijiz---le---jm—lil

and P is the permutation operator which interchanges the indices i1 and j; of 2m
dimensional tensor S. He proved that any decomposable multivector

P=X, [l [Xm, Xi M),

whose support is an integrable distribution, satisfies these constraints and hence
defines a Poisson-Nambu tensor and conjectured that any multivector P which
satisfies the algebraic equation (4) is decomposable. To prove this conjecture we
reformulate (4) in coordinate free way.

Earlier Larry Lambe using symbolic computations technique varified in some
cases the decomposability of Nambu tensor. Anyway, before leaving this section
let us de-emphasised the main slogan of Takhtajan:

Conjucture 2. Any Nambu-Poisson tensor P CII([™TM) for m > 2 is
decomposable.

Notation. In this paper we shall denote wedge product by [Cahd symmetric
product by [

2. Reformulation of Fundamental Identity

Now we write the algebraic Takhtajan identity (4) for multivector P in a point
o [CM in coordinate free way. Let us denote by V = T,M the tangent space at
the point o0 and by
Py = [B,nCLIMT*V
result of the natural pairing between a multivector P CII"V and k-formn XV 5
k=m.
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Lemma 3. The algebraic Takhtajan identity (4) for m-multivector P 1™V
is equivalent to the identity

 L—
(Pa tagnPr; texgrt Pp tagn Pri taxg) = 0,

i=1
for any o, B,n1,...Nm 5S¢ CO™T2V 5 =ny 1. [O4, where

dn = (1) T ORI T T

Proof. Given any 1-forms a,,&2,...,&™ %, nt,...,.n™ M= TSM, we
choose functions fi,...,fm—1, 91,... ,0m such that

n'=dgilo,  d’gilo=0, & =dfjlp, j>1,
d’filo =0 [O>0, df1lo =0,
d’f1o = o [BH B Lok o [BI

The fundamental identity can be written as

(6) X -P(dgy, ... ,dgm)
=P(d(X - 91),dgy, ... ,dgm) + -+ + P (dgs, ... ,d(X - gm)
=P (d(X - 91),dg,, -, dgm) — P (d(X - g2), dg1, g2, . . . dgm)
+ P (d(X - gs), dga, dg, dgs, . .. , dgm)
+ o4+ (=)™ P (X - gm). dgy, -+, dgm)

where
X - gi = P(dg., df]_, - ,dfm_]_).
Hence we obtain
()  d(X -g1)lo = dP(dgy, dfy, ..., dfm—1)lo =P (', a CRIEZ, -+, E™7H)
= P(ﬂll a, 22! e !Em_l)B + P(r]l! B! 62! e !Em_l)a
= Pnl mﬁﬁﬁ —+ Pnl mﬂ,

where @ = &2 1. CETL. Similarly we get,

(8)  d(X-gi)lo =P (dgi, d*Fy, df, ..., dfm—1)lo
:P(r]i,q EBJEZ""'Em_l):Pnimfpﬁ"'Pni Q.
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Taking into account that X|o = 0 we obtain

) 0=P(a,dgz,...,dIm)|oPn: rgrgr P (B.dgz, ... ,dgm)loPn: rargl
+ .-+ P(dgy,...,dgi—1, A, dGi+1, - .. , dIm)|oPni rprgn
+P(dgs, ... ,dgi-1,B,dgi+1, ... ,dgm)loPni rergrt «

= Pa gy P2 qpagrt Pp macame Priaren
+ 4 (-1) 7P 8 Cmn g Pt g

+ (—1)""'Pg rpur—n g P2 rargrt
™ 1

= (Parag,nPni trrert Pp tag, nPni rare)-
i=1

This proves the lemma. 1

To rewrite the identity in more simple way we introduce the following Koszul
type operator:
d: ™MV "V — S?V CITT?V [CITYV,

by the formula

d(P [CP)(a [RICQ) =Py [Phrgrt Pg [Phrgn

for a, [\1%and ¢ CII™T2V "'Here P, denotes contraction of P by o etc. Hence
Pa, Pg are m — 1 multivectors and Pg rga Po rgiare vectors.
Note that d =0 for m = 2.

Let us make a remark that for a decomposable m polyvector n =n; I [,
we have

d(P CP)(o [RI @) = [(Po [P rgr+ Pp [Phig), Y]
™ 1
= (ParagnPn rerat Pp rag,nPr; rarg).
i=1
Hence we have

Corollary 4. A multivector P [II™V satisfies the algebraic Takhtajan identity
i1
d(P [P)=0.
3. Properties of Nambu-Poisson Operator

In fact d is composed of two operators d; and da,

d; : MV CITV — S2V CITTYV CITTV
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and
d, : S?V CITTV CITTV — S?2V CITT?V LTV,
defined by
1
di(P Q)= e Cg [Pk [QL
and

| —
d(S CPICQ) =S [ P [ed [Q

Here S [SPV and {e;} is a basis of V and {e'} is the dual basis of V ='Hence
d is written as
d=d;~d;.

Given any contravariant m-tensor T [CM ™ we will denote by supp T its
support, that is subspace of V generated by contructions of T with all covariant
(m — 1) tensors. Since the operator d is the sum of the permutations of tensor
factors, we have

suppd(P Q) = supp (P Q)

for any P,Q [IIMV.

Let now T [V1™is a contravariant tensor and e is a non-zero vector. We say
that T contains factor e with multiplicity k if any non-zero coordinate T iz im
of T with respect to a base eg = e,e1,...,en—1 0f V has at least k zero indices
and there is a coordinate which has exactly k zero indices. In other terms, T is
decomposed as a linear combination of decomposable tensors e;, 1 [g;], each
of them has at least k-factors ep = e.

It is clear that this definition is correct (i.e. does not depend on the choice of
the base eg = e, ... ,en—1 and the multiplicity k of a factor e in T does not change
after any transformation of T which is a linear combination of permutations.

Using this argument, we get:

Lemma 5. Let Q [CII™T'V, R "V be multivectors and e is a vector such
that e Y supp Q + supp R. Then the multivector P = e [CQ + R satisfies the
equation d(P [P} =0il]

dQ Q) =0, d((e Q) [R)=0, d(R[CR)=0.
Proof. We know

d(P [CP) =d(e [Q [erQ)+de CQLR)+dR [R)=0.
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Since the summands contain the vector e with the multiplicity 2,1 and O respec-
tively, these are linearly dependent only when they are identically zero.
It remains to prove now that

de [QLerQ)=0
implies d(Q Q) = 0. Let us consider a basis ey, ... , ek of supp Q = U and denote
by el,...,eX the dual basis of U "Using definition of d, we obtain
0=d(e [Q L Q)

L1
= (e [LPLdQ [Q)— (e Led LdAQ L@ LQk:))

1
+  (ei [gyl) Cdd((e Qi) LA [Qki)).
i.j
Since tensors e Cele [Cej, e; Cey are linearly independent, we have

1
0= (& [gj) Ldk(e [Qkr) [{E [ Qi)

i— ~

(ei Cg) L&l CeldAQei Qi)
(] -
(e )T (e Cojl) CANQei Qi)

i,j
= (e [B)IIAD [Q),

where [1d the Kulkarni-Nomizu product in the space [V1[I¥lof bimultivectors
defined by

(A [B)[{A [D) = (A [C) (B [D),
for A,B,C,D [II/]

Note that e Y supp d(Q Q) = supp Q. This implies that the operator of
Kulkarni-Nomizu multiplication by e [Ce1s non-degenerate and we obtain

d(Q Q) =0. -

Lemma 6. Let P =¢; [ &}, and R = f; 1. [}, be decomposable non
zero m-multivectors. Then

d(P [R) =0
i (R is proportional to P : R = AP.

Proof. We can write P = E [P1] R = E [RI, where E, PR are decomposable
multivectors and

(10) supp P “h supp R"=0.
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Using the arguments as in the proof of Lemma 6, we assert d(P [RI) = 0 implies
d(PYCRI) = 0. Suppose that deg P"= deg Q"= k > 0. Then the we can write

P=el' 0 e, R=f7Cf

Condition (10) implies that the vectors ef) ... , el fi; ..., f are linearly inde-
pendent. Then one can check immediately that

dPPrRH E 0.

This contradiction shows k =0and R = AP. 1

4. Proof of Takhtajan’s Conjecture

We want to prove the following:

Theorem 7. A multivector P [CII"V, m > 2 satisfies the algebraic Takhtajan
identity d(P [PJ) = 0 i [ifl is decomposable, i.e. P = e; [1 [&4, for some vectors
el, P ,em.

Proof. We will assume that supp P =V and we will use method of induction
onn=dimV. Letd(P [P} =0for P & 0and0 & e is a vector which belongs to
supp P, choose Q O™V and R CII™T1V such that

P =e [Q+R, e Y (Supp Q +supp R) =VvU

By Lemma 5,

dQ CQ =0, dRLCR)=0  die CQLR)=0.

Since dim supp Q < n and the dim supp R < n by inductive conjecture we may
assume that Q and R are decomposable. Then Lemma 6 shows that R = 0 and
P =e [Q=¢e [e] 1 [Ce}h—; is decomposable multivector. 1

As a corollary we obtain the following local description of Nambu-Poisson ten-
sors on a manifold M.

Corollary 8. Let M be a Nambu-Poisson manifold with Nambu-Poisson tensor
P CIAC™TM), m > 2. Assume that Py 8 0 for some point x. Then there exist
a local coordinates Xy, ... ,Xn in a neighbourhood of x such that

P =0,, [ [d},.

Proof. By Theorem 7, in some neighbourhood of the point x there exist a set of
independant vector fields Xi,... , Xy such that P = X; 1 [X},. Itis su [cieht
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to prove that m-dimensional distribution supp P generated by vector fields X is
involutive. This follows from the facts that this distribution is generated also by all
Nambu-Hamiltonian vector fields X¢, .. f,,_, and that Nambu- Hamiltonian vector
fields are closed under the Lie bracket. The last statement follows immediately
from fundamental identity. 1
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