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WAVE BIFURCATION IN MODELS

FOR HETEROGENEOUS CATALYSIS

S. KRÖMKER

Abstract. Heterogeneous Catalysis means that the reacting species and the cat-
alyst do not have the same phase. A mathematical model for such a reaction has
to take into account as well the complex kinetic processes and the spatial coupling.
Depending on how strong the reactants are bound to the surface of the catalyst,
the diffusion coefficients may vary by orders. Diffusion does not only smoothen
the concentration gradients which are given by the initial data or result from the
reaction kinetic processes. It is also able to induce instabilities which give rise to
stable inhomogeneous steady or time-periodic solutions.

The conditions for such a bifurcation are rather restrictive but can be checked
by only considering the kinetic part. Numerical simulations can be carried out more
precisely in the neighborhood of the critical parameters.

1. Diffusion-Induced Instabilities

Diffusion-induced instability or Turing instability means that for a reaction-

diffusion system of at least two scalar equations there is a spatially constant steady

solution which is asymptotically stable in the sense of linearized stability in the

space of constant functions. Nevertheless, it is unstable to spatially inhomogeneous

perturbations.

Consider a parameter dependent system of N equations on a bounded domain

with appropriate boundary conditions

ut = D∆u+ f(u,Λ)

with D = diag (d1, . . . , dN ), di ≥ 0. With regard to the phenomena of spatio-

temporal oscillations, it is quite natural to ask if there are bifurcations from a

stable zero solution to periodical solutions in space and time.

A wave bifurcation is a supercritical Hopf bifurcation from a stable steady

constant solution to a stable periodic and nonconstant solution. The bifurcating

solution in the case of Neumann boundary conditions then is a standing wave
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solution. The constant solution is an equilibrium point of the kinetic system

ut = f(u,Λ). The aim is to destabilize this solution by diffusion coefficients, as in

the case of the classical Turing Instability, where a single eigenvalue becomes

positive and the bifurcating solution is a nonconstant steady state. If the real part

of a single pair of complex eigenvalues of the linearization of the whole system

at this point crosses the imaginary axis and the bifurcation is supercritical, there

exists a nonconstant time-periodic solution.

To bifurcate from a constant to a spatio-temporal pattern one has to avoid the

principal eigenvalue of −∆, which is zero, because it belongs to the eigenfunction

that is the constant solution . This eigenvalue leads to the so called space

independent Hopf bifurcation and one has to deal with oscillations of constant

solutions.

2. Routh-Hurwitz Theory

For anN×N matrixA the characteristic polynomial is the sum of the symmetric

functions σi with alternating signs.

χA(λ) = λN − σ1λ
N−1 + · · ·+ (−1)iσiλ

N−i + · · ·+ (−1)NσNλ
0 = 0 .

The matrixH called Hurwitz matrix is filled according to the Hurwitz scheme

with the coefficients of the characteristic polynomial. It is a square matrix of

order N .

Their principale minors ∆i, i = 1, . . . , N are the so called Hurwitz determi-

nants.

The number of eigenvalues with positive real part of a linearization is the num-

ber of roots in the right half plane of its characteristic polynomial. This number

can be computed with the help of the Routh-Hurwitz Theorem.

Theorem 2.1 (Routh-Hurwitz). The number k of roots of a normed real

polynomial of order N which lie in the right half plane is given by the formula

k = V

(
1,∆1,

∆2

∆1
,
∆3

∆2
, · · · ,

∆N

∆N−1

)
with ∆i, i = 1, . . . , N the successive principal minors of a square matrix H of

order N , and V the number of changes of sign of adjacent members of a finite

sequence (Gantmacher [4, p. 230]).

If and only if all the Hurwitz determinants are positive, the number k is zero

(this is the so called Routh-Hurwitz Criterion).

The idea behind the wave bifurcation uses Orlando’s formula (see [4]).

∆N−1 = (−1)
N(N−1)

2

1...N∏
i<k

(λi + λk)
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from which follows that ∆N−1 = 0 if and only if the sum of at least one pair of

roots of the polynomial is zero. In particular this is true for a conjugate pair of

pure imaginary roots. Together with the Routh-Hurwitz Theorem the case of a

single pair of pure imaginary roots and all other roots with negative real part can

be characterized by:

(a) ∆i > 0 for i = 1, . . . , N − 2

(b) ∆N−1 = 0

(c) (−1)NdetA > 0

The last inequality is needed to keep away from zero as a (multiple) root.

2.1 Application to Reaction-Diffusion Systems

The following notations are used: Let the tilde ∼ always denote the PDE system

and let the indexm indicate the respect to the appropriate mode via the eigenvalue

µm
2 of the negative Laplace operator with Neumann boundary conditions. If Ω

is the unit interval, −∆ξm = µm
2ξm results in ξm = cos(πmx) the eigenfunction

for the eigenvalue µm
2 = (πm)2,m ∈ N0. Claiming that all eigenfunctions of Ã

have the form (c1, c2, c3)
tξm with coefficients ci ∈ R, they form three-dimensional

functional subspaces of the solution space. The diffusion coefficients appear in the

Jacobian as dim := diµm
2, i = 1, . . . , N .

Ã(µm) = A−D(µm) = (aij)i,j∈{1,...,N} − diag (d1m, . . . , dNm)

The trace of a submatrix of A consisting of the i1 and i2 column and row will

be denoted as tr (Ai1i2). The minors with the same columns as rows will be

abbreviated with |Ai1i2|.
For reaction-diffusion systems, the number of eigenvalues in the right half plane

is the sum

k̃ :=
∞∑
m=0

km,

where the nonnegative integer km belongs to the mth spatial mode. Therefore one

has to compute the Hurwitz determinants of all Ã(µm). The sum k̃ is zero if and

only if the sign conditions are fulfilled for all m, that is ∆̃i(µm) > 0, i = 1, . . . , N

for all m, or, in short, ∆̃i > 0. If no special mode is explicitly indicated, this

notation refers to all modes.

2.1.1 Planar Systems

The Hurwitz determinants for N = 2 give simple conditions for stable nodes.

H =

(
−trA 0

1 detA

)
,

∆1=−trA > 0

∆2=−trA detA > 0

Two variables reaction-diffusion systems with activator-inhibitor kinetic are

widely studied (see for example [3]). The variable with positive diagonal entry



86 S. KRÖMKER

in the Jacobian is called the activator, the variable with negative entry is the

inhibitor.

Then an appropriate diffusion coefficient d1 can make the term a11d2 + a22d1

positive, although the trace a11+a22 is negative, and thereby change the sign of the

determinant in the presence of spatial inhomogeneities. This is often abbreviated

in the rule:

d1

d2
>
−a11

a22
> 1 ⇒ The inhibitor has to diffuse faster.

For a wave bifurcation, when k̃ increases by 2 and k̃m is even, the (−1)Ndet Ã(µm)

is positive. In two variables systems, the Hopf bifurcation can only be realized

when the trace becomes positive. But in the regular as well as in the singular

perturbation, that is d1 → ∞ or d−1
2 → ∞, the trace is always diminished by a

diffusion operator, so that trA has to be nonnegative, contradicting the require-

ment of a stable equilibrium. The number of equations has to be increased to get

a diffusion-induced supercritical Hopf bifurcation.

It is not possible to get a wave bifurcation for a two variables system (see Turing

[8], and therein the cases e) and f): e) Oscillatory case with a finite wave-length

and f) Oscillatory case with extreme short wave-length, [ . . . ] possibilities [that]

can only occur with three or more morphogens. [ . . . ] no attempt was made to

develop formulae for these.).

2.1.2 Systems of Three Equations

The eigenvalues of a system of three equations are the roots of

χA(λ) = λ3 − trA λ2 +
∑

1≤i<j≤3

|Aij| λ− detA = 0

and for N = 3 the Hurwitz matrix is

H =

−trA −detA 0

1
∑
|Aij| 0

0 −trA −detA

 =

−σ1 −σ3 0

1 σ2 0

0 −σ1 −σ3


with successive Hurwitz determinants to be computed using the coefficients

(−1)iσi, i = 1, 2, 3 of the symmetric functions.

∆1 = −trA = −σ1

∆2 = −trA(
∑
|Aij|) + detA = −σ1σ2 + σ3

∆3 = −∆2 detA = −(−σ1σ2 + σ3)σ3

All three eigenvalues have negative real parts if ∆i > 0 for i = 1, 2, 3 (Routh-

Hurwitz Criterion). This is equivalent to simultaneously satisfying −σ1 > 0,

−σ1σ2 + σ3 > 0 and −σ3 > 0.
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The conditions−σ1 > 0 and−σ3 > 0 are as easy to check as in the case of planar

systems. The second Hurwitz determinant is critical at the surface σ1σ2 = σ3

which is a hyperbolic paraboloid. For a kinetic system of three equations the

number k computes as follows:

k = V

(
1,∆1,

∆2

∆1
,
∆3

∆2

)
= V (1,∆1,∆3) + V (1,∆2)

= V (1,∆1) + V (∆1,∆3) + V (1,∆2)

To illustrate the formal computations of k, the following figures give an impression

where the regions of stable nodes are (k = 0, shaded areas) and which lines or

surfaces separate the regions for the various numbers of k in two and three variables

systems. In contrast to Figure 1 the three variables system in Figure 2 shows the

possibility of a linearizationA having a negative trace and a determinant indicating

an even number k, without necessarily being in the area of stable nodes.

Figure 1. For a two variables system

a sign change of the trace results in an

increase of k by 2.

Figure 2. For a three variables system

the surface σ1σ2 = σ3, σ2 > 0, has to

be crossed to increase k by 2.

Crossing the surface σ1σ2 = σ3 has no effect on k for σ2 < 0. Here only the

sign of σ3 = detA decides if k is one or two.

Qualitatively, the pictures do not change when considering Ã(µm) and k̃m in-

stead of A and k, respectively.

If a single diffusion coefficient is able to induce a destabilization of the stable

zero solution, then k is zero and at least one k̃m has become nonzero on varying

this coefficient.

On condition that −trA > 0, (V (1,∆1) = 0) it yields −tr Ã > −trA > 0, since

diffusion only decreases the trace. Therefore −tr Ã = ∆̃1 is always positive. Since
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V (∆̃1, ∆̃3) = 0 is equivalent to (−tr Ã)(−det Ã)∆̃2 > 0, the expressions −det Ã

and ∆̃2 have to be of the same sign in order not to change the sum k̃.

What can be observed by now is that a change in sign of det Ã(µm) for a single

m gives exactly one positive real eigenvalue as well as in the two-dimensional case.

In general a Turing bifurcation from a stable constant solution to a stable steady

but nonconstant solution can be decided by the sign of the determinant.

Consider the case when k̃ increases by 2 in the system of three equations. This

is equivalent to the question: Can diffusion change the sign of the second Hurwitz

determinant without changing the sign of the first and third?

That means that −tr Ã > 0 and −det Ã > 0 for all m whereas

∆̃2(µm) = −tr Ã(µm)
∑

1≤i<j≤3

|Ã(µm)ij| + det Ã(µm)

changes sign for a single m, but ∆̃2 > 0 for all j 6= m. If this is the case,

generically two complex conjugate roots cross the imaginary axis and the equilib-

rium is no longer asymptotically stable. A critical diffusion coefficient d∗i leads to

∆̃2(µm, d
∗
i ) = 0.

Remark 2.1. The case of negative trA and thereby negative tr Ã is assumed.

Generically either det Ã(µm) or ∆̃2(µm) changes sign first.

In the case of a first change of sign of det Ã(µm), this is the usual Turing

bifurcation to a steady state solution. If afterwards ∆̃2 changes sign, this can only

happen for
∑
|Ã(µm)ij| < 0 where it has no effect on k̃m. If the sign of det Ã(µm)

changes back in this area, two positive (real) eigenvalues exist, which of course can

meet and become a complex conjugate pair. But such oscillating solutions do not

necessarily give rise to a time-periodic solution.

In case of ∆̃2(µm) changing sign first while tr Ã and det Ã are negative, the

number k̃ of eigenvalues in the right half plane increases by two so that there is a

pair of pure imaginary eigenvalues.

With Orlando’s formula it is clear that the eigenvalue condition for the Hopf

bifurcation in a three variables system depends on the second Hurwitz determinant.

The terms of the second Hurwitz determinant ∆̃2(µm, d1, d2, d3) which are not

in ∆2 can cause a change in sign.

∆̃2(µm, d1, d2, d3)

=
[
2d1d2d3 + (d1)

2(d2 + d3) + (d2)
2(d1 + d3) + (d3)

2(d1 + d2)
] (

µm
2
)3

−
[
tr (A23)(d1)

2 + tr (A13)(d2)
2 + tr (A12)(d3)

2

+ 2trA(d1d2 + d1d3 + d2d3)
] (

µm
2
)2

(1)

+
[
(|A12|+ |A13|+ tr (A23)trA)d1 + (|A12|+ |A23|+ tr (A13)trA)d2

+ (|A13|+ |A23|+ tr (A12)trA)d3

]
µm

2

+ ∆2
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3. Wave Bifurcation in Case of d1 6= 0

The wave bifurcation cannot occur for systems with less than three equations.

However, even in the case of three equations, a rule like that in the case of two

equations and activator-inhibitor kinetic cannot be read off the Hurwitz de-

terminant ∆̃N−1 = ∆̃2 immediately. In order to derive conditions on the kinetic

system that allow a wave bifurcation, consider some positive d1 and a singular

limit with d2 → 0 and d3 → 0. The formal limit

lim
d2→0
d3→0

∆̃2(µm, d1, d2, d3) = ∆̃2(µm, d1, 0, 0)

= −tr (A23)(d1µm
2)2 + (|A12|+ |A13|+ tr (A23)trA) d1µm

2 + ∆2(2)

results in a parabola ∆̃2(µm, d1, 0, 0) =: ∆̃2(d1µm
2) in d1. The following conditions

for a change in sign of ∆̃2(d1µm
2) by the diffusion coefficient d1 and themth spatial

mode imply wave bifurcation.

Conditions for Wave Bifurcation:

(C1) −trA > 0

(C2) ∆2 = −trA(
∑
|Aij|) + detA > 0

(C3) −detA > 0

(C4) −tr (A23) > 0

(C5) −(|A12|+ |A13|+ tr (A23)trA) > 0

(C6) (|A12|+ |A13|+ tr (A23)trA)2 + 4tr (A23)∆2 > 0

Remark 3.1. The conditions (C1)–(C3) guarantee a stable constant equilib-

rium of the kinetic system. The normed parabola to be discussed is

1

−tr (A23)
∆̃2(d1µm

2) = (d1µm
2)2−

(|A12|+ |A13|+ tr (A23)trA)

tr (A23)
d1µm

2−
∆2

tr (A23)
.

This is the normed second Hurwitz determinant depending on the diffusion coef-

ficient d1 and the mth spatial mode. (C4) is needed for the right opening of the

parabola, (C5) is needed for positive real parts of the roots and (C6) is sufficient

for the existence of two real roots ν± > 0. Now the second Hurwitz determi-

nant becomes negative for d1µm
2 in the open interval (ν−, ν+) and this results in

complex eigenvalues for the Jacobian Ã(µm). Note that all these conditions only

concern the kinetic system.

Theorem 3.1. Consider system (3) of a parabolic and two ordinary differential

equations that has an asymptotically stable constant equilibrium E∗ (i.e. (C1)–(C3)

are satisfied).

u1t = B(u1, d1) + g1(u1, u2, u3)

u2t = g2(u1, u2, u3) in Ω× (0, T+)(3)

u3t = g3(u1, u2, u3)
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and appropriate boundary conditions such that the spectrum of −B( · , d1) is non-

negative, real and discrete.

The linearized kinetic system at the constant solution fulfills (C4)–(C6). Now

∆̃2(d
∗
1µm

2) = 0 for m

∆̃2(d
∗
1µl

2) > 0 for l 6= m

for a single m ∈ N, where µm
2 denotes the mth eigenvalue of −B. Then

(i) {±iω} are simple eigenvalues of Ã , where ω > 0,

(ii) there are no eigenvalues of the form ikω for k ∈ Z \ {±1} and

(iii) ∂d1Reρ(d∗1) 6= 0, where ρ(d1) is the unique continuation of the eigenvalue

of Ã for d1 in a neighborhood of the critical d∗1 satisfying ρ(d∗1) = iω.

Then the system (3) has a unique one-parameter family of noncritical noncon-

stant periodic orbits in an appropriate neighborhood; precisely for u := (u1, u2, u3),

the minimal period T and the bifurcation parameter d1 it yields

(u(·), T (·), d1(·)) ∈ C∞((−ε, ε), V × R× R)

satisfying

(u(0), T (0), d1(0)) =

(
E∗,

2π

ω
, d∗1

)
such that

γ(s) := γ(u(s))

is a noncritical nonconstant periodic orbit of system (3) of period T (s) passing

through u(s) ∈ V for 0 < s < ε.

Remark 3.2. Via cyclic changes of the indices i = 1, 2, 3 in (C4)–(C6), Theo-

rem 3.1 can be formulated for a spatial operator in the second or third equation.

Sketch of the Proof (of Theorem 3.1). The local existence of a bifurcating pe-

riodic solution follows from Crandall, Rabinowitz [1] in the case that (i)–(iii) can

be satisfied.

These three conditions are a consequence of the conditions imposed on the

kinetic equations, i.e. (C1)–(C6), and those are obtained from conditions (a), (b)

and (c).

It remains to prove that −det Ã(µm, d1, 0, 0) > 0 (see Figure 2), which guaran-

tees an even number of eigenvalues with positive real part. Consider the following

limit:

(4) lim
d2→0
d3→0

(
−det Ã(µm, d1, d2, d3)

)
=: −det Ã(d1µm

2) = |A23|d1µm
2 − detA

If |A23| is positive, then −det Ã(d1µm
2) > −detA > 0 for all d1 and all m, so

that there is no change in sign of the determinant. The above conditions already

imply that |A23| is positive, and this is proved in the following lemma.
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Lemma 3.1. Let A be such that (C1)–(C5) are fulfilled. Then |A23| is positive.

Proof.

(C5)⇒ |A12|+ |A13|+ tr (A23)trA < 0

⇔ |A12|+ |A13| < −tr (A23)trA
(C1)(C4)
< 0

⇒ |A12|+ |A13| < 0

Assume |A23| ≤ 0, then

0 < trA
(
|A12|+ |A13|+ |A23|

) (C2)
< detA

(C3)
< 0

which is a contradiction. �

The following figure illustrates the picking of a single mode that becomes un-

stable.

Figure 3. The parabola ∆̃2(d1µm
2) selects a single mode of oscillating solutions

when the kinetic system is regularly perturbed with a diffusion operator in a single

equation (here for the Laplace operator on a one-dimensional domain).

For the wave bifurcation |A23| has to be positive. But since equation (2) might

have no positive roots this is not sufficient. A simple computation shows that

existence of positive roots can only be achieved if (C5) and (C6) are satisfied.

Nevertheless the positivity of |A23| can be used as a first check whether wave

bifurcation is possible or not. A submatrix with only positive Hurwitz determi-

nants (for a 2×2 matrix that means negative trace and positive determinant) will

be called stabilizing. There are two different cases that can be distinguished for

system (3) at an asymptotically stable constant solution:

Remark 3.3. If the constant steady solution satisfies (C1)–(C3) and |A23| < 0

then there is a critical diffusion coefficent d∗1 for an appropriate mode m which
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causes a bifurcation to a Turing type stationary solution. The submatrix is not

stabilizing in this case.

A Turing type stationary solution can also be caused by a simultaneous change

of sign of det Ã(µm) and ∆̃2(µm). For negative tr Ã this implies
∑
|Ãij| = 0.

In the limit of d2 = d3 = 0 the terms to become zero are −det Ã(d1µm
2) =

−detA+ d1µm
2|A23| and

∑
|Ã(d1µm

2)ij| =
∑
|Aij| − d1µm

2tr (A23). This means

|A23| < 0 and tr (A23) > 0. Again the submatrix is not stabilizing.

If the constant steady solution satisfies (C1)–(C6), there are critical diffu-

sion coefficents d∗1 causing a Hopf bifurcation. Conditions (C4) and (C5) imply

tr (A23) < 0 and |A23| > 0. This submatrix is stabilizing.

The results of the computations on the stability at the equilibrium point can

now be summarized.

Remark 3.4. In a stable constant solution the sum
∑
|Aij| is positive. For

wave bifurcation at least one |Ajk| has to be negative to satisfy (C5). The spatial

operator occurs in the jth or kth equation. The submatrix in which no spatial

operator occurs is stabilizing.

3.1 Estimation of Mode Selection

Further investigations of the wave bifurcation concern the biggest mode M

that can be isolated. For one-dimensional domains Ω and the Laplace operator,

this wavenumber is estimated by ν±, the roots of ∆̃2(d1µm
2) (see Figure 3). For

all integers m less than M , a bifurcation to a wave solution with the appropriate

wavenumber can be arranged either for shrinking or growing d1. But for wavenum-

bers greater than M , at least two modes are within the unstable area. This does

not mean that there is no such solution, but it strongly depends on the initial data

which solution will survive.

Lemma 3.2. The biggest wavenumber M for which only a single mode is desta-

bilized in a one space dimensional system can be estimated by µ− :=
2ν−

ν+ − ν−
with

µ− − 1 < M < µ− +
1

2

where ν± are the roots of the parabola ∆̃2(d1µm
2) of Theorem 3.1.

Proof. For the proof see [6]. �

3.2 Considerations on Stability

Once the maximal M is found, the critical d1Mr for which there is bifurcation

to the standing wave solution for shrinking d1 < d1Mr can be calculated easily. In

the same way a critical d1Ml
is calculated for M − 1, and there is a bifurcation to
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a time-periodic solution for growing d1 > d1Ml
. The two possibilities correspond

to the situations of either touching the square number with the right wing or with

the left wing of the parabola. This yields the following sequence

· · · d1Ml
< d1Mr < d1(M−1)l

< d1(M−1)r
· · ·

and there is no mode destabilized within the open interval (d1Mr , d1(M−1)l
). So the

mode destabilization is well separated up to the mode with the maximal number

which can be estimated with Lemma 3.2.

In contrast to the transcritical bifurcation the stability in case of a Hopf bifur-

cation has to be computed from third derivatives of the vector field.

Note that ω as well as the root z3 do not depend on µm and that therefore only

the basis of the kernel N changes.

Figure 4. The branches of periodic solutions are sketched as maximal amplitude

of the solution in an appropriate norm versus the diffusion coeffcient d1 as bifur-

cation parameter. The mode destabilization is well separated up to the mode with

the maximal number that can be estimated with Lemma 3.2.

4. Application to Autocatalytic Surface Reactions

The following system of three equations has a background as an autocatalytic

reaction-diffusion system. It is derived with the help of stoichiometric network

analysis (see Eiswirth [2]). It may be interpreted to describe a surface reaction

enhanced by a reconstruction process of the surface.

In this network it is essential to have three equations. Figure 5 sketches a

process in which a species w depends quadratically on itself and on an additional

species v. While consuming two parts of w, there are four parts produced by the

loop indicated by the parameter p4.

This network gives rise to the following differential equations with kinetic pa-

rameters p1 to p4, assuming a diffusion matrix with diagonal entries d1 to d3. The
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Figure 5. This stoichiometric network sketches an autocatalytic process. Reac-

tion kinetic parameters are written to the corresponding arrows which indicate the

stoichiometry by the numbers of flags and feathers.

integer multiples come from the stoichiometry of the chemical network, so that all

parameters can first be set identical one.

No flux boundary conditions on the cylinder ∂Ω× (0, T ] are considered.

u̇ = d1∆u− p1invu− 2p2u+ 3p1w

v̇ = d2∆v + p2u− p4vw
2 in Ω× (0, T ](5)

ẇ = d3∆w + p1invu− 3p1w − p3w + 2p4vw
2 + ε

Solving the system for constant equilibria yields a single solution that requires

u =
3εp1

(p1inv + 2p2)p3
, v =

3p1p2p3

(p1inv + 2p2)εp4
, w =

ε

p3
.

Setting the parameters identical one yields an asymptotically stable equilibrium

E∗ = (u∗, v∗, w∗)t = (1, 1, 1)t. This equilibrium does not change when the

paramters p3 and ε are varied simultaneously such that ε/p3 ≡ 1.

The linearization at this point is

A|E∗ =

−(p1inv + 2p2) 0 3p1

p2 −p4(w
∗)2 −2p4v

∗w∗

p1inv 2p4(w
∗)2 −3p1 − p3 + 4p4v

∗w∗



=

−3 0 3

1 −1 −2

1 2 1− p3


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with the following set of eigenvalues

{
−3, −

1

2

(
p3 −

√
p3

2 − 4p3

)
, −

1

2

(
p3 +

√
p3

2 − 4p3

)}

indicating an asymptotically stable oscillatory fixed point.

Now the paramters p3 and ε are varied simultaneously for small values of p3.

A nonzero diffusion term in the v-equation can be ruled out as a source for the

instability by a first check whether the submatrix is stabilizing: |A13| = −3(2−p3)

is negative for p3 < 2.

Diffusion in the w-equation fails in principle for condition (C5), that is −(|A23|+
|A13|+ tr (A12)trA) = 8(1− p3)− 17 which is negative.

For a nonzero diffusion coefficient d1 the condition (C5) is −(|A12| + |A13| +
tr (A23)trA) = −p3

2 − 6p3 + 3 which is positive for positive p3 < −3 + 2
√

3.

To fulfill condition (C6) the parameter p3 has to solve p3
4 − 4p3

3 − 6p3
2 −

36p3 + 9 > 0 and this expression is positive for p3 < 0.23904883974. Note that

the system gets singular for p3 → 0. For values of p3 inbetween zero and its upper

limit critical diffusion coefficients d1
∗ can be determined for each wavenumber up

to the maximal wavenumber to be estimated with Lemma 3.2. The closer p3 gets

to its upper limit, the bigger is this maximal number.

The conditions (C1)–(C6) are fulfilled for d1 6= 0 and d2 = d3 = 0. If the

mobility of a single variable is considered as a source of a standing wave solution,

only the u-species is able to destabilize the stable constant solution.

Existence of the solution is guaranteed via the asymptotic stability of E∗. This

yields a neighborhood of the fixed point that is positively invariant such that the

reaction diffusion system (also in case of zero diffusion coefficients) has a solution

for all time if the initial data is within this neighborhood (see Smoller [7], Invariant

regions).

The numerical result of Figure 6 can be predicted.

Numerical parameters

A sustained oscillation in space and time for the above model of an autocat-

alytic reaction can also be verified numerically. The discretized system of ordinary

differential equations is solved with the LSODE package (see Hindmarsh [5]), us-

ing numerical estimates of the Jacobian matrix, and a relative error tolerance of

10−8 and an absolute error tolerances of 10−12. The maximal stepsize in time was

allowed to be 0.01, and the appropriate space discretization for a diffusion coeffi-

cient d1 = 0.003 then is 182 gridpoints on a unit interval. Time discretization is

done implicitly.
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Figure 6. The horizontal axis shows the temporal evolution of (vertical) one-

dimensional spatially nonuniform initial data (above, time steps 1-100) to a stand-

ing wave pattern (below, time steps 4900-5000). The color ranges from light blue

(minimum) to light yellow (maximum) and indicates the w-equation.

4.1 An Example from the Literature

Zhabotinsky et al. [9] also numerically show the phenomenon of wave bifur-

cation in a three variables system modelling cubic autocatalysis. Their kinetic

system is coupled with the same simple diffusion terms and looks as follows:

u̇ = d1∆u+m

(
−uv2 + w2 −

au

g + u

)
v̇ = d2∆v + n(uv2 − v + b) in Ω× (0, T ](6)

ẇ = d3∆w + u− w

with Neumann boundary conditions at the cylinder wall. The authors use the

same solver with the same tolerances and discretization schemes.

They perform the simulations with zero diffusion coefficients in the first and

second equation. Other parameters are m = 28, a = 0.9, n = 15.5, b = 0.2,

d3 = 1 and a length of the interval Ω of L = 20 units. The initial conditions

are chosen to be the stationary constant solution of approximately (u, v, w) =
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(1.1308, 0.5787, 1.1308) where only a single one of the 300 gridpoints on the bound-

ary of the domain is perturbed slightly. The standing wave result with a wavenum-

ber of twelve can be reproduced easily. For further numerical experiments, they

vary the length of the domain and the kinetic parameter m.

The same set of parameters as above but different initial data, as for instance

a bigger part of the interval on which the stationary solution is perturbed or

initial data which are perturbed randomly on every gridpoint in a neighborhood

of the stationary solution, lead to a standing wave with a wavenumber of eleven.

Since d3 = 1 and a length of Ω of L = 20 is equivalent to a diffusion coefficient

d3 = 0.0025 and L = 1, this result can be interpreted with the help of Figure 7.

The roots ν± of the parabola of Theorem 3.1 provide a left and right critical

diffusion coefficient for each mode. For the above system, the stationary solution

is destabilized for perturbations of wavenumber eight up to fifteen.

8
7

9
10

13
14

15

0. 0050. 001 d3

12
11

16

Figure 7. For system (6) with parameters m = 28, a = 0.9, n = 15.5, b =

0.2 the roots of approximately ν− = 1.3389 and ν+ = 5.8545 give the above

intervals of diffusion coefficients which destablize the constant solution with respect

to the mode with the indicated wavenumber. The dashed line marks the diffusion

coefficient d3 = 0.0025. The modes which are destablized range from wavenumber

eight to fifteen.

Increasing m slightly to a value of m = 28.56 makes the roots ν± move closer to

each other so that the picking of a mode is more selective. The biggest wavenumber

to be estimated with Lemma 3.2 is fourteen and for d3 = 0.0025 only the standing

wave of wavenumber twelve is destabilized. For even bigger m = 28.566616, the

wave bifurcation is not possible any more. Decreasing m to a value less than

m = 26.75 yields in a destabilization of even the zero mode, i.e. the constant

solution itself is not stable any more.
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Discussion

The parameter m serves as the one to be varied for the different numerical tests

in the paper of Zhabotinsky et al. [9]. With the help of the conditions for wave

bifurcation of Section 3 an interval of m ∈ (26.75, 28.567) can be given for which

standing wave solutions can be expected.

Figure 8. The horizontal axis shows the temporal evolution of (vertical) one-

dimensional spatially nonuniform initial data (above, time steps 1-100, and 101-

200) to a standing wave pattern (below, time steps 401-500).

The bigger m is, the more selective is the parabola, and the more sensitive

the system reacts on a change in the diffusion coefficient (or, equivalently, on the
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length of the domain). Changes in the initial data are not recognized by the final

waveform as long as the wavenumber is below the estimated maximal number.

Since standing wave patterns evolve much quicker from randomly chosen initial

data than from an initial perturbation at a single gridpoint, it is worthwhile to

determine the kinetic parameters such that only the diffusion coefficients and not

the initial data influences the final pattern.

For m nearer to the lower end of the interval the solutions depend even more

on the initial data.

Figure 9. The initial data are chosen at random around the critical equilibrium.

For a parameterm = 18 the so called Standing Travelling Waves evolve. These

were considered to yield a target pattern in the two-dimensional case.

If m gets even smaller the space-independent Hopf bifurcation occurs as well.

Naturally, a straightforward integration of the initial value problem gives rise to

quite different solutions, as the Standing Traveling Waves of Figure 9. A

single wave source pushes through in the one-dimensional domain, independently

of (randomly chosen) initial data. In the above paper this was considered to be

a source of a target pattern in a two-dimensional setting. But this could not be

verified in the numerical experiments.
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