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ON VARIANCE–COVARIANCE COMPONENTS ESTIMATION

IN LINEAR MODELS WITH AR(1) DISTURBANCES

V. WITKOVSKÝ

Abstract. Estimation of the autoregressive coefficient % in linear models with first-
order autoregressive disturbances has been broadly studied in the literature. Based
on C.R. Rao’s MINQE-theory, Azäıs et al. (1993) gave a new general approach for
computing locally optimum estimators of variance-covariance components in models
with non-linear structure of the variance-covariance matrix. As a special case, in
the linear model with AR(1) errors, we discuss a new algorithm for computing
locally optimum quadratic plus constant invariant estimators of the parameters %
and σ2, respectively. Moreover, simple iteration of this estimation procedure gives a
maximum likelihood estimates of both, the first order parameters, and the variance-
covariance components.

1. Introduction

Linear models with disturbances that follow first-order autoregressive scheme,

abbreviated as AR(1), are frequently considered in econometrical applications.

Great importance is given to the second-order parameters — variance-covariance

components. Namely, to the autoregressive coefficient % and to the variance σ2,

which are usually unknown and are to be estimated.

Estimation of variance-covariance components in models with AR(1) errors has

a long history. The simplest estimators are based on very natural idea to change

the unobservable disturbances by the corresponding least squares residuals in the

generating scheme for AR(1) process. On the other side, under normality assump-

tions, full MLE’s, Maximum Likelihood Estimators, are studied. Generally,

most of those estimators reach some of optimality properties, at least they are

consistent estimators of % and σ2. For more details see, e.g., Prais and Winsten

(1954), Durbin (1960), Magnus (1978), and Kmenta (1986).

In a recent paper, Azäıs et al. (1993) gave a generalization of C.R. Rao’s Min-

imum Norm Quadratic Estimation Theory of estimation variance and/or
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covariance components to the models with non-linear variance-covariance struc-

ture. Their new LMINQE, Linearized MINQE, is defined as a MINQE, (more

particularly as an invariant MINQE(I) or an unbiased and invariant MINQE(U,I)),

after linearization of the variance-covariance matrix at a prior value of the param-

eters. Rao’s MINQE-method, in contrast to MLE-method, involves only slight

distributional assumptions, especially, the existence of the first four moments of

the probability distribution. Moreover, MINQE’s are locally optimum for a pri-

ori chosen Euclidean norm and their iteration are numerically equivalent to the

well known FSA, Fisher Scoring Algorithm — a numerical method for find-

ing singular points of the likelihood function, which leads to Gaussian maximum

likelihood estimates. For more details on MINQE-theory and variance-covariance

componets estimation see e.g. C.R. Rao (1971a), C.R. Rao (1971b), C.R. Rao

and J. Kleffe (1980), C.R. Rao and J. Kleffe (1988), S.R. Searle et al. (1992),

J. Volaufová and V. Witkovský (1992), and J. Volaufová (1993a).

In this paper, based on the above mentioned results, a new algorithm for esti-

mation the variance-covariance components is given, i.e. % and σ2, in linear model

with AR(1) disturbances. The very special character of this model allow us to find

closed-form formulas for LMINQE’s, locally optimum invariant estimators of % and

σ2. Moreover, because of the link between iterated LMINQE’s and Fisher Scoring

Algorithm, we get directly an iterative method for finding Gaussian MLE’s. As

such, the suggested algorithm serves, in the special case of the model with constant

mean, as a special alternative to the classical algorithms for computing MLE’s of

the parameters of the AR(1) process, see e.g. J.P. Brockwell and R.A. Davis (1987).

Finally, we note that the approach introduced by Azäıs et al. (1993) is quite

general and can be used, e.g., for any linear model with ARMA(p, q) disturbances.

However, the closed-form formulas are still a subject of further investigation.

2. Model with Linearized Variance-Covariance Structure

We consider linear regression model

(1) yt = xtβ + εt, t = 1, . . . , n,

where yt represents observation in time t, xt = (x1t, . . . , xkt) is a vector of known

constants, and β = (β1, . . . , βk)
′ is a vector of unknown first-order parameters.

We assume that the disturbances follow a stationary AR(1) process which

started at time t = −∞, i.e. the errors are generated by the following scheme:

ε1 = u1/
√

1− %2,(2)

εt = %εt−1 + ut, t = 2, . . . , n,

where |%| < 1, is an autoregressive coefficient, generally unknown parameter, and

ut, t = 1, . . . , n, represent uncorrelated random errors with zero mean and the
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variance σ2 > 0, which is also supposed to be an unknown parameter. Generally,

we do not assume normality of the probability distribution of the errors. However,

we assume the existence of the third and fourth moments.

The model can be rewritten to the matrix form

(3) y = Xβ + ε,

with expectation E(y) = Xβ and the variance-covariance matrix Var (y) =

V (%, σ2), where y = (y1, . . . , yn)
′, X is (n× k)-dimensional matrix with xt beeing

the t-th row, and ε = (ε1, . . . , εn)
′. We usually denote the model as

(4) (y,Xβ, V (%, σ2)).

It can be easily shown that under given assumptions the explicit form of the

variance-covariance matrix V (%, σ2) is given by

(5) V (%, σ2) =
σ2

1− %2


1 % %2 · · · %n−1

% 1 % · · · %n−2

%2 % 1 · · · %n−3

...
...

...
. . .

...

%n−1 %n−2 %n−3 · · · 1

 .

Note the non-linear structure of the matrix V (%, σ2) in its parameters, especially

in the autoregressive coefficient %. Under the constraints |%| < 1 and σ2 > 0,

matrix V (%, σ2) always remains positive definite. As a function of the parameters

% and σ2, V (%, σ2) belongs to the class C2, i.e. to the class of twice differentiable

functions.

To get a model with linear variance-covariance structure we consider first-order

Taylor expansion of V (%, σ2) around a prior value (%0, σ
2
0). Let %0 and σ2

0 , |%0| < 1

and σ2
0 > 0, denote prior values for the parameters % and σ2. Then the linearized

variance-covariance matrix V (%, σ2) around (%0, σ
2
0) is approximately given by

(6) V (%, σ2) ≈ V0 + (%− %0)V1 + (σ2 − σ2
0)V2,

where V0 = V (%0, σ
2
0), and

(7) V1 =
∂V (%, σ2)

∂%

∣∣∣∣
%0,σ2

0

and V2 =
∂V (%, σ2)

∂σ2

∣∣∣∣
%0,σ2

0

.

Relation V0 = σ2
0V2 implies

(8) V (%, σ2) ≈ (%− %0)V1 + σ2V2.
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If we denote W (%, σ2) = (% − %0)V1 + σ2V2, the linear approximation of the

variance-covariance matrix, then the linear model

(y,Xβ,W (%, σ2))

is the linear model with variance and covariance components, as usually considered

in MINQE-theory, i.e. W (%, σ2) is a linear combination of known symmetrical

matrices, V1 and V2, and unknown variance-covariance components, (% − %0) and

σ2. It should be emphasized, however, that we can not generally ensure the positive

definiteness of the matrix W (%, σ2). It is positive definite only in sufficiently close

neighborhood of a priori chosen point of the parameter space (%0, σ
2
0).

3. Locally Optimum Estimators of % and σ2

Following Azäıs et al. (1993), MINQE’s, ̂(%− %0) and σ̂2, of the variance-

covariance components (%−%0) and σ2, respectively, computed for the prior values

0 and σ0 in the linearized model (y,Xβ,W (%, σ2)), leads directly to LMINQE’s,

%̃ and σ̃2, of the parameters % and σ2 in the original model (y,Xβ, V (%, σ2)):

(10) %̃ = %0 + ̂(%− %0) and σ̃2 = σ̂2.

More particularly, MINQE(U,I) in the linearized model leads to LMINQE(U,I) in

original model, and similarly, MINQE(I) leads to LMINQE(I). In the present paper

we concentrate our attention to invariant (with respect to the group of translations

y 7→ y +Xα, for arbitrary α) estimation only, i.e. to LMINQE(I)’s.

The following theorem gives the explicit form of the LMINQE(I)’s in the model

(y,Xβ, V (%, σ2)).

Theorem 1. Consider the linear model (4) with autoregressive disturbances.

Let |%0| < 1 and σ2
0 > 0 denote the prior values for the autoregressive coefficient %

and the variance σ2. Further, let e = (e1, . . . , en)
′ denotes the vector of (%0, σ

2
0)-

locally best least squares residuals: e = y − X(X ′V −1
0 X)−X ′V −1

0 y, where V0 =

V (%0, σ
2
0).

Then the LMINQE(I)’s, %̃ and σ̃2, of the parameters % and σ2, respectively,

computed for the prior value (%0, σ0), are given by

%̃ = %0 +
δ

σ2
0(n− 1)

{
−%0

n∑
t=1

e2t + κ

n∑
t=2

etet−1 − %0(κ− %
2
0)

n∑
t=3

e2t−1

}
,(11)

σ̃2 =
1

(n− 1)

{
(1− δ)

n∑
t=1

e2t − 2%0

n∑
t=2

etet−1 + (1 + δ) %2
0

n∑
t=3

e2t−1

}
,(12)

where κ = n− (n− 2)%2
0, and δ = (1− %2

0)/κ.

Proof. According to (10), we compute the MINQE(I)’s for the parameters (%−
%0) and σ2, respectively, at prior value (0, σ2

0) in the model (y,Xβ,W (%, σ2)).
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By the MINQE-theory, the solution is a linear combination of two quadratics,

given by

(13)
̂( %− %0

σ2

)
= K−1

(I)

(
q1
q2

)
,

where K(I) denotes the (2×2) criterion matrix for invariant quadratic estimation,

with its elements given by

(14) {K(I)}ij = tr (V −1
0 ViV

−1
0 Vj), i, j = 1, 2,

where V0 = V (%0, σ
2
0). (“tr ” stands for the trace operator which sums the diago-

nal elements of a matrix). The quadratics q1 and q2 are defined as

q1 = e′V −1
0 V1V

−1
0 e,(15)

q2 = e′V −1
0 V2V

−1
0 e,

where e = y−X(X ′V −1
0 X)−X ′V −1

0 y is the vector of (%0, σ
2
0)-locally best wighted

least squares residuals.

Considering the special form of the inversion of the matrix V0, see e.g. Kmenta

(1986), the form of the matrices V1 and V2, defined by (7), and after some algebra,

we get

(16)

K−1
(I) =

1

(n− 1)(n− (n− 2)%2
0)

(
n(1− %2

0)
2

2
−%0(1− %2

0)σ
2
0

−%0(1− %2
0)σ

2
0

(
n− 1− (n− 3)%2

0

)
σ4

0

)
,

and

q1 =
2

σ2
0

{
n∑
t=2

etet−1 − %0

n∑
t=3

e2t−1

}
,(17)

q2 =
1

σ4
0

{
n∑
t=1

e2t − 2%0

n∑
t=2

etet−1 + %2
0

n∑
t=3

e2t−1

}
.

The explicit forms of the LMINQE(I)’s, given by (11) and (12), are a direct con-

sequence of the previous calculations and the equation (13). �

Remark 1. Generally, LMINQE’s are quadratic plus constant estimators, i.e.

they are of the type c+ y′Ay, where c is a constant and A is a given symmetrical

matrix. The optimality properties of %̃ and σ̃ are direct consequence of the results

given in Azäıs et al. (1993):

“LMINQE(I)’s of % and σ2 are (%0, σ
2
0)-locally optimum in QCE(I) — the

class of quadratic plus constant and invariant estimators”.
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Similar result holds true for LMINQE(U,I), see Proposition 5 in Azäıs et

al. (1993).

Remark 2. Following the lines of the proof, we can easily find that the ex-

pectation of the LMINQE(I)-vector (%̃, σ̃2)′, locally at the point (%0, σ
2
0)
′, is equal

to

E
(
(%̃, σ̃2)′

)
= (%0, 0)′ +K−1

(I)K(UI)(0, σ
2
0)′(18)

= (%0, 0)′ +K−1
(I)

(
tr (V1(MV0M)+),

n− rank (X)

σ2
0

)′
,

where K−1
(I) is defined by (16), K(UI) denotes the criterion matrix for unbiased and

invariant quadratic estimation, with its elements given by

(19) {K(UI)}ij = tr ((MV0M)+Vi(MV0M)+Vj), i, j = 1, 2,

and where (MV0M)+ = V −1
0 − V −1

0 X(X ′V −1
0 X)−X ′V −1

0 .

Under normality assumptions, i.e. if the AR(1) process is Gaussian, the varian-

ce-covariance matrix of the vector (%̃, σ̃2)′, locally at the point (%0, σ
2
0)′, is equal

to

(20) Var
(
(%̃, σ̃2)′

)
= 2K−1

(I)K(UI)K
−1
(I) .

For more details see, e.g. J. Volaufová and V. Witkovský (1992).

Remark 3. The statistical properties of the estimator of the linear function

p′β of the first-order parameters β in linear model with variance and covariance

components, p̂′β = p′(X ′Ṽ −1X)−X ′Ṽ −1y, the so-called plug-in or two-stage

estimator, based on the estimate of the variance-covarince matrix Ṽ = V (%̃, σ̃2)

are generally unknown. However, one approach to determinig the upper bound

for the difference in variances of the plug-in estimator and the BLUE, under the

assumption of symetry of the distribution of ε and the existence of finite moments

up to the tenth order, was proposed by J. Volaufová, (1993b).

The LMINQE(I)’s of the autoregressive coefficient % and the variance σ2 are

sensitive to the choice of the prior values %0 and σ2
0, respectively. An inappropriate

choice of the prior parameters, i.e. inconsistent with the observed data, may leads

to the estimate %̃ out of the parameter space |%| < 1.

For practical applications, if there is no strong evidence about the prior val-

ues, we suggest the so-called two-stage LMINQE(I)’s, which are based on two

iterations of the following two-step method:

1. First step: Compute σ̃2, according to (12), for the prior choice %0. (Note, that

the estimator σ̃2 does not depend on a prior value σ2
0 , it depends only on %0).
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2. Second step: Compute %̃, according to (11), at the prior value (%0, σ̃
2).

Note, that this two-step method computed for the prior value %0 = 0, leads to

the estimators

(21) σ̃2 =
1

n

n∑
t=1

e2t and %̃ =
n

n− 1

∑n
t=2 etet−1∑n
t=1 e

2
t

,

with et, t = 1, . . . , n, being the ordinary least squares residuals given by e =

y −X(X ′X)−X ′y.

The second iteration of the two-step method, computed for the prior value %0 =

%̃, %̃ given by (21), gives the two-stage LMINQE(I)’s of σ2 and %, respectively.

4. Maximum Likelihood Estimates

The two-step method could be naturally expanded to the iterative algorithm

by a repeated application of those two steps until convergence is reached.

Provided that %̃N and σ̃2
N denote the estimates after the Nth stage of the

iteration procedure, the (N + 1)st stage of the algorithm is given by:

1. First step: Compute the new vector of residuals

(22) e = y −X(X ′V −1
N+1X)−X ′V −1

N+1y,

where VN+1 = V (%̃N , σ̃
2
N ). Further, compute σ̃2

N+1 following the formula (12),

and replacing %0 by %̃N .

2. Second step: Compute %̃N+1, following the formula (11), as a function of %̃N
and σ̃2

N+1.

Note, that the eventual limit points of the above iterative algorithm are equiva-

lent to the eventual limit points of iterated LMINQE(I)’s, denoted as

ILMINQE(I)’s, of the parameters % and σ2, respectively. The limit points we

denote by %̊ and σ̊2, respectively.

Azäıs et al. (1993) have proved the equivalence between the Fisher Scoring

Algorithm for finding singular points of the Gaussian likelihood, and

ILMINQE(I)’s. Following those results, the point (β̊, %̊, σ̊2), with ILMINQE(I)’s %̊

and σ̊2, and β̊ such that

(23) Xβ̊ = X
(
X ′
(
V (%̊, σ̊2)

)−1
X
)−

X ′
(
V (%̊, σ̊2)

)−1
y,

is the singular point for the Gaussian log-likelihood function

(24) L(β, %, σ2) = const −
1

2
log |V (%, σ2)| −

1

2
(y −Xβ)′

(
V (%, σ2)

)−1
(y −Xβ),

i.e. L(β̊, %̊, σ̊2) = maxL(β, %, σ2). Hence, the following theorem holds true:
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Theorem 2. Eventual limit points of the above iteration procedure, %̊ and

σ̊2, are the maximum likelihood estimates, MLE’s, of the autoregressive coeffi-

cient % and the variance σ2 in the linear model with autoregressive disturbances

(y,Xβ, V (%, σ2)).

5. Discussion

To illustrate the properties of the proposed estimators we consider the simple

form model of the quantity theory of money, originally disscused by Friedman and

Meiselman (1963), see Table 1:

(25) Ct = α+ βMt + εt,

with C — consumer expenditure and M — stock of money, both measured in

billions of current dollars. It is assumed that the disturbances follow a first-order

autoregressive scheme.

Year Quarter Consumer Money Year Quarter Consumer Money
expenditure stock expenditure stock

1952 I 214.6 159.3 1954 III 238.7 173.9
II 217.7 161.2 IV 243.2 176.1
III 219.6 162.8 1955 I 249.4 178.0
IV 227.2 164.6 II 254.3 179.1

1953 I 230.9 165.9 III 260.9 180.2
II 233.3 167.9 IV 263.3 181.2
III 234.1 168.3 1956 I 265.6 181.6
IV 232.3 169.7 II 268.2 182.5

1954 I 233.7 170.5 III 270.4 183.3
II 236.5 171.6 IV 275.6 184.3

Table 1. Consumer expenditure and stock of money, 1952(I) —

1956(IV), both measured in billions of current dollars. Source: M. Frie-

dman and D. Meiselman: “The relative stability of monetary velocity

and the investment multiplier in the United States, 1897–1958”, In:

Commision on Money and Credit, Stabilization Policies (Englewood

Cliffs, NJ: Prentice-Hall, 1963), p. 266.

We will consider three types of LMINQE(I)’s of the autoregressive parameter %

in the model (25), which differ in the choice of the prior values of the parameters

%0 and σ2
0, respectively:

1. Estimator I: LMINQE(I) of % computed for all prior values (%0, σ̃2), where σ̃2

is given by (12), and |%0| < 1.



MODELS WITH AUTOREGRESSIVE DISTURBANCES 137

This estimator we get as a single iteration of the two-step method for computing

LMINQE(I) of the parameter %. The estimator seems to be highly sensitive to the

choice of the prior value of %.

2. Estimator II: LMINQE(I) of % computed for all prior values (%0, σ
2
LSE), where

σ2
LSE is the estimate based on the ordinary least squares residuals, given by (21),

and with |%0| < 1.

This estimator seems to be quite robust to all possible choices of the prior

value of %0. The reason is that σ2
LSE is the upper bound for the all possible

estimates of σ2.

3. Estimator III: LMINQE(I) of % computed for all prior values (%0, (1 − %2
0)

σ2
LSE), where σ2

LSE is the estimate based on the ordinary least squares residuals,

given by (21), and |%0| < 1.

The estimator is a modification to the previous one. Here we put the variance

of the disturbance, under given prior values %0 and σ2
0, Var (εt) = σ2

0/(1− %
2
0),

to be constant and equal to σ2
LSE .
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Figure 1. Estimates of the autoregressive coefficient % for different

prior values of %0. Estimator I — solid line; Esimator II — dashed line;

Estimator III — dashed dotted line; MLE — dotted line.

The values of the considered estimators can be easily seen from the Figure 1.

Note, that the Estimator I, i.e. LMINQE(I) computed by two-step method, is

highly sensitive to the choice of the prior value %0 of the parameter %. Each of

those estimators, if iterated, leads to the maximum likelihood estimate.
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Stage % σ2 α β Log-likelihood

1 0.7915 14.2593 -154.7929 2.3008 -48.7363
2 0.8588 4.5273 -157.7919 2.3255 -44.0237
3 0.8483 4.4785 -156.2356 2.3192 -44.0010
4 0.8470 4.4771 -156.6078 2.3209 -44.0003
5 0.8470 4.4771 -156.6474 2.3210 -44.0003
6 0.8470 4.4771 -156.6496 2.3211 -44.0003

Table 2. Iteration steps of the algorithm for computing the MLE’s

of the parameters %, σ2, α and β in the model (25).

Finally, in the Table 2 we illustrate the speed of convergence of the proposed

algorithm for computing MLE’s of the parameters of the model (25). For each

stage the table gives the estimates of %, σ2, α, and β, together with the value of

log-likelihood function.
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