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SOME LIMIT PROPERTIES OF AN APPROXIMATE LEAST
SQUARES ESTIMATOR IN A NONLINEAR REGRESSION
MODEL WITH CORRELATED NONZERO MEAN ERRORS

J. KALICKA

Abstract. A nonlinear regression model with correlated, normally distributed er-
rors with non zero means is investigated. The limit properties of bias and the
mean square error matrix of the approximate least squares estimator of regression
parameters are studied.

1. Introduction
Let us consider a linear regression model

(11) an]_ = ankBle + Enx1, E(E) = 01 Var (E) = Z

where the n x k matrix F is known, B [RK (k-dimensional Euclidean space) is an
unknown vector parameter and €nx1 is n % 1 vector of the errors.
Under the condition of stationarity of covariance functions:

1
(1.2) s=  R@i-1U;
i=1
where
S for k—1=i—1,
(1.3) Ui =

0, otherwise.

We will consider that R(:) is a nonlinear function of p x 1 parameter 6 (8 [RP)
and therefore we mark R(-) £R} ().
Its estimator is given by

n

~ 1 "1 - ~
(1.4) Re() = ——  (X(+1) = FRG+1))(X() — FR()

n=t,,
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fort =0,1,...,n —1 where FB = (FB(1),..., FB(n)), (see [6]), and B given by
(F¥)~1FX is LSE of Rg. Note that the nonparametric estimator of Rg given in
(1.4) is asymptotically unbiased only (see [6]).

We consider further

(1.5) Ro(t) = Re(t) + (Re(t) — Re(t))

fort=0,1,...,m—1where m <n—k+ 1. The function Rg(") is assumed to be
known, continuous and twice continuously di Cerentiable in 8.

Let (Ro(t) — Ro(t)) = Zo(t), E(%(t)) = pn(t) for t =0,1,....m—1and m <
n—k+1

We will investigate a nonlinear model

(1.6)  Yn(t) =f (X, 0) + () for t=0,1,...m—landm<n—k+1

for n - oo and fixed m, where f, is a nonlinear function of parameter 8 =
(61,...,8p) continuous and twice continuously dilerentiable in 8. Further {g =
(€(0),...,lg(m — 1)) is m x< 1 vector of errors with E({g) = Hn, Var () = =
and we will consider that lim,_ o iy = 0. This condition is fulfilled for {(t) =
Rt)—R@®) andt=0,1,....m—1, m<n—k+1.

2. An Approximate Least Squares Estimator

Let us consider a model described by (1.5). The approximate least squares esti-
mator 8 is based on a method due to Box (see [2]) for derivation of an approximate
bias of 6. Let us denote by f.(8) the m x 1 vector (f(Xo, 0),. .., F(Xm-1,0))"and
let j+(0) be the p < 1 vector with components

Cot )
08; i=

I:IIRG) L1

Let 3@) = F:  Fsdm x p matrix of the first derivatives of £.(8). Let H,

im-1(8) 2
t=0,...,m—1, be the p x p matrix of second derivatives, (Hy)ij = 97Tn(xt,0) ;g(;ée)
i09j

Jt(®) = t=0,...m=1 m<n—k+1.

fori,j=1,...,p.
Since 6 is the least squares estimator of 8, the following matrix equality should
hold:

(2.1) J) - (Y —fa(®) =0
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where Y = (Yo,...,Ym—1)" By [2] (2.1) and using the Taylor expansion of J(8)
and f,(0) it follows that LSE 8 of 6 can be approximated by the estimator given
by:

J 1 1
(22) bm =0+ (D)% + (DT Uo)ME — 5IH()

where M =4 — Iy A = I(II) 7137 U(&) is a m x p matrix of the form
6AHo
U) =L Lahd Hn (%) is the m x 1 random vector with components
EATHm 1

LEAHAL for t =0,1,...,m — 1. For the j-th component of the random vector
(UZe)MUp); we get:
m 1 1

1 C T 111 1
(UX2%)MLp); = (U20)ji(MZ%)i = (HiA)jk(M)i
0 Ko i

Lo(K)e(l) = ZgNje for j = 1,...,p Whefi‘l(Nj%'EI: i=o (HiA)jk - (M),
k,J1=0,...,m—1and (UZe)M%); = ¢’ 2L  is a quadratic form with

symetric matrices.

3. The Mean and the Mean Square Error Matrix
of an Approximate Least Squares Estimator

Let 8, be in the form (2.2) and let 8,,, be an approximate LSE of 8 in (1.5).
We can write:
~ (|
(2.3) Eo(OBm) =8+ Apn + (39) 7 tr(NZn) + uNp,

1 ]
- EJ(tr (AHAZ,) + liANAY,) - @)L

We will try to bound this term.

mEL ]
(Aun)j = ajkHn(K), where ajx = ((39)~13Yjk. As far
i=0

2.9) as m is fixed number m < n—k+1 and nIim pn(k) =0
for k =0,...,m—1 this term tends to zero for every fixed
m<n-—k+1landn - oo,

In what follows we use the relations:
1 ol

1 1
tr(ABY = AjBjj, |tr(ABY| < [ACIEBCwhere (AE 1A L1
i.j i,j
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is the Euclidean norm of matrix A, for which the inequality [AB 2k [AZIBI[Z]
holds.

1 1
tr (NoXn)
tr(N=,) = e =0) < 9y s, cand
(2.5 tr (Nm—12n)

for every fixed m, m < n—k+1 and for nIim 51, = 0 this term
tends to zero for n - oo.

1
tr(HENOHn)
NP = H - E|=I:tr(uENjun) =

(2.6) tr (U/Nm—1Hn)
tr (Njunpy) = tr(NjWy), where W, = pppf and j =

0,....,m—1 then |tr (N;W,)| = [N; 10, Cwhat for
every fixed m <n—k+1and for n — oo tend to zero.

Now
(2.7) tr (URATN; Apn) = tr (UnHRATN;A) = tr (Wa AN A) < W A PIN; ]

This term tends to zero for every fixed m < n—k+1 and for n - oco. We can
easily see that for the last term of (2.3) we have

1 111
tr (LA THoAR)
mEL 1
5 | e EHH ™ 6 ramiaw,)
=
tr (HmDAq"m—lAHn) i
(2.8) = (tr (A" "5 (0i)iHiAW,) and hence it is su [cieht to
bound |tr (ATB;AW,)| - |tr (ATB;AW,)| = [AB;AW, ]
mEL 1]
where Bj = (Ji)jHi.
i=0

Now we can state

Theorem 1.1. Let the following conditions be fulfilled in model (1.6):

() The limit limp_ oo pp(t) =0 fort=0,1,....m—land m<n-—k+1,

(i) limp_ o hIF0for m<n—k+1.
Then, for every fixed m < n—k + 1, the agproximate least squares estimator Bm
is asymptotically unbiased, i.e. limp _ o Eg(6m) = 6.

Proof. The results follow directly from (2.4)-(2.8) and from (i), (ii). 1
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Now, let (g [N un, >n). We can express Ee[(gm - 9)(§m —0) as follows:

Eo[(Bm — 8)(Bm — 6)7
- . - . =
= AEg(Lgle)A™ (II) "B (N(e) — EJqL'(Ze) - N(&) — EJq"(Ze)
]
= AEg({glo)A™+ (3™ Eo(N(Z)N(G)Y) — %Ee(N (Zo)H(Z)H)I
1
— SIE(HEIN)) + 1 Ea(HEIH@))I (39

We will delimit the terms in the last expression member by member
1. AEg(olHA = A(Zn + pPnp)AP= AS, A AW, AN the norm:

(2.9) Az ATz OmA Y= =, Iyt
ABW,AT=E W, )t

This term tends to zero as h — oo and for every fixed m, m<n—k + 1.
2. We express the (i, j)-element for the term Eg(N(Q)(N())Y.

[Eo(N(Z)(N(Ze) Vi j
=2tr (NiZnN;Z) + tr (NiZn) tr (N Zn) + pNipn tr (N Zn)
+ UENG i tr (NiZn) + 4pENGZ0NG Hn + UONGRRENG pn.

Now we have
[tr (NiZ,N;3| = =, B [N; CIN; L

tr (N Zn) tr (N =) < [3h 21 [N, LN L
HaNiHn tr (NjZn) = tr (U Nipn) tr (N Z,)

and consequently,
[tr (WnN;j) tr (N )| < N, CIN; 5, 2]
AN ZaNjin = tr (UENGZaNjpn) < IN; CI0NG I, CIY, G
HENG R RN Hn = tr (UENipn tE NG )
= tr (WnNiWN;) < W, (2} [N; [1N; []

and

(2.10)  [Ee(N(%)(Nn(Ze)Tij = 3N; CIIN; LI, 2]
+ 6 (N; LN CI0W, TR, T3 [N CING 0, 2]
= [N; CIIN; (3 =, P 6 =, TV, T3 W, [2)
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This term tends to zero as n — oo for every fixed m < n—Kk + 1.
3. Step by step, we express Eg(ZGNLLEATHAL )k p and ((Eo((ENLLEATHAL) -
J)k,pi
Eo(ENLGEAHA )k p = 2tr (NkZnAHPAS L) + tr (NkZn) tr (ATH,AS L)
+ UNpn tr (ATHpAZ L) + HAHA LT (NKZn)
+ 4pSNK SR ALHp AL, + PENKWLATH AL,
The first two members of ((Ee(ZGNLITATHAL) - I)k,p are bounded (see [7]):

(2.11) '?'2 tr (NkZnAHAZR) + tr (NkZp) - tr (AH;AZL) Gj)p
j=0
< 3[N; CIABpA L 2]
From this we calculate only last four members of ((Ee({{NZelTATHAL) - I)kp.
(Eo(GgNLlgAHAL) - )k p
mErT
= (M Nkhn tr (AEHJ AZn) + UEAEHJ Ann tr (NkZn)
j=o0
+ 4 NKZa AH; Apn + B NKWRAH; ALG) e
mErT ]
= (tr(WnNy) tr(A"H;AZ,) + tr (WaAH;A) tr (NeZ,)
j=0
+4tr (WnNZnAHAR)
+tr (WnNkwnIA:WI-h-An) +tr (WHN%A%A))GJ)p
o E—
=tr(WnNy) - tr LAY H;(;)pAZ, ]
j=0
— ! (—

m

E—
+ tr DAZJIN WL A H; Gj)pALttNK =)
.
- ! i - -

mET mEr
+4tr DVENGEL, AT H;(5)pAZn E=tr DAINKWLAY  H; ()AL
j=0 j=0
= tr (WnNy) - tr (A'BoAZ,) + tr (WaABRA) - tr (NkZn)
+4tr (WpNgZ,ABpA) + tr (WaNWLAB, )
where B, = I%i(jj)ij. Now, we have
tr (WnNy) tr (A'BpAZ L) < W, LN, IS, CIIAB, AL
tr (WhABpA) tr (NZn) < W, CIIN, IS, CIAB,A L
tr (WnNZnABpA) < W, TN, I CIAB,A L
tr WNWAB,A) < W, 23 [Ny CIIAB,ALC
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and consequently

(212)  ((Eo(GeNLWLAHAL) - kp
< 6 W, CIMNy CIABp A LI, [ W, B3 [N CIAB,AL
= [AB,A N IV, X6 5 (3 W, D

This term tends to zero for every fixed m<n—k+1and forn - oo,

4. The case of the third member Eg({SATHALL NGk p is analogous. For
(IEe (LENLLEAHAL)))k p We have:

(2.13) (I€Ee (LN LGATHAL)) )k p
< W, CIIABKA N, X6 =h [# DWW, )]
5. By expressing the last member in the form J"Eg((H(Ze)H()) - J, we calculate

in the first place the members Eq({SATHALLEATHAL): j and
(IUEo (LEAHALLEAHAL))D)i j -

Eo (GAHALLGAHAL);
=2tr (AHAZ,ATH;3,) + tr (ATHAL) - tr (ATH; ASL)
+ U AHIApn tr (ATH;AZ,) + piAH; Apn tr (ATHAS )
+ 4pSATH; A ATH; Al + WA AWLATH; A,
For the first two members in this formula we can write (see Stulajter [7
K2 tr (ATHAZ,ATHAS,) + tr (ATHA) tr (AGHAZn))J]k,ﬁ

< 3[ABALMABALIE, 2]
We denote the last four members of this formula as Z;
1 1

Jo
METMEL ]
@2, = b am -z EHH HH= (e i) G

Jm—l K,p 1=0 =0

= tr (WhABLA) tr (W,ABpAZ,) + tr (WhABLA) tr (AB,AZ,)
+4tr (WhABAT,ABA) + tr (WoATHAW,ATB A)
= (I(Eo ((GAHALLEATHAL))I)i j
It is easy to see that
(2.14) (I{Ee(LLAHALLEAHAL))I)i
< W, CIIABA CIABA LIS, [
+ W, CIIABACIAB,A LIS,
+ 41, CIABA CIAB,A LS, [
+ W, 2} [A'BACIAB,AL]
< (W, CIIABA CIIABA X6 = [ WV, D]
Now, we are ready to prove the following result.
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Theorem 1.2. Let {o [ NKpn, Zn) and let the assumptions of Theorem 1.1 be
fulfilled. Then the approximate LSE 8, of parameter 6 fulfils

i Eol@Bm — 8)(6m —0)T=0.

Proof. Based on (2.9)-(2.14) and conditions (i), (ii) of Theorem 1.1 we can
easily see Ehat every member of the mean square error matrix of the approximate
estimator 8, converges to zero for every fixed m < n—k+1 if n tends to infinity. C_1
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