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KNEADING THEORY FOR A FAMILY OF CIRCLE MAPS
WITH ONE DISCONTINUITY

LI. ALSEDA and F. MANOSAS

Abstract. We apply the kneading theory techniques to a class of circle maps with
one discontinuity and we characterize the rotation interval of a map in terms of the
kneading sequences. As a consequence we obtain lower and upper bounds of the
entropy depending on the rotation interval.

1. Introduction

We study the class C of maps F: R — R defined as follows (see Figure 1).
We say that F [CClif:

(1) Flo,1) is bounded, continuous and non-decreasing.
(2) lim F(x) > lim F(x).

xX11 X111
() F(x+1)=F(x)+1 forall x [R.

For a map F [Cland for each a CZwe set F(a*) = limy,a F(X) and F(a™) =
limy;a F(X). In view of (3) we have F(a*) =F(0*)+aand F(a”) =F(07) +a.
Note that the exact value of F (0) is not specified. Then in what follows we consider
that F (0) is either F(0*) or F(07), or both, as necessary.

Since every map F [Clhas a discontinuity in each integer, the class C can be
considered as a family of liftings of circle maps with one discontinuity.

The maps of class C appear in a natural way in the study of many branches of
dynamics. The simplest example of such maps is the family x - Bx + a, which
plays an important role in ergodic theory (see [H]). The case a = 0 gives the
famous B-transformations (see [R]). Also, the class C contains the class of the
Lorenz-Like maps which has been studied by several authors (see [ALMT], [G],
[GS], [Gu], [HS], [S]).

The aim of this paper is to extend the kneading theory developed in [AM] for
continuous maps of the circle of degree one to class C, to obtain a characterization
of the rotation interval of a map in terms of its kneading sequences. From this
characterization we shall obtain models with maximum and minimum entropy
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/

Figure 1. An example of a map of class C.

and, hence, lower and upper bounds of the topological entropy depending on the
rotation interval. The lower bounds of the topological entropy for this class of
maps were already known (see [ALMT]). Here we give a di[erknt proof.

To extend the kneading theory to our class of maps we note that it is closely
related to the class Adefined as follows. We say that F CAif (see Figure 2) :

(1) F [CIR,R) and F(x + 1) = F(x) + 1 for all x [R.
(2) There exists ceg [(0, 1), such that F is non-decreasing in [0, ce] and non-
increasing in [cg, 1].
() F(cr) =F().
To show the relation between maps from class C and A”take F [Cl and for
each u > 0 let ¢, [(0,1) be such that F(c,) = p(1 —cy) + F(1*). Also let Fy, be
the continuous map defined as follows (see Figure 3):

(1 Fulo,cg=F,
(2) Fu(x) = p( —x) +F(@*) for all x C[d,, 1)
Clearly for all p >0, Fy CAY limy ey =1 and F(X) = limy_ e Fu(X). In
other words each map of C is a pointwise limit of maps from AY
The class Acontains the class A of those maps which satisfy the statement (2)
of the definition of APwith strict monotonicity. In [AM] a kneading theory for
maps from class A was developed. It is an easy exercise to extend this kneading
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Figure 2. A map of class A"

theory and all the results of [AM] to the class AY To study the class C we shall
use without proof the results from [AM] for class AY Most of the results we
shall state for class C are also trivial extensions of the corresponding ones in the
continuous case. Thus we shall also omit their proofs. However, this paper is an
extension of [AM]. Therefore, to understand the proofs and details of this paper
it is necessary to know the general theory developed in [AM].

The notions of periodic (mod. 1) point, rotation number, rotation interval, lap,
growth number and entropy extend naturally to class C (see [AM] for a review
of these notions). From [M] it follows that the rotation interval has the same
properties as in the continuous case. We shall use the same notation as in [AM].
Thus, if F [CC] Lg denotes the rotation interval of F, s(F) the growth number of
F and h(F) = log s(F) the topological entropy of F.

2. Kneading Theory

Let F [Cl Given a point x R\ Z we define its address (F-address if neces-
sary) as A(X) = E(F(X))—E(x). If x CZwe define A(X) = E(F(x*))—E(X). The
sequence 1(X) = 1= (X) = 1o()11(X) ... In(X) ... = A)AF X)) ... AF"(X)...
will be called the itinerary of x. For a point x [IR we define I(x*) =
lo(x*")I.(x*) ... as follows. For each n = 0 there exists d,, such that 1,(y) takes
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Figure 3. The maps Fy,.

a constant value in (X, x +9dp). Denote this value by I,,(x™). This gives 1(x*). In
a similar way one can define 1(x™).

Now we define an ordering in the set of itineraries. First we note that the
set of addresses is naturally ordered by the order of the integers. This gives a
total ordering in the set of the itineraries with the lexicographical ordering. The
following lemma follows trivially.

Lemma 1. Let x,y [0, 1) such that x <y. Then 1(X) < I(y).

In a similar way to the continuous case, for a map F [C] we define the invariant
coordinate, 6(x) (where for maps in C we define the function [(A(x)) to be 1 for
each x [CR), the kneading invariants and the kneading determinant Dg (t), and
we obtain:

Theorem 2. For F [C] the function Dg (t) is nonzero for |t] < S(lF). More-
over, if s(F) > 1 then the first zero of Dg (t) as t varies in the interval [0, 1) occurs

— 1
att—ﬁ.

If F [Cland s(F) > 1 we can define the map @ and the twist number T (F) in
the same way as [AM] and we obtain the following result which is the analogous
to Theorem 2.12 of [AM] for the class C.
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Thforem 3. Let F [Cl be such that s(FZ > 1. ~Then there exists a unique
map F such that F - @ = ¢r °F. Moreover, F [C] F(O) =T(F), F is piecewise
alnelLg =Lg and s(F) = s(F).

Let S be the shift operator which acts in a natural way on sequences of integers
(i.e. S(lply...) = I115...). We say that a sequence of integers A is quasidomi-
nated by F if and only if

1) =A=1:(0).

We say that A is dominated by F if both of the above inequalities are strict. As
in [AM] we obtain

Proposition 4. Let F [Cl Then the following hold:

(1) Let x CR\Z. Then 1z (x) is quasidominated by F.
(2) Let A be a sequence of integers dominated by F. Then there exists x [
(0,1) such that 1-(x) = A.

Corollary 5. Let F,G [Clsuch that 1-(0") = 15(0%) and 1-(07) = 15(07).
Then h(F) = h(G).

The main result of this paper is the following which is the analogous of Theo-
rem B of [AM] for class C. Its proof is similar to the proof of Theorem B of [AM]
and hence it will be omited. To state it we need to adapt the notation used in
[AM] to our needs.

Let a R and i 4. We define {a) = E(ia) — E((i — 1)a) and 6;(a) =
E (ia) — E((i — 1)a), where E(-) denotes the integer part functionand E: R — Z

is defined as follows:
CE), ifx

E(x) = )
x—1, ifx

Set

1(p) = @) (@) (a) ...

15(@) = d1(a)d2(a)d3(a) ...

1H@) = ({a) + 1) H) ). ..
15(2) = (31(a) — 1)52(a)3s(a) . . . -

Theorem 6. For a map F [Clthe following statements are equivalent:
(1) Lg =]a,bh].
(@) 1562) = 1(0") < 14p) and L;(b) = 1(07) < L h).
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3. Bounds of the Topological Entropy

First of all, for each a,b [CR with a < b we construct maximal and minimal
models with rotation interval [a, b].

Lemma 7. Leta,b [R with a<b. Then, there exists H;, and H [Clsuch
that 1,,— (07) = L@), Ly— (07) = L5(0), L+ (07) = 15h) and 1+ (07) =
1h). Moreover Ly, =Ly, = (bl

Proof. Here we use the maps F* = F;b and F~ = F_ defined in [AM] (see
Proposition 4.13 and Lemma 4.14). Set ¢c* = ¢+ and ¢~ = cg—. Then we define
(see Figure 4)

Celeg  if x 7o, ¢,

Han®) = boery i x mqar 1),
, 2
1 1
0 0
-1 -1
(@) (b)

Figure 4. The maps Hg; and Hg ;.



KNEADING THEORY FOR A FAMILY OF CIRCLE MAPS 17

l; (x) ifx Ja,c7],

F~=(c™) ifx Jd,1).

From the construction of F* we have that D((F™)")(0), D((F *)™)(c*) []Q,c*]
for all n (where D(:) denotes the decimal part function). Hence, (F*)"(0) =
(Hap"(0) and (H7)"(07) = (HZ)"(c™) = (F")"(c*). Therefore, we obtain
the desired result for H;,. The assertion about H_, follows in a similar way. [1

H;b(x) =

Next we compute the kneading determingnts of H;b and H__ rab R
witha<bandz>1weset R (z) =z (resp. R;b(z) = z79), where the
sum is taken over all pairs (p,q) CZI>< N for which a < g— <b (resp. a< g <b).

Proposition 8. Let a,b [CR such that a <bh. Then the kneading determinants
of H;, and H}, are Dy () =1-— RLp(t™) and Dyr () = 1— Ry, (t™h),
respectively.

Proof. First we compute DH;b(t). Set F = H,p and ¢ = Chz,- Let k =
I§(F (07))—E(F(07))+1 (notice that the lap number of F is k+1). By Lemma 7
we get k = E(F(0%)) — E(F(07)) + 1 = 8,(b) — G{a) = E(b) — E(a) + 1.

Let J1,J2,...,Jk+1 be the laps of F contained in the interval [0,1]. Assume
that for all x Cimt(J;), y [t (J;) we have x <y if i < j. We note that all
points in the interior of a lap have the same address. Then we can use the notion
of address of a lap and hence the notation A(J;). We have

AQ) =0Ga)+i—1 for i=1,... k+1.

From now on we will also denote a lap J; by its address. Then, the invariant
coordinates of 0* and 0~ are the following (see the definition in Section 2 of
[AM])

) ) n—
8(0")= [(a)t'™! and 8(07)= di(a)t' .
i=1 i=1

Hence v(0) = 6(0%) —0(07) = I%zlﬂa) — i)t L.
Set K = {i [N : [j{a) = [{a)}. By Lemma 4.15 of [AM] if i /'K then
G(a) = G{a)+1=E()+ 1. Thus,

I_—1‘| for i K],

E@+1-E= itk

Now set J = {i [N : &(b) = d(b)}. If i L0 then & (b) = 8,(b) — 1 = E(b) and

hence
. |_—1‘I for i I,
EQ*1=0®=" 5 ori rnnag
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Therefore, writing v(0) as i;:f vi(0)J; we have

L1 ¢ 1 .
i@ = t7r=  (E(@+1-Gla)t' ™,
iK1 i=1
I 1 ) & 1 .
v2(0) = t™ = (Gla) —E@)t',
i (N-K,i>0 i=1
vj(©)=0 for j=3,...,k—1,

L1 T __1 .
Vik(0) = — ti=—  (EM)+1-&®)t
i [N-3,i>0 i=1

1 f 1 _
Vker () =—  tTh=— @) —EO)T

iC1d i=1

Denote v1(0)t, v2(0)t, v (0)t and vi+1(0)t, by ¢, K, n, w respectively.

Now we are able to write the kneading matrix of F. Note that the turning
points of F in (0, 1) are the elements of {X1, X2, ... , Xk} ={x [(0,1) : F(X) CZ}.
Assume that x; < x; if and only if i < j. To compute the columns of the kneading
matrix we note that if i [{1,...,k} then v(X;) = Jj+1 — Ji + tv(0).

To see more clearly the structure of the kneading matrix we make the technical
assumption that k > 4. The proof in the case 1 < k < 4 goes in a similar way.

The kneading matrix is:

—1

—i+<|) ¢ ¢ ¢

+K —1+K ... K K

n n n+1 n-—-1

W W W w+1

Then,

+K —=1+K ... K K +K —2 ... =1 -1
0 1 0 0 0 1 ... O 0
D, = . . . : : . . . . .
n n n+1 n—1 n 0 1 1
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-1 -1 -1
-1 0 o
0 -1 0
o ... 1_-1
-1 -1
0 O
-1 0
o ... 0 1

=1+ K+ (D ED TR + (CDFED Tk + D,

By substituting we obtain

D=1+ (Gl@—E@)t'— (EOG-E@+Dt'+ (EO)+1-35b)t
i=1 i=1 i=1

1=
1 .
=1-— (Gi(b) — GLant".
i=1
Hence, by Lemma 4.16 of [AM],
—1 —1
1 1 : o
De®=1— 1= @G®) -Gt =1-R;,a™.
i=1
Now we compute D+ . Set FP=HJ, and k"= E(F(07)) — E(F{0*)) (now
the lap number of FPis k™% 1) From Lemma 7 we have that k™= E(F07)) —
E(FY0%)) = (b) + 1 — (31(a) — 1) = E(b) — E(a) + 1. We use the same notation
as in the case of [ if J1,Js,...,Jka1 denote the laps of F5 we have that

AQi)=d@(@)—1+i—1 for i=1,... k™1
Thus,
) —
B(0") =@ -1 —d@)+ @,
i=1

) .
8(07) = (L) + 1) — L)+ G

i=1

Hence v(0) = (31(a) — 1) —01(a) + (b)) — (LAb) + 1) + I%Eéi (@) — Gb))t' 2. Set
K={i [N:%() =d(@}and J = {i [N : b)) = [(b). By Lemma 4.15 of
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[AM], if i Kl then d;(a) = E(a) and if i I-Jl then [{b) = E(b) + 1. Therefore,
if we write v(0) as  ;_;" vi(0)J; we have

— T _1 _
vi(0) =1+ =1+ (E@+1-8&@)t',

i [NFHK,i=0 i=1
1 1 _
w0 =—-1+ t1=-1+ (3i(a) —E()t' 1,
iK1 i=1
vj(0) =0 for j=3,... k"1,
L 1 P 1 .
w0 =1— tt=1—- (E()+1- Gt
iLId i=1
1 1 _
Vka1(0) = —1— tl=—-1—  (Gb) — E()t .
i[NF-J,i=0 i=1

As in the previous case, we set ¢~ = tv;(0), KZ= tvo(0), n”= vk{(0) and
®5= vk=1(0). Then, the kneading matrix of FZhas the same expression as the
kneading matrix of H;, with k&' ¢5 k&' n" w linstead of k, ¢, K, n, . Hence,

D1(t) = 1 + k™ (k™= 1)+ k'd"™

— _
=1-2t+ (5(a)— E()t —
i=1

P _ _
(E(b) — E(a) + 1)t
i=1

1 _
+  (E(®+1-Go))

i=1

 — _
=1-2t— (G{b) — Bi(a)t'.
1

Thus,
- Lf—  — .
1—2t— (E(ib) —E(ia))t' —t  (E(ib) — E(ia))t' —t

1

1
Droy = 1%
i=1

 — l: .
=1— (E(ib) — E(ia)t".
i=1

Hence, by Lemma 4.16 of [AM], we have DH+b(t) =1- R;b(t_l). 1

Lemma 9. For a < b the equations R} (t™") = 1 and R, (t™!) = 1 have a
unique solution in (0, 1).

Proof. By Lemma 4.16 of [AM] we know that R;b(t_l) = =1(E(nb) —

E(na))t” and Ry ,(t™) = 72, (E(nb) — E(na))t" for t [(0,1). Since E(nb) —
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E(na) and E(nb)—ﬁ(na) are uniformly bounded for all n [N, then R;b(t_l) and
R;b(t_l) are well defined and continuous for t [(0,1). Since the coe [ciehts of
these series are non-negative we have that R;b(t_l) and R;b(t_l) are increasing
in (0,1). We also note that since a < b there exists ng such that (E(nb) —
E(na)) > 1 and (I§(nb) — E(na)) > 1 for all n > ng. Hence limyg;; R;b(t_l) =
lime;p R, (t71) = co. Since limy,o Ry (t71) = limg,o R, (t71) = 0 we obtain the

desired conclusion. 1
2 2
1 1
0 0
-1 -1
(@) (b)

Figure 5. The maps Gy, and Gg ;.

From Lemma 9, Proposition 8 and Theorem 2 we obtain that the maps H;b
and H_ , have positive topological entropy.
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Now let G;b and G, be the piecewise linear maps given by Theorem 3 from
H;b and H_, (see Figure 5). The following lemma follows in a similar way to
Lemma 4.14 of [AM].

Lemma 10. The following equalities hold:
(1) Lg-,(0%) = Lia) and 15— (07) = 15(b).
@) Lgx (0M) =15(2) and 15+ (07) = Lih).

In what follows we denote the inverses of the solutions of the equations R;b(t_l)
=1and R;b(t_l) =1in (0,1) by a;b and o , respectively (in view of Lemma 9
these numbers are well defined).

The next result is the analogous of Corollary C of [AM] for class C and gives
lower and upper bounds of the topological entropy for maps from C depending on
the rotation interval. The statement log o, , = h(G, ) = h(F) was already known
(see [ALMT]). Here we give a di[erknt proof.

Corollary 11. Let F [Clsuch that L =[a,b] with a <b. Then
loga;, =h(G;,) < h(F) =h(G;,) = logag,.

Proof. It follows by Lemma 10, Corollary 5 and Theorem 6. 1
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