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ADAPTIVE FINITE VOLUME DISCRETIZATION OF

DENSITY DRIVEN FLOWS IN POROUS MEDIA

P. KNABNER, C. TAPP and K. THIELE

1. Introduction

The present paper deals with the mathematical treatment of the system of

partial differential equations, arising from the modeling of density driven flow in

porous media. A detailed description of the model is given by e.g. Leijnse [13].

The system is of a highly nonlinear and parabolic-elliptic type.

For the discretization of the problem, we use Finite Volume and/or Mixed Finite

Element Methods. For typical field applications in conjunction with safety studies

for underground waste repositories, simulations are required for large domains Ω

and a long time interval (0, T ). This requirement leads to relatively large mesh

and time step sizes because of computational limitation. This makes it neces-

sary to consider discretization methods, where the solution fulfils proper physical

properties. For the chosen methods local conservation laws are fulfiled. Moreover

we use an error indicator to create an adaptive grid aiming at an optimal use of

computer power. By discretising the Darcy velocity artificial numerical velocities

can appear (cf. [14]). To prevent this we use a consistent approximation of the

velocity which is based on the ideas of [12].

It is well known in literature (cf. [10]) that for discontinuous and anisotropic

permeability the finite volume discretization causes some problems, because only

concentration and pressure are the primary variables and the velocity field has

to be approximated by a post-processing step. A mixed element discretization,

however, approximates the velocity directly and may gain advantages in such a

situation.

To stabilize the numerical solution w.r.t. non-physical oscillations, we use some

upwind techniques. The most common method is the “full upwind”. We also

use other upwind techniques, where the algorithm exhibits less artificial diffusion.

These techniques are described in the companion paper [11].

It should be mentioned that the theoretical analysis of the method is far from

complete. At the moment there are a lot of assumptions, conjectures, etc., which
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can either not be proved rigorously, or not be proved in general that the practical

experiences would indicate they hold. Nevertheless the numerical experiments

show, that with the finite volume discretization, the upwind and the adaptive grid

control based on the error indicators, we have a powerful tool for solving density

driven flow problems.

The paper is structured in the following way. In the second Section, we in-

troduce the mathematical model of density driven flow in porous media. The

discretization in space is explained in Section 3 and 4. First we consider the

discretization of the transport equation in Section 3. For the flow equation, we

compare different types of discretizations in Section 4. An a posteriori error in-

dicator for the error in the finite volume discretization is introduced in Section 5.

In the last Section we give some explanations of the adaptive algorithm and show

numerical results for the introduced types of discretizations and for the adaptive

algorithm.

We consider a domain Ω ∈ Rn, n = 1, 2 for any open subset ω ⊂ Ω, Lq(ω) and

W l
q(ω) with 1 ≤ q ≤ ∞, l ∈ N denote the standard real Lebesgue- and Sobolev

spaces endowed with the norms ‖ · ‖0,p,ω and ‖ · ‖l,p,ω, respectively. By (·, ·) the

inner product in L2(Ω) or L2(Ω) × L2(Ω) is denoted. If ω = Ω the subscript ω

is omitted. Moreover, we set H l(Ω) := W l
2(Ω) and H l

0(Ω) is the space of all the

functions in H l(Ω) vanishing on the boundary Γ of Ω in the usual sense of traces.

The solution space is V0 := V0 × V0 with V0 ⊂W l
q(ω), for some q > 1.

2. Mathematical Model

Given a bounded domain Ω ⊂ Rd, d = 2 or d = 3, with polyhedral Lipschitzian

boundary and an interval (0, T ), T > 0, the following nonlinear system of partial

differential equations is considered:

Φ
∂ρc

∂t
+∇ · (qρc− ρD∇c) = Q ,(1)

Φ
∂ρ

∂t
+∇ · (ρq) = Q̃ ,(2)

where the so-called Darcy velocity q is given by

(3) q = −µ−1K(∇p− ρg) .

These equations arise from the modelling of the transport of dissolved salt in flow-

ing groundwater. The unknown functions are the mass fraction (concentration)

c = c(x, t) and the pressure p = p(x, t). A detailed discussion of the model can

be found in [13]. The equation (1) is called transport equation and equation (2)

flow equation. In particular we got the permeability tensor K : Ω → Rd×d, the

porosity φ : Ω → (0, 1), the source and sink terms Q, Q̃ : (0, T ) × Ω → R and the
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gravity g ∈ Rd. In general, the viscosity and the density µ, ρ : R→ R are nonlinear

functions of c, i.e. µ = µ(c), ρ = ρ(c), with µ, ρ > 0, and the dispersion-diffusion

tensor D : Rd → Rd×d is nonlinearly depending on q.

The system is completed by the initial condition c(0) = c0 and by boundary

conditions for the unknowns
(
c
p

)
, where the latter are of different types at different

parts of the boundary of Ω.

To the authors’ knowledge, up to now no theory of existence, uniqueness, long-

time behaviour etc. of solution(s) of (1)–(3) is present. Therefore we have to make

a corresponding assumption:

There exist numbers T > 0 and q > 1 such that problem (1)–(3) possesses

a unique solution
(
c(t)
p(t)

)
∈ V0 = V0 × V0 ⊂W 1

q (Ω)×W 1
q (Ω), t ∈ (0, T ).

I.e., this is the characterizing property of the space V0.

3. Finite Volume Discretization of the Transport Equation

We restrict the explanation of the discretization to the 2D case. The 3D case

follows analogously only by replacing triangle by tetrahedron, edge by face etc.

Starting from an admissible partition T of Ω consisting of triangles or quadrilat-

erals T e, e = 1, . . . ,M , we define finite-dimensional spaces Vh ⊂ V0 such that the

restriction of their elements to a triangle or a quadrilaterals is a linear or bilinear

function, respectively. By N we denote the number of all vertices of the partition,

whereas I is the number of interior vertices.

xj

x1
ij x2

ij

xi

Ωi

Γ2
im

Γ3
im

xm

Figure 1. Vertex-centered finite volume.

Following the so called vertex-centered finite volume methods, we construct a

dual mesh of control volumes Ωi, i = 1, . . . , N , by means of Donald diagrams.

Within an element T e, the barycenter is connected with the midpoints of the

element edges between the nodes xi and xj by a straight-line segment Γeij, the

midpoint of which is denoted by xeij . Here we have e ∈ Λij, where Λij denotes the

set of indices e of all elements which contain the nodes xi and xj . So we get, for

any vertex xi, a closed polygon containing it. This polygon forms the boundary
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of Ωi. The numerical procedure calculates the unknowns at the vertex xi, which

is the center of the finite volume Ωi.

To derive the discretization, the equation (1) is integrated over the finite vol-

umes Ωi, i = 1, . . . , N , and then Green’s formula is applied. The equations become∫
Ωi

φ
∂ρc

∂t
dx+

∫
∂Ωi

ρcn · q ds−

∫
∂Ωi

ρn ·D∇c ds =

∫
Ωi

Qdx.

The arising integrals over Ωi and along the boundary ∂Ωi are approximated. In

particular, for the first one we use the quadrature rule

(4)

∫
Ωi

u dx ≈ u(xi)|Ωi|,

where |Ωi| is the area of the subdomain Ωi.

The boundary integrals we approximate by∫
∂Ωi

ρcn·q ds−

∫
∂Ωi

ρn·D·∇c ds ≈
∑
j,e

|Γeij|n
e
ij ·

(
1

2
ρeijq

e
ij(ci + cj)−K

e
ijρ

e
ijD

e
ij∇c

e
ij

)

where |Γeij| is the length of the boundary segment Γeij. The outer normal w.r.t.

Ωi on Γeij is called neij . For the indices we got j ∈ Λi where j is the index of all

neighbour nodes xj to xi; and e ∈ Λij. To stabilize the numerical solution w.r.t.

non-physical oscillations, we use some upwind techniques which are described by

Frolkovič [11]. With K we denote a scalar function, dependent on the local Peclet

number, with K(0) = 1 and K ≥ 1. K describes the different types of upwind.

For K ≡ 1 we have no-upwind, that means the integral is approximated by a

standard quadrature rule. In [11] also the use of 1
2 (ci + cj) instead of ceij in the

approximation of the convective term will be explained.

For the sake of a short notation, we write ci := ch(xi), pi := ph(xi), etc.

and ceij := ch(x
e
ij), p

e
ij := ph(x

e
ij) etc. Composite functions are abbreviated by

ρh := ρ(ch) and ρh(x) := ρ(ch(x)), ρi = ρ(ci) and ρeij = ρ(ceij) etc.

So we arrive at the following discrete equation:

|Ωi|φi∂t(ρici) +
∑
j,e

|Γeij |n
e
ij ·
(1
2
ρeijq

e
ij(ci + cj)−K

e
ijρ

e
ijD

e
ij∇c

e
ij

)
= |Ωi|Qi

where q is defined as in (3).

4. Discretization of the Flow Equation

We use different kinds of discretizations for the flow equation.
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4.1 Finite Volume Discretization

The flow equation can be treated in the same way as the transport equation in

the previous section. So we get for the semi-discrete problem:

Find (ch(t), ph(t)) ∈ Vh := Vh × Vh, such that for all t ∈ (0, T ) holds:

(5) |Ωi|φi∂tρi +
∑
j,e

|Γeij|n
e
ij · ρ

e
ijq

e
ij = |Ωi|Q̃i

(6) |Ωi|φi∂t(ρici) +
∑
j,e

|Γeij|n
e
ij ·

(
1

2
ρeijq

e
ij(ci + cj)−K

e
ijρ

e
ijD

e
ij∇c

e
ij

)
= |Ωi|Qi

with suitable initial and boundary condition corresponding to the continuous prob-

lem. The Darcy velocity is defined in discrete form as in (3).

We make the following assumption about the existence and uniqueness of a

solution:

There exist T > 0 such that problem (5)–(6)possesses a unique solution(
ch(t)
ph(t)

)
∈ Vh, t ∈ (0, T ).

The arising system of ordinary differential equations is solved e.g. by the im-

plicit Euler method or a higher order time discretization.

For reason of simplicity we further restrict ourselves to the case Q, Q̃ ≡ 0,

Dirichlet boundary conditions and triangular elements.

4.2 Mixed Finite Element Discretization

In the previous section a discretization of the flow equation with the unknowns

(c, p) is formulated. In the mixed finite element method, the Darcy’s law and flow

equation are approximated individually and we get additionally the Darcy velocity

q as an unknown function.

Introducing the Hilbert space

H(div ; Ω) =
{
χ ∈

(
L2(Ω)

)2
| ∇ · χ ∈ L2(Ω)

}
the mixed formulation of (2)–(3) is given as:

Find (q, p) ∈ H(div ; Ω)× L2(Ω) such that

a(q,χ)− b(p,χ) = (ρg,χ)− 〈pD,χ · n〉 ∀χ ∈ H(div ; Ω)

b(ϕ, ρq) = −(φ
∂ρ

∂t
, ϕ) + (Q̃, ϕ) ∀ϕ ∈ L2(Ω)

where the bilinear forms are defined as

a :

{
H(div ; Ω)×H(div ; Ω) −→ R

(q1,q2) 7−→
∫
ΩK

−1µq1 · q2 dx

b :

{
L2(Ω)×H(div ; Ω) −→ R

(v,q) 7−→
∫
Ω
∇ · qv dx



120 P. KNABNER, C. TAPP and K. THIELE

(·, ·) and 〈·, ·〉 denote the usual inner products in (L(Ω)2)2, respectively L2(Ω) and

L2(∂Ω).

At the moment we consider Dirichlet boundary condition, where pD is the

prescribed pressure p on the boundary.

Using the triangulation of the previous section, the following notation is intro-

duced: The edges of an element T ∈ T are referred to as ei, 1 ≤ i ≤ 3. We denote

by E the set of edges of T and by

E0 = E ∩ Ω,

E∂ = E ∩ ∂Ω

the subsets of interior and boundary edges, respectively.

For D ⊆ Ω we denote the space of polynomials of degree ≤ k by Pk(D).

An approximation Vh of H(div ,Ω) is given by the Raviart-Thomas space

RT0(Ω, T ):

RT0(Ω, T ) := {χ ∈ H(div ,Ω)|χ|T ∈ RT0(T ), T ∈ T } ,

where RT0(T ) stands for the lowest order Raviart-Thomas element

RT0(T ) := (P0(T ))2 + x · P0(T ).

Every χ ∈ RT0(T ) is uniquely determined by the normal fluxes n · χ on the

edges ei, 1 ≤ i ≤ 3, where n denotes the outer normal w.r.t. the element T .

As a finite dimensional subspace Mh(T ) ⊂ L2(Ω) we take the space of piecewise

constant functions:

Mh(T ) :=
{
ϕ ∈ L2(Ω) | ϕ |T∈ P0(T ), T ∈ T

}
.

Simple calculation shows

div Vh = Mh(T ).

The standard mixed discretization reads as follows:

Find (qh, ph) ∈ Vh ×Mh(T ) such that

(7)
a(qh,χh)− b(ph,χh) = (ρhg,χh)− 〈pD,χh · n〉 ∀χh ∈ Vh

b(ϕh, ρhqh) = −
(
φ
∂ρh

∂t
, ϕh

)
+ (Q̃, ϕh) ∀ϕh ∈Mh(T ).

This leads to an indefinite saddle point problem after linearization. To overcome

this difficulty, we use the technique of hybridisation. For more information see

[3], [9].
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Relaxing the continuity condition of the ansatz functions in RT0(Ω, T ) we use

the non-conforming space

V̂h = R−1
0 (Ω, T ) :=

{
χ ∈ (L2(Ω))2 | χ|T ∈ RT0(T ), T ∈ T

}
.

The continuity of the normal flux over element boundaries is guaranteed by La-

grange multipliers from M0
h(E), where

Mh(E) :=
{
µh ∈ L

2(E) | µh|e ∈ P0(e), e ∈ E
}

and

M0
h(E) := {µh ∈Mh(E) | µh|e = 0, e ⊂ ∂Ω} .

Furthermore define

MD
h (E) := {µh ∈Mh(E) | µh|e = pD, e ⊂ ∂Ω} .

Then the mixed hybrid discretization reads as:

Find (q∗h, p
∗
h, λh) ∈ V̂h ×Mh(T )×MD

h (E) such that

(8)

â(q∗h,χh)− b̂(p
∗
h,χh) + c(λh,χh) = (ρhg,χh)− 〈pD,χh · n〉 ∀χh ∈ V̂h

b̂(ϕh, ρhq
∗
h) = −(φ

∂ρh

∂t
, ϕh) + (Q̃, ϕh) ∀ϕh ∈Mh(T )

c(µh,q
∗
h) = 0 ∀µh ∈M

0
h(E)

where

â :

{
V̂h × V̂h −→ R
(q1,q2) 7−→

∑
T∈T

∫
T
K−1µq1 · q2 dx

(9)

b̂ :

{
Mh(T )× V̂h −→ R
b̂(v,q) 7−→

∑
T∈T

∫
T
∇ · qv dx

(10)

c :

{
Mh(E)× V̂h −→ R
c(v,q) 7−→

∑
T∈T

∫
∂T
vq · n ds

(11)

For a solution (q∗h, p
∗
h, λh) of (8), the last equation in (8) implies q∗h ∈ RT0. If

(qh, ph) ∈ Vh×Mh(T ) solves (7), the last equation in (8) is automatically fulfilled.

That means we drop the * in (8) and have

q∗h = qh,

p∗h = ph.
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Static condensation

Now we eliminate the unknown flux in (8). For every triangle T ∈ T there

exist 3 test functions χi ∈ V̂h with

supp (χi) ⊆ T.

Consider the first equation in (8) on element level. One gets (ignoring boundary

terms)

A

 q1
q2
q3

 =

 b1
b2
b3

−
 c1
c2
c3

+

 d1

d2

d3

 ,

where A is a 3× 3 matrix with entries of the form

(A)ij = â(χi,χj).

We define bi, ci, di as follows:

bi = b̂(ph,χi),

ci = ĉ(λh,χi),

di = (ρhg,χi).

Now, inverting the matrix A, it is possible to eliminate the unknown flux in the

two last equation of (8) and solve a reduced system.

Connection to the finite volume method

In the last section we simplified our problem by eliminating the unknown flux.

Using a special quadrature rule to integrate the bilinear form a(q, χ) in (7) we end

up in a problem with one unknown per element, so we get a system of equations

like for a cell-centered finite volume method.

To do so we consider K−1µ as a scalar and constant over the whole domain.

The triangulation fulfils a strict Delaunay property (the sum of angles opposite of

an edge ei is strictly smaller than π).

Baranger [5] proposed the following quadrature rule on elements:

(12)

∫
T

phqhdx =
1

2

3∑
i=1

ciφei(ph)φei(qh)

with ci = cot (θi) and θi denotes the angle opposite to the edge ei, φei(ph) =∫
ei

ph ·n ds is the flux of ph through edge ei. (12) is exact for ph and qh piecewise

constant functions.
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For qh ∈ RT0, the value qh ·n is constant along the edge ei. So, for ph,qh ∈ RT0

the integral ∫
T

phqh dx

is approximated by

1

2

3∑
i=1

ci|ei|
2piqi,

where pi, qi are the degrees of freedom of ph,qh and |ei| is the length of the edge ei.

We use this idea to compute the integral over T in (7) for the test function

χi ∈ V̂h with ∫
ej

χi(x) · n ds = δij .

So supp (χi) consists of two triangles T and T ′, see Figure 2.

a(qh,χh) =
1

2
K−1µ(ci + c′i)φei(qh)φei (χh)

=
1

2
K−1µ(ci + c′i)qi|ei|

2.

T

T ′

ei

C C′

θi

θ′i

C (resp. C′ is the center of the

circumscribed circle to T (resp. T ′))

Figure 2.

For piecewise constant p, b(p, χ) is integrated exactly. For such test function

we get

b(ph,χh) = pT − pT ′ .

The integral (ρhg,χh) is approximated by the same quadrature rule (12). It follows

that

(ρhg,χh) =
1

2
(ci + c′i)ρeig · nei |ei|

2

where ρei is an approximation of ρ on the edge ei.
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By the sine theorem, it follows for Di, the distance between C and C′:

CC′ =
ci + c′i

2
|ei|ni

Di =
1

2
|ci + cii||ei|

Because of the strict Delaunay property for T, T ′, it follows:

ci + c′i > 0 .

An extension to non-Delaunay triangulations is given in ([5]).

So, a discrete form of Darcy’s law reads as:

φei(qh) = qi|ei|(13)

= −
K

µ

{
pT ′ − pT
Di

|ei| − ρeig · nei |ei|

}
.

With the quadrature rule (4) and with Green’s formula the second equation in (7)

is given by:

(14) |Ti|φi∂tρhi +
3∑
j=1

ρejφej (qh) = |Ti|Q̃.

Now with (13) it is possible to eliminate the flux φej (qh) in (14) and we get the

same discretization as for the well known cell-centered finite volume method.

5. Estimation of the Spatial Error

In order to derive a posteriori error estimates, we consider variational formula-

tions of the continuous and the discrete system. In this section we consider the case

K ≡ 1, i.e. without any upwind term, but generalizations to upwind situations are

possible.

Multiplying (1) and (2) by functions r, s ∈ W0 ⊂ W l
q′(Ω), respectively, where

q′ is conjugate to q from the solution space, and setting u := (c, p) and V :=

(r, s), with V ∈W0 := W0 ×W0, we get a variational formulation, assuming no

flow boundary conditions for simplicity both for the fluid and the mass flow or

homogeneous Dirichlet conditions by using the following forms:

a(u,V) := (ρD∇c− qρc,∇r) +
( ρ
µ
K∇p,∇s

)
,

b(u,V) := (Φρc, r) + (Φρ, s),

〈f(u),V〉 := (Q, r) + (Q̃, s) +
(ρ2

µ
Kg,∇s

)
.
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The variational formulation of the problem (1)–(2) reads as follows:

Find u(t) ∈ V0, t ∈ (0, T ), such that it holds

∂

∂t
b(u,V) + a(u,V) = 〈f(u),V〉 ∀V ∈W0,

c(0) = c0.

(15)

We get the discrete variational form of (6)–(5) by multiplying the equations by

Vh(xi), with Vh :=
(
rh
sh

)
, Vh ∈ Wh := Wh ×Wh and summing over all finite

volumes. Here Wh ⊂W0 and consists of continuous functions.

We set:

ah(uh,Vh) :=
I∑
i=1

rhi
∑
j,e

neij · (q
e
ij

ρeij
2

(ci + cj)− ρ
e
ijD

e
ij∇c

e
ij)|Γ

e
ij|

−
I∑
i=1

shi
∑
j,e

neij ·
( ρeij
µeij

Ke
ij∇p

e
ij

)
|Γeij |,

bh(uh,Vh) := (Φρhch, rh)l + (Φρh, sh)l ,

〈fh(uh),Vh〉 := (Q, rh)l + (Q̃, sh)l −
I∑
i=1

shi
∑
j,e

neij ·
((ρeij)

2

µeij
Ke
ijg
)
|Γeij |,

where the discrete inner product is defined by

(16) (wh, zh)l :=
I∑
i=1

whizhi|Ωi|.

Here qeij is the discrete form of (3) as discussed in Section 3.

We remember that for the indices we have j ∈ Λi where Λi is defined to be the

set of indices of all neighbouring nodes xj to xi; and e ∈ Λij, where Λij denotes

the set of indices e of all elements which contain the nodes xi and xj . So we finally

arrive at the following discrete problem:

Find uh(t) ∈ Vh, t ∈ (0, T ), such that it holds:

∂

∂t
bh(uh,Vh) + ah(uh,Vh) = 〈fh(uh),Vh〉 ∀Vh ∈Wh,

ch(0) = c0h.

(17)

The appearing nonlinear variational form is not well investigated. For the sake

of simplicity we consider a problem like (17), which fulfill the following assumption:
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A1. There exists m0 > 0 such that V,u ∈ V0

m0‖u−V‖V0 ≤ sup
W∈W0

a(u,W)− a(V,W)

‖W‖W0

.

A more realistic assumption is formulated in [2]. It needs some additional

properties of the asymptotic behaviour of the numerical solution, but the demands

on the bivariate form are weaker. Besides we need some additional properties

about the approximation behaviour of the partition and the chosen subspaces Vh
and some properties of the grid.

For the development of indicators for grid adaption we follow the ideas of Bi-

eterman and Babuška [7], [8] and Angermann [2]. We separate the elliptic error by

considering an auxiliary problem. Angermann generalized the basic techniques of

a posteriori error estimation devised by Babuška and Rheinboldt [4] for nonlinear

equations. The arising local auxiliary problems are estimated further in this work

for getting easily computable quantities.

To define the auxiliary stationary problem, we introduce the notation

〈f̃ ,V〉 := 〈f(uh),V〉 −
∂

∂t
b(uh,V)

and get as a new problem

(18) a(ũ,V) = 〈f̃ ,V〉 ∀V ∈W0.

For the error estimation we use

(19) ‖u− uh‖V0 ≤ ‖u− ũ‖V0 + ‖ũ− uh‖V0 .

Using the assumption A1 we get

‖ũ− uh‖V0 ≤
1

m0
sup

V∈W0

a(ũ,V) − a(uh,V)

‖V‖W0

.

With arbitrary Vh ∈ Vh we get

a(ũ,V)− a(uh,V) = a(ũ,V−Vh)− a(uh,V −Vh) + a(ũ,Vh)− a(uh,Vh).

Omitting the details, we finally obtain for the first term the relation

1

m0
sup

V∈W0

a(ũ,V −Vh)− a(uh,V −Vh)

‖V‖W0

≤ C0η0
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with ηq0 =
N∑
i=1

ηq0i and η0i =
3∑
l=0

Clη̃
(l)
0i , where Cl > 0 are certain constants and

η̃
(0)
0i :=

{ ∑
τ :τ 6⊂∂Ω
τ∩Ωi 6=∅

hq/2τ

∫
τ

[nτ · (qhρhch − ρhDh∇ch)]
q
τ dx

}1/q

,

η̃
(1)
0i :=

{ ∑
τ :τ 6⊂∂Ω

τ∩Ωi 6=∅

hq/2τ

∫
τ

[ρhnτ · qh]
q
τ dx

}1/q

,

η̃
(2)
0i := hi

{ ∑
T :T∩Ωi 6=∅

‖Q− Φ
∂ρhch

∂t
−∇ · (qhρhch − ρhDh∇ch)‖

q
Lq(T )

}1/q

,

η̃
(3)
0i := hi

{ ∑
T :T∩Ωi 6=∅

‖Q̃− Φ
∂ρh

∂t
−∇ · (ρhqh)‖

q
Lq(T )

}1/q

.

Here τ denotes an edge of an element T from T with length hτ ,

hi := maxT :T∩Ωi 6=∅

{
maxτ⊂∂T hτ

}
is a characteristic local mesh parameter and

[ · ]τ is the absolute value of the jump across the edge τ (with normal direction nτ ,

where nτ is the outer normal vector at τ w.r.t. T ).

To treat the second term, we start from the following decomposition:

a(ũ,Vh)− a(uh,Vh) =
N∑
i=1

∫
Ωi

[
Q−Qi − Φ

∂ρhch

∂t
+ Φi

∂ρhichi

∂t

]
rhi dx

+
N∑
i=1

∫
Ωi

[
Q̃− Q̃i − Φ

∂ρh

∂t
+ Φi

∂ρhi

∂t

]
shi dx

−
N∑
i=1

rhi

[∫
Ωi

∇ · (qhρhch − ρhDh∇ch) dx

−
∑
j,e

neij · (qhΓeijρ
e
ijc

e
ij − ρ

e
ijD

e
ij∇c

e
ij)|Γ

e
ij |
]

−
N∑
i=1

shi

[∫
Ωi

∇ · (ρhqh) dx−
∑
j,e

ρeijn
e
ij · q

e
ij |Γ

e
ij |
]

+
N∑
i=1

∫
Ωi

[
Q− Φ

∂ρhch

∂t
−∇ · (qhρhch − ρhDh∇ch)

]
(rh − rhi) dx

+
N∑
i=1

∫
Ωi

[
Q̃− Φ

∂ρh

∂t
−∇ · (ρhqh)

]
(sh − shi) dx
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+
∑
T∈T

∑
τ⊂∂T

∫
τ

nτ · (qhρhch − ρhDh∇ch)rh dx

+
∑
T∈T

∑
τ⊂∂T

∫
τ

ρhnτ · qhsh dx .

The first four terms are estimated straightforward via Hölder’s inequality and

by making use of the equivalence of the norm
{∑I

i=1 |whi|
q′ |Ωi|

}1/q′

(cf. (16))

on the components of Vh with the Lq
′
(Ω)-norm. The estimates of the fifth and

the sixth term are in fact estimates of the lumping error. The last two terms are

estimated by means of scaled trace inequalities.

For the other term in (19) we assume, that ∃δ ∈ (0, T ) ∃CT > 0 ∃κ > 0

∀t ∈ (δ, T ):

‖u− ũ‖V0 ≤ CTh
κη0

Collecting the components of the estimators and putting similar terms together,

we finally obtain the estimate

‖u(t)− uh(t)‖V0 ≤
1

m0

7∑
l=0

Clη̃l with η̃ql :=
N∑
i=1

η̃qli

and

η̃0i := |Ωi|
−1/q′

∣∣∣∣∫
Ωi

[
Q−Qi − Φ

∂ρhch

∂t
+ Φi

∂ρhichi

∂t

]
dx

∣∣∣∣ ,
η̃1i := |Ωi|

−1/q′
∣∣∣∣∫

Ωi

[
Q̃− Q̃i − Φ

∂ρh

∂t
+ Φi

∂ρhi

∂t

]
dx

∣∣∣∣ ,
η̃2i := |Ωi|

−1/q′
∣∣∣∫

Ωi

∇ · (qhρhch − ρhDh∇ch) dx

−
∑
j,e

neij · (q
e
ij

ρeij

2
(ci + cj)− ρ

e
ijD

e
ij∇c

e
ij)|Γ

e
ij |
∣∣∣,

η̃3i := |Ωi|
−1/q′

∣∣∣∣∣∣
∫

Ωi

∇ · (ρhqh) dx−
∑
j,e

ρeijn
e
ij · q

e
ij |Γ

e
ij|

∣∣∣∣∣∣ ,
η̃4i :=

{ ∑
τ :τ /∈∂Ω
τ∩Ωi 6=∅

hq/2τ

∫
τ

[nτ · (qhρhch − ρhDh∇ch)]
q
τ dx

}1/q

,

η̃5i :=
{ ∑
τ :τ /∈∂Ω
τ∩Ωi 6=∅

hq/2τ

∫
τ

[ρhnτ ·qh]
q
τ dx

}1/q

,

η̃6i := hi

{ ∑
T :T∩Ωi 6=∅

‖Q− Φ
∂ρhch

∂t
−∇ · (qhρhch − ρhDh∇ch)‖

q
Lq(T )

}1/q

,
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η̃7i := hi

{ ∑
T :T∩Ωi 6=∅

‖Q̃− Φ
∂ρh

∂t
−∇ · (ρhqh)‖

q
Lq(T )

}1/q

.

In general, the constants C0, . . . , C7 depend on global parameters associated

with the bivariate forms a, ah, b, bh, (·, ·) and with the family of partitions of Ω (cf.

also [1] for the situation in the case of a linear convection-diffusion problem). For

the numerical experiments we take q = 2.

6. Adaptive Algorithm and Numerical Experiments

Two kinds of numerical experiments were done. First we consider the adaptive

algorithm for the finite volume discretization of flow and transport equation. The

main attention is payed to the behaviour of the adaptive procedure. In the sec-

ond part of experiments we compare the finite volume discretization of the flow

equation with the mixed finite element discretization.

We restrict ourselves to 2-d problems. The adaptive procedure for mesh control

utilizes the error indicators which have been developed in the previous section 5.

Here the basic strategy is to get an equidistribution of the following local indica-

tors:

ηi :=
7∑
l=0

η̃li

η̃l
, i = 1, . . . , N .

In this way we guarantee that all indicators are dimension-free and have an equal

influence on the new grid. This representation of indicators is supported by ex-

periments which show that the results are not very sensitive w.r.t. a moderate

variation of the weighting factors.

In order to be able to start from a rather coarse initial grid, the first step of the

algorithm is performed by means of a re-starting procedure, i.e. after an evaluation

of the indicators corresponding to the actual spatial mesh, it is decided whether

the second time step has to be carried out or the mesh has to be refined and then

the first time step is to be repeated.

All further time steps are passed through only once. During the computations

the adaptive algorithm is used only eventually, i.e. the grid is kept fixed for a

number of time steps.

In the computations the software package UG from the University of Stuttgart

is used. The arising nonlinear system is linearized via Newton’s method and the

linear equations are solved by a multigrid method. The size of the time step is

chosen by the nonlinear solver of UG. For further information about UG and the

built-in solvers see [6].

A widely accepted test example is so-called Elder problem. There Ω is a rectan-

gular domain (0, 600)×(0, 150) in the x-z-plane. The data are: K ≡ 4.845 ·10−13 I

(where I is the identity matrix), D ≡ 3.565 · 10−6 I, µ ≡ 10−3, φ ≡ 1/10,
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Q ≡ Q̃ ≡ 0, g =
(

0
−9.81

)
. The density is of the form ρ = 1000 + 200 c. Fur-

thermore, c0 = 0. The boundary conditions are as follows: c ≡ 1 for z = 150,

x ∈ [150, 450] and c ≡ 0 elsewhere, n · q = 0 on the whole boundary. Since the

pressure is determined up to an additive constant, we additionally require p = 0

in the point
(

0
150

)
.

As a second example we consider a modification of the Elder problem. Here

within the rectangular domain (0, 600)× (0, 300) we have several subdomains. We

have jumps of permeability over the boundaries of the subdomains, particular:

K ≡ 4.845 · 10−13 I in the subdomain Ω1. K ≡ 4.845 · 10−16 I elsewhere, for the

adaptive procedure, and

K =

(
4.845 · 10−13 0

0 4.845 · 10−16

)

for the mixed elements. All other coefficients and the boundary conditions are like

in the Elder problem.

6.1 Numericals Results for the Adaptive Algorithm

Because no exact solution is known for the Elder problem, we look for the

plausibility of the adaptive procedure. In the Figures 3 and 4 the concentration

contour lines and the adaptive grids for the time 1.5 and 3.5 years are shown. The

grids consist of 6 234 and 6 910 nodes, respectively. We see that the evolution of

Figure 3. Concentration contours and adaptive grid at t = 1.5 years.
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Figure 4. Concentration contours and adaptive grid at t = 3.5 years.

the grid closely follows the evolution of the concentration profile. The algorithm

resolves well the most important areas of the computational problem. The solu-

tion is compared with a results on a uniform grid of 16 384 nodes in Figure 5. The

qualitative behaviour of the solution is the same with significantly less computa-

tional costs for the adaptive procedure. The computational costs of the indicators

are comparatively low because no additional boundary value problems are to be

solved. For the specific problem, only 10% of the total computing time is spent to

compute the estimator and for grid-refinement.

Figure 5. Concentration contours for a uniform grid at t = 3.8 years.

For the modified Elder problem we look for the behaviour of the adaptive al-

gorithm near inner boundaries. It is well known in literature [10] that the jump

of the coefficients at the inner boundaries may cause problems. In Figure 6 the
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Figure 6. Velocity field, adaptive grid and concentration contours at t = 10 years.
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contour lines of the concentration, the velocity field and the adaptive grid are pre-

sented for the time 10 years. The grid consists of 16 157 nodes. Like in the Elder

problem we notice that the grid follows the contour lines of the concentration.

Moreover, at the inner boundaries of the domain the finer grid sizes appear. So

the area, where we suppose the most problems in calculation, are of finer grid size.

6.2 Numericals Results for the Mixed Finite Element Method

The purpose of this section is to discuss and to compare the differences between

the finite volume method (FV) and the mixed finite element method (MFE).

In FV one obtains a linear approximation of the pressure p. The calculation of

the Darcy flux q with the consistent velocity approximation results in a cellwise

constant q. In MFE the pressure p and the velocity is approximated individually.

This leads to a piecewise constant pressure in each element (or a non-conform linear

pressure in each element [3]) and a piecewise linear approximation for velocity in

the elements.

This difference becomes clear by the Figures 7 and 8. They show the velocity

field for the modified Elder example after the first time step.

Figure 7. Velocity field from FV.
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Figure 8. Velocity field from MFE.

Figure 9. Velocity field and concentration from FV.
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Figure 10. Velocity field and concentration from MFE.

A further difference between FV and MFE is the mass conservation property.

The FV fulfils this property on the finite volumes Ωi and the MFE on elements.

It is easy to see that for the problems with strong discontinuous or anisotropic

permeability the results of the MFE are more realistic as for FV on the same grid.
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