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ON DECOMPOSABILITY OF NAMBU–POISSON TENSOR

D. ALEKSEEVSKY and P. GUHA

Abstract. In this paper we find some interesting algebraic structure of Nambu
Poisson manifold and also we prove Takhtajan’s conjecture that Nambu-Poisson
tensor which defines Nambu bracket in Nambu mechanics is decomposable.

1. Introduction

Nambu mechanics is a natural generalization of Hamiltonian mechanics [1, 2,

3, 4]. It is defined by Nambu bracket, R-multilinear completely antisymmet-

ric operation {f1, . . . , fm} in the space C∞(M) of functions on a manifold M ,

which generalizes the bilinear Poisson bracket {f1, f2}. Any m − 1 functions

H1, . . .Hm−1 ∈ C∞(M) (Nambu-Hamiltonians) determine a Nambu-Hamiltonian

flow
df

dt
= {f,H1, . . . ,Hm−1}

on the manifold M . The Jacobi identity for Poisson bracket is replaced by funda-

mental (or generalized Jacobi) identity which states that a Nambu-Hamiltonian

flow preserves the Nambu bracket.

An example of Nambu bracket is the canonical Nambu bracket on M = Rm
with the standard coordinates x1, . . . , xm given by

{f1, . . . , fm} =
∂(f1, . . . , fm)

∂(x1, . . . , xm)
,

where the right hand side stands for the Jacobian of the mapping

f̃ = (f1, . . . , fm) : Rm 7−→ Rm.

It is clear from the definition of Nambu bracket that it contains an infinite family

of “subordinated” Nambu structure of lower degree, including Poisson structure.

Fundamental identity imposes strong condition on the possible form of Nambu

bracket, hence the structure of Nambu bracket is more rigid than Poisson bracket.

In addition to quadratic differential equations, it also satisfy an overdetermined

system of quadratic algebraic equations for Nambu bracket tensor.

Received February 25, 1996; revised April 11, 1996.
1980 Mathematics Subject Classification (1991 Revision). Primary 70H99.



2 D. ALEKSEEVSKY and P. GUHA

We prove than in fact any Nambu bracket is locally isomorphic to the canonical

Nambu bracket of the above example, as it was conjectured by L. Takhtajan [5].

Let us begin with the definition of Nambu-Poisson manifold.

Definition 1. Let M be a smooth finite n-dimensional manifold with algebra

of functions C∞(M) and Lie algebra of vector fields χ(M). M is called Nambu-

Poisson manifold if there exists a multi-linear map

X : [C∞(M)]⊗(m−1) −→ χ(M)

∀f1, f2, . . . , f2m−1 ∈ C∞(M),

(f1, . . . , fm−1) 7−→ Xf1,... ,fm−1 .

such that the bracket defined by

{f, f1, . . . , fm−1} := Xf1...fm−1f

is skew symmetric in all arguments and is invariant under any Hamiltonian vector

fields X = Xf1...fm , i.e.

(1) X{g1, . . . , gm} = {Xg1, . . . , gm}+ · · ·+ {g1, · · · ,Xgm}.

Similar to a Poisson structure, Nambu-Poisson structure is defined by a m-

multivector

P = P i1,... ,im ∈ Γ(∧mTM)

by

Xf1,... ,fm−1f = {f, f1, . . . , fm−1} = P (df, df1, . . . dfm−1)

= P i0i1,...im−1∂i0f∂i1f1 . . . ∂im−1fm−1,

where (x1, . . . , xm) are local coordinates and ∂in := ∂
∂xn

.

The equation (1) means that the bracket {f1, . . . , fm−1, fm} satisfies the fol-

lowing fundamental identity:

{{f1, . . . , fm−1, fm}, fm+1, . . . , f2m−1}(2)

+ {fm, {f1, . . . fm−1, fm+1}, fm+2, . . . , f2m−1}

+ · · ·+ {fm, . . . , f2m−2, {f1, . . . , fm−1, f2m−1}}

= {f1, . . . , fm−1, {fm, . . . , f2m−1}}.

Incidentally Takhtajan has written fundamental identity in this form.
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Takhtajan [5] proved that the fundamental identity (2) is equivalent to the

following differential and algebraic constraint equations of Nambu-Poisson tensor

P i1,... ,im(x):
m∑
k=1

(
P ki2...im

∂P j1...jm

∂xk
+ P jmki3...im

∂P j1j2j3...jm−1i2

∂xk
(3)

+ · · ·+ P jmi2...im−1k
∂P j1...jm−1im

∂xk

)
=

M∑
k=1

P j1j2...jm−1k
∂P jmi2...im

∂xk
,

for all i2, . . . , im, j1, . . . , jm = 1, · · · , n, and

(4) Sij + P(Sij) = 0,

where

Sij = P i1...imP j1...jm + P jmi1i3...im−1P j1...jm−1i2(5)

+ · · ·+ P jmi2...im−1P j1...jm−1i1 − P jmi2...P j1...jm−1i1

and P is the permutation operator which interchanges the indices i1 and j1 of 2m

dimensional tensor S. He proved that any decomposable multivector

P = X1 ∧ . . . ∧Xm, Xi ∈ χ(M),

whose support is an integrable distribution, satisfies these constraints and hence

defines a Poisson-Nambu tensor and conjectured that any multivector P which

satisfies the algebraic equation (4) is decomposable. To prove this conjecture we

reformulate (4) in coordinate free way.

Earlier Larry Lambe using symbolic computations technique varified in some

cases the decomposability of Nambu tensor. Anyway, before leaving this section

let us de-emphasised the main slogan of Takhtajan:

Conjucture 2. Any Nambu-Poisson tensor P ∈ Γ(∧mTM) for m > 2 is

decomposable.

Notation. In this paper we shall denote wedge product by ∧ and symmetric

product by ∨.

2. Reformulation of Fundamental Identity

Now we write the algebraic Takhtajan identity (4) for multivector P in a point

o ∈ M in coordinate free way. Let us denote by V = ToM the tangent space at

the point o and by

Pη = 〈P, η〉 ∈ ∧m−kV

result of the natural pairing between a multivector P ∈ ∧mV and k-form η ∈ ∧kV ∗,
k ≤ m.
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Lemma 3. The algebraic Takhtajan identity (4) for m-multivector P ∈ ∧mV
is equivalent to the identity

m∑
i=1

(Pα∧∂ηiηPηi∧β∧φ + Pβ∧∂ηiηPηi∧α∧φ) = 0,

for any α, β, η1, . . . ηm ∈ V ∗, φ ∈ ∧m−2V ∗, η = η1 ∧ . . . ∧ ηm, where

∂ηiη = (−1)i−1η1 ∧ . . . ∧ η̂i ∧ . . . ∧ ηm.

Proof. Given any 1-forms α, β, ξ2, . . . , ξm−1, η1, . . . , ηm ∈ V ∗ = T ∗0M , we

choose functions f1, . . . , fm−1, g1, . . . , gm such that

ηi = dgi|0, d2gi|0 = 0, ξj = dfj |p, j > 1,

d2fi|0 = 0 ∀ i > 0, df1|0 = 0,

d2f1|0 = α⊗ β + β ⊗ α = α ∨ β.

The fundamental identity can be written as

X · P (dg1, . . . , dgm)(6)

= P (d(X · g1), dg2, . . . , dgm) + · · ·+ P (dg1, . . . , d(X · gm)

= P (d(X · g1), dg2, · · · , dgm)− P (d(X · g2), dg1, d̂g2, . . . dgm)

+ P (d(X · g3), dg1, dg2, d̂g3, . . . , dgm)

+ · · ·+ (−1)m−1P (d(X · gm), dg1, · · · , d̂gm)

where

X · gi = P (dgi, df1, . . . , dfm−1).

Hence we obtain

d(X · g1)|0 = dP (dg1, df1, . . . , dfm−1)|0 = P (η1, α ∨ β, ξ2, · · · , ξm−1)(7)

= P (η1, α, ξ2, · · · , ξm−1)β + P (η1, β, ξ2, . . . , ξm−1)α

= Pη1∧α∧φβ + Pη1∧β∧φα,

where φ = ξ2 ∧ . . . ∧ ξm−1. Similarly we get,

d(X · gi)|0 = P (dgi, d
2f1, df2, . . . , dfm−1)|0(8)

= P (ηi, α ∨ β, ξ2, . . . , ξm−1) = Pηi∧α∧φβ + Pηi∧β∧φα.
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Taking into account that X|0 = 0 we obtain

0 = P (α, dg2, . . . , dgm)|0Pη1∧β∧φ + P (β, dg2, . . . , dgm)|0Pη1∧α∧φ(9)

+ · · ·+ P (dg1, . . . , dgi−1, α, dgi+1, . . . , dgm)|0Pηi∧β∧φ

+ P (dg1, . . . , dgi−1, β, dgi+1, . . . , dgm)|0Pηi∧α∧φ + · · ·

= Pα∧η2∧...∧ηmPη1∧β∧φ + Pβ∧η2∧...∧ηmPη1α∧φ

+ · · ·+ (−1)i−1Pα∧η1∧...∧η̂i∧...∧ηmPη1∧β∧φ

+ (−1)i−1Pβ∧η1∧...η̂i∧...∧ηmPη1∧α∧φ + · · ·

=
m∑
i=1

(Pα∧∂ηiηPηi∧β∧φ + Pβ∧∂ηiηPηi∧α∧φ).

This proves the lemma. �

To rewrite the identity in more simple way we introduce the following Koszul

type operator:

d : ∧mV ∨ ∧mV −→ S2V ⊗ ∧m−2V ⊗ ∧mV,

by the formula

d(P ⊗ P )(α ∨ β ⊗ φ) = Pα ∧ Pβ∧φ + Pβ ∧ Pα∧φ,

for α, β ∈ V ∗ and φ ∈ ∧m−2V ∗. Here Pα denotes contraction of P by α etc. Hence

Pα, Pβ are m− 1 multivectors and Pβ∧φ, Pα∧φ are vectors.

Note that d = 0 for m = 2.

Let us make a remark that for a decomposable m polyvector η = η1 ∧ · · · ∧ ηm
we have

d(P ⊗ P )(α ∨ β ⊗ φ⊗ ψ) = 〈(Pα ∧ Pβ∧φ + Pβ ∧ Pα∧φ), ψ〉

=
m∑
i=1

(Pα∧∂ηiηPηi∧β∧φ + Pβ∧∂ηiηPηi∧α∧φ).

Hence we have

Corollary 4. A multivector P ∈ ∧mV satisfies the algebraic Takhtajan identity

iff

d(P ⊗ P ) = 0.

3. Properties of Nambu-Poisson Operator

In fact d is composed of two operators d1 and d2,

d1 : ∧mV ⊗ ∧mV −→ S2V ⊗ ∧m−1V ⊗ ∧m−1V
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and

d2 : S2V ⊗ ∧m−1V ⊗ ∧m−1V −→ S2V ⊗ ∧m−2V ⊗ ∧mV,

defined by

d1(P ⊗Q) =
∑

ek ∨ el ⊗ Pek ⊗Qel

and

d2(S ⊗ P ⊗Q) = S ⊗
∑

Pek ⊗ ek ∧Q.

Here S ∈ S2V and {ei} is a basis of V and {ei} is the dual basis of V ∗. Hence

d is written as

d = d2 ◦ d1.

Given any contravariant m-tensor T ∈ V ⊗m we will denote by supp T its

support, that is subspace of V generated by contructions of T with all covariant

(m − 1) tensors. Since the operator d is the sum of the permutations of tensor

factors, we have

supp d(P ∨Q) = supp (P ∨Q)

for any P,Q ∈ ∧mV .

Let now T ∈ V ⊗m is a contravariant tensor and e is a non-zero vector. We say

that T contains factor e with multiplicity k if any non-zero coordinate T i1,... ,im

of T with respect to a base e0 = e, e1, . . . , en−1 of V has at least k zero indices

and there is a coordinate which has exactly k zero indices. In other terms, T is

decomposed as a linear combination of decomposable tensors ei1 ⊗ · · · ⊗ eim each

of them has at least k-factors e0 = e.

It is clear that this definition is correct (i.e. does not depend on the choice of

the base e0 = e, . . . , en−1 and the multiplicity k of a factor e in T does not change

after any transformation of T which is a linear combination of permutations.

Using this argument, we get:

Lemma 5. Let Q ∈ ∧m−1V , R ∈ ∧mV be multivectors and e is a vector such

that e /∈ supp Q + supp R. Then the multivector P = e ∧ Q + R satisfies the

equation d(P ⊗ P ) = 0 iff

d(Q⊗Q) = 0, d((e ∧Q) ∨R) = 0, d(R⊗R) = 0.

Proof. We know

d(P ⊗ P ) = d(e ∧Q⊗ e ∧Q) + d(e ∧Q ∨R) + d(R ⊗R) = 0.
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Since the summands contain the vector e with the multiplicity 2, 1 and 0 respec-

tively, these are linearly dependent only when they are identically zero.

It remains to prove now that

d(e ∧Q⊗ e ∧Q) = 0

implies d(Q⊗Q) = 0. Let us consider a basis e1, . . . , ek of supp Q = U and denote

by e1, . . . , ek the dual basis of U∗. Using definition of d, we obtain

0 = d(e ∧Q⊗ e ∧Q)

= (e⊗ e)⊗ d2(Q⊗Q)−
∑
i

(e ∨ ei)⊗ d2(Q ∨ (e ∧Qei))

+
∑
i,j

(ei ∨ ej)⊗ d2((e ∧Qei) ∨ (e ∨Qej )).

Since tensors e⊗ e, e ∨ ei, ei ∨ ej are linearly independent, we have

0 =
∑
i,j

(ei ∨ ej)⊗ d2((e ∧Qei) ∨ (e ∧Qej ))

=
∑
i,j

(ei ∨ ej)⊗ (e⊗ e)∧̄d2(Qei ∨Qej )

= (e⊗ e)∧̄
∑
i,j

(ei ∨ ej)⊗ d2(Qei ∨Qej )

= (e⊗ e)∧̄d(Q⊗Q),

where ∧̄ is the Kulkarni-Nomizu product in the space ∧V ⊗∧V of bimultivectors

defined by

(A⊗B)∧̄(C ⊗D) = (A ∧ C)⊗ (B ∧D),

for A,B,C,D ∈ ∧V .

Note that e /∈ supp d(Q ⊗ Q) = supp Q. This implies that the operator of

Kulkarni-Nomizu multiplication by e⊗ e is non-degenerate and we obtain

d(Q⊗Q) = 0 . �

Lemma 6. Let P = e1 ∧ . . . ∧ em and R = f1 ∧ . . . ∧ fm be decomposable non

zero m-multivectors. Then

d(P ∨R) = 0

iff R is proportional to P : R = λP .

Proof. We can write P = E∧P ′, R = E∧R′, where E,P ′, R′ are decomposable

multivectors and

(10) supp P ′ ∩ supp R′ = 0 .
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Using the arguments as in the proof of Lemma 6, we assert d(P ∨R) = 0 implies

d(P ′ ∨R′) = 0. Suppose that deg P ′ = degQ′ = k > 0. Then the we can write

P ′ = e′1 ∧ · · · ∧ e
′
k, R′ = f ′1 ∧ · · · f

′
k.

Condition (10) implies that the vectors e′1, . . . , e
′
k, f
′
1, . . . , f

′
k are linearly inde-

pendent. Then one can check immediately that

d(P ′ ∨R′) 6= 0 .

This contradiction shows k = 0 and R = λP . �

4. Proof of Takhtajan’s Conjecture

We want to prove the following:

Theorem 7. A multivector P ∈ ∧mV , m > 2 satisfies the algebraic Takhtajan

identity d(P ⊗P ) = 0 iff it is decomposable, i.e. P = e1∧ . . .∧em, for some vectors

e1, . . . , em.

Proof. We will assume that supp P = V and we will use method of induction

on n = dimV . Let d(P ⊗P ) = 0 for P 6= 0 and 0 6= e is a vector which belongs to

supp P , choose Q ∈ ∧m−1V and R ∈ ∧m−1V such that

P = e ∧Q+R, e /∈ (supp Q+ supp R) = V ′

By Lemma 5,

d(Q⊗Q) = 0, d(R ⊗R) = 0, d(e ∧Q ∨R) = 0.

Since dim supp Q < n and the dim supp R < n by inductive conjecture we may

assume that Q and R are decomposable. Then Lemma 6 shows that R = 0 and

P = e ∧Q = e ∧ e1 ∧ . . . ∧ em−1 is decomposable multivector. �

As a corollary we obtain the following local description of Nambu-Poisson ten-

sors on a manifold M .

Corollary 8. Let M be a Nambu-Poisson manifold with Nambu-Poisson tensor

P ∈ Γ(∧mTM), m > 2. Assume that Px 6= 0 for some point x. Then there exist

a local coordinates x1, . . . , xn in a neighbourhood of x such that

P = ∂x1 ∧ . . . ∧ ∂xm .

Proof. By Theorem 7, in some neighbourhood of the point x there exist a set of

independant vector fields X1, . . . ,Xm such that P = X1∧ . . .∧Xm. It is sufficient
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to prove that m-dimensional distribution supp P generated by vector fields Xi is

involutive. This follows from the facts that this distribution is generated also by all

Nambu-Hamiltonian vector fieldsXf1,... ,fm−1 and that Nambu- Hamiltonian vector

fields are closed under the Lie bracket. The last statement follows immediately

from fundamental identity. �
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