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SOLUTION OF STEFAN PROBLEMS BY

FULLY DISCRETE LINEAR SCHEMES

A. HANDLOVIČOVÁ

Abstract. This paper deals with a class of nonlinear parabolic problems with

nonlinear boundary conditions. Stefan problems and porous medium equations
are included. The enthalpy formulation and the variational technique are used.
Convergence of a fully discrete linear approximation scheme is studied.

1. Introduction

In our paper we shall consider the convergence of a fully discrete linear approxi-

mation scheme. This scheme can be used in solving nonlinear Stefan-like parabolic

problems with nonlinear boundary conditions:

∂tu−∇ · (k(β(u))∇β(u)) = f(t, x, β(u)) on Q := (0, T )× Ω,

u(0, x) = up(x) on Ω,

−ν · k(β(u))∇β(u) = g(t, x, β(u)) for x ∈ Γ, t ∈ (0, T ),

where Ω ⊂ Rd is a polygonal convex domain with the boundary Γ, T <∞, ν is the

outward normal to Γ, the functions f, g, β, k are Lipschitz continuous, β : R → R
is nondecreasing and k(s) is a positive definite symmetric d × d-matrix for any

s ∈ R.

The use of linear approximation schemes for solving these problems from both

the theoretical and numerical point of view has been extensively studied. A linear

approximation scheme based on the so-called nonlinear Chernoff formula with

constant relaxation parameter µ was studied in [1], [12], [14], [8].

Another linear approximation scheme was investigated in [5], [6], [7], [3]. There

the authors used an approximation scheme of the type

µi(θi − β(ui−1))− τ∆θi = τf(ti, x, β(ui−1)) in Ω,

−∂νθi = g(ti, x, θi−1) or ui = 0 on Γ,

|β(ui−1 + µi(θi − β(ui−1)))− β(ui−1)| ≤ α|θi − β(ui−1)|+ o
( 1
√
n

)
,

ui := ui−1 + µi(θi − β(ui−1)), i = 1, . . . , n
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where θi is an approximation of the function β(u) at time ti, µi ∈ L∞(Ω),

0 < δ ≤ µi ≤ K and where K−1, 1 − 2α and δ are sufficiently small constants.

This scheme has the disadvantage of not being explicit with respect to θi and

µi and therefore some iterative method for determining them must be used. In

the papers mentioned above, the convergence and energy error estimates for this

semi-discretization scheme were established for both strictly monotone ([5]) and

nondecreasing ([7]) function β. The idea of our linear approximation scheme is

similar but we introduce the following two novelties:

• We consider a fully discrete scheme, that means we discretize not only in time,

but we also use the finite element method for space discretization.

• We linearize not only the function β but also nonlinearities in the right hand

side of the equation and the nonlinearity in the boundary condition.

In Subsection 4, we prove the convergence of an iterative method for finding

the functions µi, θi at each time step ti. In Subsections 5 and 6, the convergence

of our linear approximation scheme is proved.

Some of our proofs are only sketched; the details can be found in [4].

2. Basic Notations, Assumptions and Basic

Results of the Finite Element Method

We denote

(HΩ)

{
Ω ⊂ Rd (d ≥ 1) is polygonal convex domain with boundary Γ,

Q := I × Ω, where I = (0, T ), 0 < T <∞ and T is fixed.

Further we shall use function spaces in [10]: L2(Ω) with norm ||·||, L2(I, L2(Ω)) =

L2(Q) with norm || · ||L2(I,L2(Ω)) and H1(Ω) := W 1,2(Ω) with norm ||.||H . We

denote the dual space to H1(Ω) by H∗(Ω). Finally, we shall use function space

L2(Γ) with norm || · ||Γ and inner product 〈·, ·〉Γ. We use the notation 〈·, ·〉 both

for the inner product in L2(Ω) and the duality pairing between H1(Ω) and H∗(Ω).

We shall assume that:

(Hβ)


β : R→ R is a nondecreasing Lipschitz continuous function,

β(0) = 0, 0 ≤ lβ ≤ β
′(s) ≤ Lβ <∞ for almost all s ∈ R,

there exists lim
|s|→∞

β′(s) = c1 > 0,

(Hf )


f : I × Ω× R→ R is a Lipschitz continuous function with

Lipschitz constant Lf , and there exists a constant C such that:

|f(t, x, 0)| ≤ C for a.a. t ∈ I, x ∈ Ω,
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(Hg)


g : I × Γ× R→ R is a Lipschitz continuous function with

Lipschitz constant Lg, and there exists a constant C such that:

|g(t, x, 0)| ≤ C for a.a. t ∈ I, x ∈ Γ,

up ∈ H
1(Ω), β(up) ∈ H

1(Ω),(Hup)

(Hk)


k : R→ Rd×d is Lipschitz continuous and bounded,

k(s) is a symmetric and (uniformly) positive definite matrix;

that is there exist positive constants k0,K0 ∈ R such that

k0|ξ|
2 ≤ ξT k(s)ξ ≤ K0|ξ|

2 for all ξ ∈ Rd and s ∈ R

Let {Sh}h be a family of decompositions

Sh = {Sk}
Kh
k=1

of Ω into closed d-simplices so that: Ω̄ = ∪Khk=1Sk where h is the mesh size: h =

supk=1,...,Kh
diamSk.

We assume that

(HSh)


the family {Sh} has the usual properties of finite elements,

i.e. it is regular and also the assumption of inverse inequality

holds in the sense of Ciarlet ([2, p. 134, p. 142]).

The assumptions above will be simply denoted by (H), that is

(HΩ), (Hβ), (Hk), (Hf ), (Hg), (HSh), (Hup)(H)

Further we denote:

V 1
h := {ψ ∈ C0(Ω̄) : ψ/Sk is linear for all k = 1, . . . ,Kh},

V 0
h := {ψ : ψ/Sk is constant for all k = 1, . . . ,Kh}.

On the boundary Γ, we define the discrete inner product by:

(2.1) 〈ψ, φ〉h,Γ :=

Kh∑
k=1

∫
Sk∩Γ

Πh(ψφ) ds

for any piecewise continuous functions ψ, φ in Ω̄, where Πh stands for the local

linear interpolation operator ([2]).
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For any ψ,ϕ ∈ V 1
h , we have ([15]):

(2.2) |〈ψ,ϕ〉h,Γ| ≤ C3||ψ||H ||ϕ||H

and

(2.3) |〈ψ,ϕ〉Γ − 〈ψ,ϕ〉h,Γ| ≤ C5h||ψ||H ||ϕ||H .

The estimate (2.3) holds also for functions ϕ ∈ V 1
h and ψ = b · v, where v ∈ V 1

h

and b ∈ V 0
h ; ||b||L∞ ≤ K, K > 0.

We denote by a(·, ·) the inner product in H1(Ω):

a(w, z) := 〈∇w,∇z〉 + 〈w, z〉.

We now introduce L2-projection operator P 0
h : L2(Ω)→ V 0

h , which is defined by

〈P 0
hz, ψ〉 = 〈z, ψ〉 for any ψ ∈ V 0

h , z ∈ L2(Ω)

and satisfies

(2.4) ||z − P 0
hz||H−s(Ω) ≤ C8h

r+s||z||Hr(Ω), 0 ≤ s, r ≤ 1.

We also introduce the discrete H1-projection operator P 1
h : H1(Ω)→ V 1

h , which is

defined by

a(z − P 1
hz, ψ) = 0 for any ψ ∈ V 1

h , z ∈ H
1(Ω)

and satisfies ([15])

(2.5) ||z − P 1
hz||Hs(Ω) ≤ C9h

2−(r+s)||z||H2−r(Ω), 0 ≤ s, r ≤ 1.

We shall use the following well-known facts (see e.g. [13, p. 15].)

ab ≤
a2

2ε
+
εb2

2
for any a, b ∈ R and ε > 0,(2.6)

2a(a− b) = a2 − b2 + (a− b)2 for any a, b ∈ R,(2.7)

||v||2Γ ≤ C10

(
ε||∇v||2 +

1

ε
||v||2

)
for any v ∈W 1,2(Ω)(2.8)

and ε > 0 small.

We conclude with some notations concerning the time discretization. Let τ = T
n

be the time step and ti = iτ , Ii = (ti−1, ti] for 1 ≤ i ≤ n. We also set zi := z(·, ti)
or z̄i := 1

τ

∫
Ii
z(·, t) dt for any continuous or integrable (in time) function z defined

in Q, respectively, and ∂zi := (zi−zi−1)/τ , 1 ≤ i ≤ n for any given family {zi}ni=0.

Similarly we denote δui = (ui − ui−1)/τ for i = 1, . . . , n and ui, ui−1 ∈ V 0
h .

For simplicity we shall denote f(s) := f(x, t, s) and g(s) := g(x, t, s). By C we

denote a generic constant which is independent of time and space discretization τ

and h.
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3. Formulations of Problems

The variational formulation of our problem is as follows.

Problem (P): Find {u(t, x), θ(t, x)} such that

u(t, x) ∈ L2(I;L2(Ω)), ∂tu(t, x) ∈ L2(I;H
∗(Ω)) and u(0, x) = up(x)(3.1)

θ(t, x) ∈ L2(I;H
1(Ω))(3.2)

θ(t, x) = β(u(t, x)) for a.e.(t, x) ∈ Q(3.3)

and for all ϕ ∈ L2(I,H
1(Ω)), the following equation holds

(3.4)

∫
I

(
〈∂tu, ϕ〉+ 〈k(θ)∇θ,∇ϕ〉 + 〈g(θ), ϕ〉Γ

)
dt =

∫
I

〈f(θ), ϕ〉 dt.

As we have mentioned above, the following approximation scheme is based on

the ideas of [5] and [7] (see the approximation scheme in Introduction). The basic

idea of this linear scheme consists of determining a variable relaxation parameter

µi = µi(x) to be used in the algebraic correction ui := ui−1 + µi(θi − β(ui−1)),

i = 1, . . . , n, where θi is the approximation of β(u) at time ti. Moreover, the same

iterative method for finding functions µi and θi can be used also for improving the

approximation of nonlinearities on the boundary and on the right hand side. In the

same way as in the case of the nonlinearity β(u) we can use the variable relaxation

parameters also for nonlinearities on the boundary (function g(β(u)) and on the

right hand side (function f(β(u)). We denote these relaxation parameters by ωi
(for the function g) and ρi (for the function f). We use a fully discrete scheme

including the finite element method.

Therefore, our discrete problem is of the form:

Problem (Ph,τ ): For any 1 ≤ i ≤ n, find {ui(x), θi(x)} such that ui ∈ V 0
h and

θi ∈ V 1
h , and the functions µi, ρi and ωi ∈ V 0

h which have the following properties:

(3.5) u0 := P 0
hup(x), θ0 := P 1

h (β(up(x))),

〈µiP
0
hθi, ψ〉+ τ〈ki−1∇θi,∇ψ〉+ τ〈g(θi−1), ψ〉h,Γ + τ〈ωi(θi − θi−1), ψ〉h,Γ(3.6)

= 〈µiβ(ui−1), ψ〉+ τ〈f(β(ui−1)), ψ〉+ τ〈ρi(P
0
hθi − β(ui−1)), ψ〉

+ 〈pi, ψ〉 for all ψ ∈ V 1
h ,

||β(ui−1 + µi(P
0
hθi − β(ui−1)))− β(ui−1)||L2,µi(3.7)

≤ α||P 0
hθi − β(ui−1)||L2,µi + o

( 1
√
n

)
, (convergence condition)

(3.8) ui := ui−1 + µi(P
0
hθi − β(ui−1)), (algebraic correction)
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for i = 1, . . . , n, where the “error” functional pi satisfies

|〈pi, ψ〉| ≤ ||pi||H∗(Ω)||ψ||H for all ψ ∈ H1(Ω) and(3.9)

||pi||H∗ = O
( 1

nσ

)
, where σ > 1.

Moreover, we have 0 < δ ≤ µi ≤ K , |ρi| ≤ K, |ωi| ≤ K and ki−1 = k(β(ui−1)) and

all members of this matrix are functions from V 0
h . Further α > 0 andK−1, 1−2α, δ

are sufficiently small positive constants. By || · ||L2,µi we denote the norm in the

weighted L2-space with the weight function µi (e.g. [10]). This scheme has the

disadvantage of not being explicit with respect to θi and µi. We determine the

values of the functions θi, µi, ρi, ωi by an iterative process that we describe later.

In case the function β is not strictly monotone (e.g. for the Stefan problem), we

approximate the function β by a strictly monotone Lipschitz continuous function

βn (with Lipschitz constant Lβn), such that

(3.10) ||βn − β||L∞(R) = o
( 1
√
n

)
, βn ∈ C

2, 0 < δn < β
′

n(s) ≤ Lβn ≤ Lβ

for all n.

4. Convergence of an Iterative Method

As we have mentioned above, the approximate scheme (3.5)–(3.8) has the dis-

advantage of not being explicit with respect to the functions µi and θi. There

are several iterative schemes for solving this problem (see for example [4]). The

scheme that we establish in this paper is based on the idea of an iterative method

in [11].

Put:

(4.1) γK(s) =


K if s > K,

s if −K ≤ s ≤ K,

−K if s < −K.

Let 1 ≤ i ≤ n be fixed. Then we define our iterative method as follows:

〈(µi,k−1 − τρi,k−1)(P
0
hθi,k − β(ui−1)), ψ〉+ τ〈ki−1∇θi,k,∇ψ〉(4.2)

+ τ〈ωi,k−1(θi,k − θi−1), ψ〉h,Γ

= τ〈f(β(ui−1)), ψ〉 − τ〈g(θi−1), ψ〉h,Γ for all ψ ∈ V 1
h .

µi,0 := γK

(
1

β
′

n(ui−1)

)
,

ρi,0 := γK(P 0
h (g

′

(θi−1))),
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ωi,0 := γK(P 0
h (f

′

(θi−1))).

µ̄i,k := γK

(
β−1
n (βn(ui−1) + α(P 0

hθi,k − β(ui−1)))− ui−1

P 0
hθi,k − β(ui−1)

)
µi,k := µ̄i,k, for 1 ≤ k ≤ k0, k0 ∈ N be fixed

µi,k := min{µ̄i,k, µi,k−1}, for k > k0.(4.3)

ωi,k := γK

(
g(P 0

hθi,k)− g(P
0
hθi−1)

P 0
h (θi,k − θi−1)

)
ρi,k := γK

(
f(P 0

hθi,k)− f(β(ui−1))

P 0
hθi,k − β(ui−1)

)
for k = 1, . . .

If P 0
hθi,k = β(ui−1) then µi,k := µi,k−1 and ρi,k := ρi,k−1. Similarly, if P 0

h (θi,k −
θi−1) = 0 then ωi,k := ωi,k−1.

The solvability of (4.2)–(4.3) follows from the theory of monotone operators

(see [4]).

The sequences {µi,k}, {ρi,k}, {ωi,k}, {θi,k} of iterations help us to find functions

µi, ρi, ωi, θi as it is formulated in the following theorem:

Theorem 1. Assume (H). Let 1 ≤ i ≤ n be fixed and τ ≤ τ0, h ≤ h0 for

sufficiently small τ0, h0. If {µi,k}, {ρi,k}, {ωi,k} and {θi,k} are sequences from

(4.2)–(4.3) then there exists index l ∈ N such that the functions µi := µi,l, ρi :=

ρi,l, ωi := ωi,l from V 0
h and θi := θi,l ∈ V 1

h satisfy the equation (3.6) and the

inequality (3.7).

Proof.

First we denote vk = µi,k − τρi,k. It is obvious that this function is positive for

sufficiently small τ0, hence vk ≥ γ for some γ > 0.

The monotonicity of the sequence {µi,k} for k ≥ k0 implies µi,k → µ pointwise

in Ω. Since the functions µi,k are bounded, we have µi,k → µ in Lp(Ω) for all

p > 1.

We can easily prove that the sequence {θi,k} is bounded in H1(Ω):

In (4.2) we choose as a test function ψ = θi,k and after some rearrangement we

obtain:

〈vk−1(P
0
hθi,k − β(ui−1)), θi,k〉+ τk0||∇θi,k||

2 + τ〈ωi,k−1(θi,k − θi−1), θi,k〉h,Γ

≤ τ〈f(β(ui−1)), θi,k〉 − τ〈g(θi−1), θi,k〉h,Γ.

Using the properties of the functions vk and ωi,k, and due also to (2.2), (2.3), (2.4)

and (2.6), we have:

γ||θi,k||
2 + τk0||∇θi,k||

2 ≤
γ

2
||θi,k||

2 + C(h2 + τ2)||θi,k||
2
H + C||β(ui−1)||

2

+ τ
k0

4
||∇θi,k||

2 + Cτ ||θi,k ||
2 + C||θi−1||

2

+ C||f(β(ui−1))||
2 + C||g(θi−1)||

2
H .
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Now using the properties of the functions f, g, θi−1, β(ui−1), we obtain for suffi-

ciently small h < h0:

||θi,k||H ≤ C.

From the properties of the sequence {µi,k} it follows that there exists an index

l such that ||µi,l−1 − µi,l||Lp(Ω) ≤ Cτσ for σ > 1. We set θi := θi,l, µi := µi,l,

ρi := ρi,l−1 and ωi := ωi,l−1. We must only verify, that for these functions, the

conditions (3.6) and (3.7) hold. It is clear that µi = µi,l ≤ µ̄i,l and that is why

(3.7) holds.

For θi := θi,l the equation (4.2) holds. We have:

〈µi(P
0
hθi − β(ui−1)), ψ〉 + τ〈ki−1∇θi,∇ψ〉

+ τ〈ωi(θi − θi−1), ψ〉h,Γ − τ〈ρi(P
0
hθi − β(ui−1)), ψ〉

= 〈(µi,l − µi,l−1)(P
0
hθi − β(ui−1), ψ〉+ τ〈f(β(ui−1)), ψ〉 − τ〈g(θi−1), ψ〉h,Γ.

We now set 〈pi, ψ〉 = 〈(µi,l − µi,l−1)(P
0
hθi − β(ui−1), ψ〉. From the properties of

µi,k, P
0
hθi and β(ui−1) using generalized Hölder’s inequality we obtain that the

functional pi satisfies (3.9). This completes the proof. �

5. Stability of the Discrete Scheme

The problem (3.6)–(3.8) can be rewritten as follows

〈δui,ψ〉+ 〈ki−1∇θi,∇ψ〉+ 〈g(θi−1), ψ〉h,Γ(5.1)

+ 〈ωi(θi − θi−1), ψ〉h,Γ

= 〈f(β(ui−1)), ψ〉+ 〈ρi(P
0
hθi − β(ui−1)), ψ〉+

1

τ
〈pi, ψ〉

for all ψ ∈ V 1
h and ||pi||H∗(Ω) = O(τσ).

Lemma 1. Assume (H). Then for τ ≤ τ0 and h ≤ h0 such that the equation

(5.2) τ = C∗h
ξ, for 0 < ξ ≤ 2

is fulfilled and τ0, h0 are sufficiently small, there exists a constant C, independent

of the discretization parameters such that

(5.3) max
1≤i≤n

||β(ui)||+
n∑
i=1

||ui − ui−1||
2 +

n∑
i=1

τ ||∇θi||
2 ≤ C.
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Proof. The function τθi is an admissible test function in (5.1) because θi ∈ V 1
h .

So let τθi be a test function and sum (5.1) over i from 1 to m ≤ n. We have:

m∑
i=1

〈ui − ui−1, θi〉+
m∑
i=1

τ〈ki−1∇θi,∇θi〉+
m∑
i=1

τ〈g(θi−1), θi〉h,Γ(5.4)

+
m∑
i=1

τ〈ωi(θi − θi−1), θi〉h,Γ =: I + II + III + IV

=
m∑
i=1

τ〈f(β(ui−1)), θi〉+
m∑
i=1

τ〈ρi(P
0
hθi − β(ui−1)), θi〉+

m∑
i=1

〈pi, θi〉

=: V + V I + V II.

We shall estimate each resulting term. Some of these terms are similar as in [5]

and [7] so we comment them only briefly.

First note that from (3.8) it holds:

P 0
hθi =

ui − ui−1

µi
+ β(ui−1).

We use (see e.g. [12]) the convex function

Φλ(s) =

∫ s

0

λ(z) dz for all s ∈ R,

where the function λ : R→ R is absolutely continuous, λ(0) = 0 and 0 ≤ λ
′
≤ Λ <

∞. The function Φλ has the following properties:

1

2Λ
λ2(s) ≤ Φλ(s) ≤

Λ

2
s2 for s ∈ R.

The difference ui− ui−1 ∈ V 0
h , hence the definition of P 0

h and the monotonicity of

β imply

m∑
i=1

〈ui − ui−1, θi〉 =
m∑
i=1

〈ui − ui−1, P
0
hθi〉

≥
m∑
i=1

〈
ui − ui−1,

ui − ui−1

µi

〉
+

m∑
i=1

∫
Ω

(Φβ(ui)− Φβ(ui−1)) dX

−
m∑
i=1

〈ui − ui−1, β(ui)− β(ui−1)〉.

Further in the same way as in [5] we arrive at

(5.5) I ≥ (1− 2α)
m∑
i=1

||ui − ui−1||
2
L2,

1
µi

+
1

2Lβ
||β(um)||2 − C.
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We estimate the second term in (5.4) easily using (Hk):

(5.6) τ

m∑
i=1

〈ki−1∇θi,∇θi〉 ≥ τk0

m∑
i=1

||∇θi||
2.

In the third term in (5.4) we use (2.3), (Hg), (Hβ), (2.6), (2.8):

|III| ≤ τ
m∑
i=1

∣∣∣〈g(θi−1), θi〉Γ
∣∣∣+ τ

m∑
i=1

∣∣∣〈g(θi−1), θi〉Γ − 〈g(θi−1), θi〉h,Γ
∣∣∣

≤ τC
m∑
i=1

||θi||
2 + τ

k0

8

m∑
i=1

||∇θi||
2 + τhC

m∑
i=1

(||θi||
2 + ||∇θi||

2) + C.

Now for sufficiently small h0 we get

(5.7)
∣∣III∣∣ ≤ τC m∑

i=1

||θi||
2 + τ

k0

4

m∑
i=1

||∇θi||
2 + C.

For the fourth term we have:

∣∣IV ∣∣ ≤ τC m∑
i=1

||θi||
2 + τ

k0

8

m∑
i=1

||∇θi||
2 + τhC

m∑
i=1

||θi||
2
H + C,

where we used (2.3), (2.6), (2.8), (2.7).

Now again for sufficiently small h0 we have:

(5.8)
∣∣IV ∣∣ ≤ τC m∑

i=1

||θi||
2 + τ

3k0

16

m∑
i=1

||∇θi||
2 + C,

In the term V , we use (Hf ), the definition of the operator P 0
h (ui ∈ V 0

h ), (Hβ) and

the relation for θi as in the first term:

∣∣V ∣∣ ≤ τLf m∑
i=1

∣∣∣〈∣∣β(ui−1)
∣∣, ∣∣∣ui − ui−1

µi
+ β(ui−1)

∣∣∣〉∣∣∣(5.9)

+ τ
δ

4

m∑
i=1

||
ui − ui−1

µi
+ β(ui−1)||

2 +
C

8δ
||f(0)||2

≤ τC
m∑
i=1

||β(ui)||
2 + τ

m∑
i=1

||ui − ui−1||
2
L2,

1
µi

+ C .

For the term V I, we use the property of P 0
h and (3.9), (3.8), (2.6):

(5.10)
∣∣V I∣∣ ≤ τC m∑

i=1

||ui − ui−1||
2
L2,

1
µi

+ τC

m∑
i=1

||β(ui)||
2 + C.
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From the property of the functional pi in the last term we easily get:

∣∣V II∣∣ ≤ m∑
i=1

|〈pi, θi〉| ≤
4

τk0

m∑
i=1

||pi||
2
H∗(Ω) + τ

k0

16

m∑
i=1

||θi||
2
H(5.11)

≤ C + τ
k0

16

m∑
i=1

(
||∇θi||

2 + ||θi||
2
)
.

Now for sufficiently small τ0 and from (5.5)–(5.11) we have:

7(1− 2α)

8

m∑
i=1

||ui − ui−1||
2
L2,

1
µi

+
1

2Lβ
||β(um)||2 +

k0

2

m∑
i=1

τ ||∇θi||
2

≤ C + Cbτ

m∑
i=1

||β(ui)||
2 + τCt

m∑
i=1

||θi||
2,

where Cb and Ct are constants independent of time and space discretization.

We rearrange the last term of this inequality using (2.4) and the property of

P 0
hθi in this way:

τCt

m∑
i=1

||θi||
2 ≤ τ

4Ct
δ

m∑
i=1

||ui − ui−1||
2
L2,

1
µi

+ τ4Ct

m∑
i=1

||β(ui)||
2

+ τh22CtC
2
8

m∑
i=1

||θi||
2
H .

Using this estimate for sufficiently small τ0 we have:

3(1− 2α)

4

m∑
i=1

||ui − ui−1||
2
L2,

1
µi

+
1

2Lβ
||β(um)||2 +

k0

2

m∑
i=1

τ ||∇θi||
2

≤ C + (Cb + 4Ct)τ
m∑
i=1

||β(ui)||
2 + τh2C

m∑
i=1

||θi||
2
H .

We add to the both sides of this inequality the term k0
4 τ ||θm||

2 and we estimate

this term on the right hand side as above:

k0

4
τ ||θm||

2 ≤ τ
k0

δ
||um − um−1||

2
L2,

1
µm

+ τk0||β(um−1)||
2 + τh2k0C

2
8 ||θm||

2
H .

Now let the ratio between τ and h be chosen in the following way:

τ = C∗h
ξ, where 0 < ξ ≤ 2.
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We conclude:

(1− 2α)

2K

m∑
i=1

||ui − ui−1||
2 +

1

2Lβ
||β(um)||2 + τ

k0

4
||θm||

2
H +

k0

4

m∑
i=1

τ ||∇θi||
2

≤ C + Cτ

m∑
i=1

||β(ui)||
2 + τ2Ch2−ξ

0

m∑
i=1

||θi||
2
H .

And now for sufficiently small τ0 the assertion (5.3) follows as a consequence of

the discrete Gronwall inequality. �

Consequence. Let the assumptions of Lemma 1 hold. Then there exists con-

stant C, independent of discretization parameters such that:

max
i=1,...,n

||P 0
hθi||+ max

i=1,...,n
||ui|| ≤ C,(5.12)

n∑
i=1

τ ||θi||
2 ≤ C,(5.13)

n∑
i=1

τ ||θi||
2
H ≤ C.(5.14)

Proof. From the results of Lemma 1 we have:

||P 0
hθi|| ≤ C

uniformly for i = 1, . . . , n. Now (5.12) follows immediately from Lemma 1 and

(Hβ). Combining now these results and the results of Lemma 1 we have:

n∑
i=1

τ ||θi||
2 ≤ 2

n∑
i=1

τ ||θi − P
0
hθi||

2 + 2
n∑
i=1

τ ||P 0
hθi||

2

≤ 2τ
n∑
i=1

C2
8h

2||θi||
2
H + 2TC ≤ 2C + 2Cτh2

n∑
i=1

(||θi||
2 + ||∇θi||

2)

≤ C + Ch2
n∑
i=1

τ ||∇θi||
2 + 2Cτh2

n∑
i=1

||θi||
2.

Using now also (5.3) we have

τ(1− 2Ch2)
n∑
i=1

||θi||
2 ≤ C

and for h ≤ h0 sufficiently small we get (5.13) and (5.14) too. �
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6. Convergence of the Method

We denote γ := (τ, h) the pair of discretization parameters, where τ and h have

the same meaning as before. Then Rothe’s function is defined as follows:

(6.1) θ(γ)(t, x) := θi−1(x) +
t− ti−1

τ
(θi − θi−1)

for t ∈ 〈ti−1, ti〉, θi ∈ V 1
h a i = 1, . . . , n.

We define the step function as:

θ̄(γ)(t, x) = θi(x) for t ∈ (ti−1, ti〉, i = 1, . . . , n,(6.2)

θ̄(γ)(0, x) = β(u0(x)).

We define also the function

P 0
h θ̄

(γ)(t, x) = P 0
hθi for t ∈ (ti−1, ti〉, i = 1, . . . , n,(6.3)

P 0
h θ̄

(γ)(0, x) = β(u0(x)).

Analogously, we can define also Rothe’s and the step function u(γ)(t, x) and

ū(γ)(t, x), respectively.

We denote the time derivative of Rothe’s function u(γ) by u
(γ)
t . For t ∈ (ti−1, ti)

we have:

u
(γ)
t =

ui − ui−1

τ
.

We denote the dual space of the space V 1
h by V 1,∗

h .

We can prolongate all functions defined on Q by zero outside Q.

Lemma 2. Under the assumption (H) and (5.2) there exists a constant C > 0,

independent of mesh parameters, such that

||u(γ)
t ||L2(I,V

1,∗
h ) ≤ C(6.4)

||u(γ) − ū(γ)||L2(I,L2(Ω)) + ||ū(γ)(.+ τ) − ū(γ)(.)||L2(I,L2(Ω)) ≤
C
√
n

(6.5)

||θ(γ) − θ̄(γ)||L2(I,L2(Ω)) + ||θ̄(γ) − β(ū(γ))||L2(I,L2(Ω)) ≤
C
√
n

(6.6)

Proof. The proof of (6.4) is very simple using the duality argument in (5.1) and

Lemma 1.

We obtain the estimate (6.5) also very easily using the results of Lemma 1. The

second part of (6.6) can be estimated as follows:

||θ̄(γ) − β(ū(γ))||L2(I,L2(Ω)) =

(
n∑
i=1

∫
Ii

||θi − β(ui)||
2 dt

) 1
2

≤ C
√
τ

(
n∑
i=1

||P 0
hθi − β(ui−1)||

2 +
n∑
i=1

||β(ui−1)− β(ui)||
2 +

n∑
i=1

||θi − P
0
hθi||

2

)1
2

≤ C
√
τ + Ch,
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where (Hβ), (2.4), (5.3) and (5.14) were used. The final result can be obtained

immediately due to (5.2).

Using this result we obtain

||θ(γ) − θ̄(γ)||L2(I,L2(Ω)) ≤ C
√
τ

(
n∑
i=1

||P 0
hθi − θi−1||

2 +
n∑
i=1

||θi − P
0
hθi||

2

) 1
2

≤ C
√
τ

(
n∑
i=1

||ui − ui−1||
2 +

n∑
i=1

||β(ui−1)− θi−1||
2 + C8h

2
n∑
i=1

||θi||
2
H

) 1
2

≤ C
√
τ , �

Lemma 3. Under the same assumptions of Lemma 2 we have the following

estimate:

(6.7)

∫ T−z

0

||θ̄(γ)(t+ z)− θ̄(γ)(t)||2 dt ≤ C(z + n−
1
2 )

uniformly for n and 0 < z ≤ z0.

Proof. Using the results obtained above, the proof is very similar to that in [5]

so we can omit it here. �

Lemma 4. Let the assumptions of Lemma 1 hold. Then the sequence {θ(γ)}
defined in (6.1) is relatively compact in L2(Q).

Proof. For the proof we easily verify Kolmogoroff’s compactness argument in

L2(QT ) (see the Riesz theorem in [10, p. 88], for the proof see also [4, pp. 45–48]).�

The time derivative can be prolongated as in [7]:

Definition. For arbitrary ϕ ∈ L2(I,H
1(Ω)) and for arbitrary I

′
⊂ I, we define

the function Fγ ∈ L2(I,H
∗(Ω)) by

(6.8)

∫
I
′
〈Fγ(t), ϕ(t)〉 dt :=

∫
I
′
〈u

(γ)
t (t), P 1

hϕ(t)〉 dt

Lemma 5. The sequence Fγ defined in (6.8) is bounded in L2(I,H
∗(Ω)).

Proof. The assertion is a direct consequence of Lemma 2 and (6.8). �

We denote now by→ and ⇀ the strong and the weak convergence, respectively.
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Lemma 6. Assume (H). Then there exists a function u ∈ L2(I, L2(Ω)) such

that ut ∈ L2(I,H
∗(Ω)) and β(u) ∈ L2(I,H

1(Ω)), and a subsequence (which we

denote again by {γ}) such that

u(γ) ⇀ u v L2(I, L2(Ω))(6.9)

Fγ ⇀ ut v L2(I,H
∗(Ω))(6.10)

θ(γ) → θ = β(u) v L2(I, L2(Ω))(6.11)

θ̄(γ) → β(u) v L2(I, L2(Ω))(6.12)

β(ū(γ))→ β(u) v L2(I, L2(Ω))(6.13)

θ̄(γ) ⇀ β(u) v L2(I,H
1(Ω)).(6.14)

Proof. Lemma 4 directly implies the existence of a function θ ∈ L2(I, L2(Ω))

and a subsequence {γ1} such that θ(γ1) → θ in L2(I, L2(Ω)); moreover, θ̄(γ1) → θ

and β(ū(γ))→ θ in L2(I, L2(Ω)) due to (6.6). From (5.12), (6.4) and the reflexivity

of L2(I, L2(Ω)) it follows that there exists u ∈ L2(I, L2(Ω)) and a subsequence

{γ2} such that u(γ2) ⇀ u, ū(γ2) ⇀ u in L2(I, L2(Ω)) (where we choose {γ2}
as a subsequence of {γ1}). From the boundedness of θ̄(γ) in L2(I,H

1(Ω)) (see

Lemma 1 and its Consequence) and the reflexivity of L2(I,H
1(Ω)) we obtain

weak convergence of some subsequence {γ3} (chosen as a subsequence of {γ2}) in

this space.

By standard arguments we can obtain the fact that θ is identical with β(u) (see

[7], [4]). Lemma 5 implies the existence of F ∈ L2(I,H
∗(Ω)) and a subsequence

{γ} (chosen from {γ3}), such that F(γ) ⇀ F v L2(I,H
∗(Ω)).

We conclude the proof by proving du
dt = F in L2(I,H

∗(Ω)), that means du(t)
dt =

F (t) for a.a. t ∈ I.
From the fact that Fγ ⇀ F v L2(I,H

∗(Ω)) we have for any ϕ ∈ L2(I,H
1(Ω))∫

I

〈u(γ) − u0, ϕ〉 dt =

∫
I

〈∫ t

0

u(γ)
s (s) ds, P 1

hϕ(t)

〉
dt+

∫
I

〈u(γ) − u0, ϕ− P
1
hϕ〉 dt.

From the standard properties of Bochner’s integral, the definition of Fγ , the bound-

edness of u(γ) in C(I, L2(Ω)) and (2.5) it follows that passing to the limit as γ → 0

(i.e. h→ 0), we obtain∫
I

〈u(t)− up, ϕ(t)〉 dt ≤

∫
I

〈∫ t

0

F (s) ds, ϕ(t)

〉
dt.

On the other hand,∫
I

∫ t

0

〈Fγ(s), ϕ(t)〉 ds dt =

∫
I

∫ t

0

〈u(γ)
s (s), P 1

hϕ(t)〉 ds dt

=

∫
I

〈u(γ)(t)− u0, ϕ(t)〉 dt+

∫
I

〈u(γ)(t)− u0, P
1
hϕ(t)− ϕ(t)〉 dt.
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Again, for γ → 0 we obtain:∫
I

〈∫ t

0

F (s) ds, ϕ(t)

〉
dt ≤

∫
I

〈u(t)− up, ϕ(t)〉 dt.

Combining these two results and basic properties of abstract functions we obtain

u(t) = u0 +

∫ t

0

F (s) ds,

that means
du(t)

dt
= F (t)

(see [9]). �
For proving strong the convergence of some subsequence θ̄(γ) to the function

β(u) in L2(I,H
1(Ω)) we need the following lemma (for its proof see [6] or [4]):

Lemma A. Let u and a subsequence {ū(γ)} be the same as in Lemma 6. Then

for almost all t ∈ I it holds:

(i) lim
k→∞

∫ t

0

〈u(γk)
s (s), θ̄(γk)(s)〉 ds ≥

∫
Ω

Φβ(u(t)) dx−

∫
Ω

Φβ(up) dx,

({γk} is some subsequence of {γ});

(ii)

∫ t

0

〈us, β(u(s))〉 ds =

∫
Ω

Φβ(u(t)) dx−

∫
Ω

Φβ(up) dx.

Lemma 7. Let the assumptions of Lemma 1 hold and let the function u and

the subsequence {θ̄(γ)} be as in Lemma 6. Then it holds:

(6.15) θ̄(γ) → β(u) in L2(I,H
1(Ω)).

Proof. In the notation above, the functions

P 1
h β̄

i =
1

τ

∫
Ii

P 1
hβ(u(t)) dt, i = 1, . . . , n,

belong to V 1
h . Now we choose the function ψ = θi−P 1

h β̄
i as a test function in (5.1).

After multiplying by τ and rearranging we have

∫
Ii

〈δui, θi − P
1
hβ(u(t))〉 dt +

∫
Ii

〈ki−1∇θi,∇(θi − P
1
hβ(u(t)))〉

+

∫
Ii

〈g(θi), θi − P
1
hβ(u(t))〉h,Γ dt+

∫
Ii

〈ωi(θi − θi−1), θi − P
1
hβ(u(t))〉h,Γ dt

=

∫
Ii

〈f(β(ui−1)), θi − P
1
hβ(u(t))〉 dt+

∫
Ii

〈ρi(P
0
hθi − β(ui−1)), θi − P

1
hβ(u(t))〉 dt

+
1

τ

∫
Ii

〈pi, θi − P
1
hβ(u(t))〉 dt.
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For simplicity, we denote

kγ(t) = ki−1 pre t ∈ (ti−1, ti〉

θ̄(γ)τ (t) = θi−1 pre t ∈ (ti−1, ti〉

fγ(β(ū(γ)
τ )) = f(β(ui−1)) = f(ti, β(ui−1)) pre t ∈ (ti−1, ti〉

gγ(θ̄
(γ)
τ ) = g(θi−1) = g(ti, θi−1) pre t ∈ (ti−1, ti〉

p̄(γ)(t) = pi pre t ∈ (ti−1, ti〉.

After summing over i = 1, . . . , n we arrive at∫
I

〈u(γ)
t (t), θ̄(γ)(t)− P 1

hβ(u(t))〉 dt(6.16)

+

∫
I

〈kγ(t)∇θ̄
(γ)(t),∇(θ̄(γ)(t)− P 1

hβ(u(t)))〉 dt

+

∫
I

〈gγ(θ̄
(γ)
τ (t), θ̄(γ)(t)− P 1

hβ(u(t))〉h,Γ dt

+

∫
I

〈ω̄(γ)(t)(θ̄(γ)(t)− θ̄(γ)τ (t)), θ̄(γ)(t)− P 1
hβ(u(t))〉h,Γ dt

=

∫
I

〈fγ(β(ū(γ)
τ (t))), θ̄(γ)(t)− P 1

hβ(u(t))〉 dt

+

∫
I

〈ρ̄(γ)(t)(P 0
h θ̄

(γ)(t)− β(ū(γ)
τ (t))), θ̄(γ)(t)− P 1

hβ(u(t))〉 dt

+
1

τ

∫
I

〈p̄(γ)(t), θ̄(γ)(t)− P 1
hβ(u(t))〉 dt.

We will estimate each term of the equation (6.16).

In the first term we can use the definition of Fγ , the results of Lemma A, (6.10)

and the fact β(u) ∈ L2(I,H
1(Ω)) and passing to the limit as γ → 0 we get

lim
γ→0

∫
I

〈u(γ)
t (t), θ̄(γ)(t)− P 1

hβ(u(t))〉 dt ≥ 0.

We rearrange the second term of (6.16) as follows∫
I

〈kγ(t)∇θ̄
(γ)(t),∇(θ̄(γ)(t)− β(u(t)))〉 dt

+

∫
I

〈kγ(t)∇θ̄
(γ)(t),∇(β(u(t)) − P 1

hβ(u(t)))〉 dt

≥ k0||∇(θ̄(γ) − β(u))||2L2(I,L2(Ω)) +

∫
I

〈kγ(t)∇β(u(t)),∇(θ̄(γ)(t)− β(u(t)))〉 dt

+ +

∫
I

〈kγ(t)∇θ̄
(γ)(t),∇(β(u)− P 1

hβ(u(t)))〉 dt
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Now for γ → 0, the second term of this inequality converges to 0 because of the

properties of the matrix k, the results of Lemma 6 and the Lebesgue dominating

convergence theorem. The third term can be estimated as follows∫
I

〈kγ(t)∇θ̄
(γ)(t),∇(β(u) − P 1

hβ(u(t)))〉 dt

≤ CK0||θ̄
(γ)||L2(I,H1(Ω))||β(u)− P 1

hβ(u)||L2(I,H1(Ω))

≤ C||β(u) − P 1
hβ(u)||L2(I,H1(Ω)),

where we used again the properties of kγ and (5.14). The convergence for this term

now follows from the interpolation property for the finite element method ([2]).

The convergence of the third term in (6.16) is based on the convergence of∣∣∣∣∫
I

〈gγ(θ̄
(γ)
τ (t)), θ̄(γ)(t)− P 1

hβ(u(t))〉Γ dt

∣∣∣∣
which follows similarly as in [7] so we can omit its proof here.

The next term in (6.16) can be estimated similarly:∣∣∣∫
I

〈ω̄(γ)(t)(θ̄(γ)(t)− θ̄(γ)τ (t)), θ̄(γ)(t)− P 1
hβ(u(t))〉Γ dt

∣∣∣
≤ Cε||∇θ̄(γ) − β(u)||2L2(I,L2(Ω)) +

C

ε
||θ̄(γ) − β(u)||2L2(I,L2(Ω))

+ Ch||θ̄(γ)||L2(I,H1(Ω))||θ̄
(γ) − P 1

hβ(u)||L2(I,H1(Ω))

For sufficiently small values ε and h and again due to the strong convergence

of {θ̄(γ)} to β(u) in L2(I, L2(Ω)) and the boundedness of ω̄(γ) and {θ̄(γ)} in

L2(I,H
1(Ω)) we obtain the convergence to zero for this term.

The convergence of the first term on the right hand side of (6.16)∫
I

〈fγ(β(ū(γ)
τ (t))), θ̄(γ)(t)− P 1

hβ(u(t))〉 dt

can be omitted again because it is similar as in [7].

The next term can be estimated as follows∫
I

〈ρ̄(γ)(t)(P 0
h θ̄

(γ)(t)− β(ū(γ)
τ (t))), θ̄(γ)(t)− P 1

hβ(u(t))〉 dt

≤ K(||P 0
h θ̄

(γ)||L2(I,L2(Ω)) + ||β(ū(γ))||L2(I,L2(Ω)))

× (||θ̄(γ) − β(u)||L2(I,L2(Ω)) + ||β(u)− P 1
hβ(u)||L2(I,L2(Ω))).

Due to (5.12) and (5.3), we have the boundedness of {P 0
h θ̄

(γ)} and {β(ū(γ))} and

conclusion is analogous as above.
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The estimation of the last term is straightforward with respect to the properties

of pi for i = 1, . . . , n:

1

τ

∫
I

〈p̄(γ)(t), θ̄(γ)(t)− P 1
hβ(u(t))〉 dt ≤

1

τ

∫
I

||p̄(γ)(t)||H∗ ||θ̄
(γ)(t)− P 1

hβ(u(t))||H dt

≤ Cτσ−1||θ̄(γ) − P 1
hβ(u)||2L2(I,H1(Ω)),

which converges again to zero.

Now we can conclude:

||∇(θ̄(γ) − β(u))||2L2(I,L2(Ω)) → 0 for γ → 0.

which together with (6.12) gives the assertion of Lemma. �

Consequence. Let the subsequence {θ̄(γ)} be as in Lemma 6. Then it holds:

θ̄(γ) → β(u) in L2(I, L2(Γ)).

Proof. The proof follows in a straightforward way from the imbedding theo-

rem ([10]). �

Lemma 8. Assume (H) and let the subsequence {θ̄(γ)} from (6.1) have the

properties as above. Let the subsequence {θ̄(γ)τ } be the same as in the proof of

Lemma 7. Then it holds:

(6.17) ||θ̄(γ)τ − θ̄
(γ)||L2(I,L2(Γ)) → 0 for γ → 0.

Proof. We use (2.7) for ε = τ
1
3 and the boundedness of θ̄(γ), θ̄

(γ)
τ (see Conse-

quence of Lemma 1). We have∫
I

||θ̄(γ)τ (t)− θ̄(γ)(t)||2Γ dt

≤ C10τ
1
3

∫
I

||∇(θ̄(γ)τ (t)− θ̄(γ)(t))||2 dt+ C10
1

τ
1
3

∫
I

||θ̄(γ)τ (t)− θ̄(γ)(t)||2 dt

≤ Cτ
1
3 + C10

1

τ
1
3

(∫ T−τ

0

||θ̄(γ)(t+ τ)− θ̄(γ)(t)||2 dt+

∫ 0

−τ
||θ̄(γ)(t+ τ)||2 dt

)
≤ Cτ

1
6 → 0,

where similarly as in Lemma 4 we put θ̄(γ) := 0 on 〈−τ, 0〉 and then we used (6.7)

from Lemma 3, (2.5) and Lemma 1. �

Now the main result is:
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Theorem 2. Assume (H). Let the ratio between space and time discretization

step is as in (5.2). Then there exists a pair of functions {u(t, x), θ(t, x)} which

fulfil the relations (3.1)–(3.3) and the variational formulation (3.4). Moreover,

there exist subsequences {θγ̄}, {uγ̄} of sequences {θγ}, {uγ} defined in (6.1) such

that

uγ̄ ⇀ u and θγ̄ → θ = β(u) in L2(I, L2(Ω)),

θ̄γ̄ → β(u) in L2(I,H
1(Ω))

for γ̄ → 0.

Proof. Due to Lemma 6 we have the existence of a pair of functions u(t, x),

θ(t, x) = β(u(t, x)) and subsequences converging to them. Now we must prove

that this pair of functions satisfies the variational identity (3.4).

We define

P 1
h v̄

i =
1

τ

∫
Ii

P 1
hv(t) dt, i = 1, . . . , n,

for arbitrary v ∈ L2(I,H
1(Ω)). Then P 1

h v̄
i belongs to V 1

h . Now we use the same

notation as in Lemma 7 and we choose as a test function P 1
h v̄

i for i = 1, . . . , n. In

an analogous way as in Lemma 7, we can get (we denote subsequences {γ̄} again

by {γ}): ∫
I

〈u(γ)
t (t), P 1

hv(t)〉 dt +

∫
I

〈kγ(t)∇θ̄
(γ)(t),∇(P 1

hv(t))〉 dt(6.18)

+

∫
I

〈gγ(θ̄
(γ)
τ (t), P 1

hv(t)〉h,Γ dt

+

∫
I

〈ω̄(γ)(t)(θ̄(γ)(t)− θ̄(γ)τ (t)), P 1
hv(t)〉h,Γ dt

=

∫
I

〈fγ(β(ū(γ)
τ (t))), P 1

hv(t)〉 dt

+

∫
I

〈ρ̄(γ)(t)(P 0
h θ̄

(γ)(t)− β(ū(γ)
τ (t))), P 1

hv(t)〉 dt

+
1

τ

∫
I

〈p̄(γ)(t), P 1
hv(t)〉 dt.

Now we pass to the limit as γ → 0:

For the first term we use (6.8), Lemma 6 (6.10):∫
I

〈u(γ)
t (t), P 1

hv(t)〉 dt =

∫
I

〈Fγ(t), v(t)〉 dt→

∫
I

〈ut(t), v(t)〉 dt.

In the second term we use the fact θ̄
(γ)
τ → β(u) in L2(I, L2(Ω)) (from Lemma 8),

the properties of k, relations (6.13) and (6.14), the boundedness {θ̄(γ)} in
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L2(I,H
1(Ω)) and P 1

hv → v v L2(I,H
1(Ω)). We have:∫

I

〈kγ(t)∇θ̄
(γ)(t),∇(P 1

hv(t))〉 dt→

∫
I

〈k(t)∇β(u(t)),∇v(t)〉 dt.

In the third term we use (2.3) and the boundedness of θ̄(γ) in L2(I, L2(Γ)) (see

Consequence of Lemma 1), (Hg) and Lemma 8:∫
I

〈gγ(θ̄
(γ)
τ (t), P 1

hv(t)〉h,Γ dt→

∫
I

〈g(t, β(u(t)), v(t)〉Γ dt

for γ → 0.

If we use (2.3) and the Consequence of Lemma 1, Lemma 8 and the boundedness

of ω̄(γ) for the fourth term, we obtain:∫
I

〈ω̄(γ)(t)(θ̄(γ)(t)− θ̄(γ)τ (t)), P 1
hv(t)〉h,Γ dt→ 0.

Similarly, in the fifth term, we use (Hf ), (Hβ), Lemma 1 and (6.13):∫
I

〈fγ(β(ū(γ)
τ (t))), P 1

hv(t)〉 dt→

∫
I

〈f(t, β(u(t))), v(t) dt.

The next term converges to zero due to the boundedness of ρ(γ), Lemma 6, (6.13),

the inequality (2.4) and the boundedness of θ̄(γ) in L2(I,H
1(Ω)).

The last term also converges to zero due to the properties of the functionals pi
for i = 1, . . . , n So the pair of functions u(t, x), θ(t, x) = β(u(t, x)) satisfies the

problem (P). This completes the proof. �
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