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THE LAGRANGE THEOREM FOR MULTIDIMENSIONAL

DIOPHANTINE APPROXIMATION

P. MEIGNEN

Abstract. In this paper we give a necessary and sufficient condition for z in the
floor of the Poincaré half-space to have periodicity in the multidimensional Dio-
phantine approximation by convergents using the Hermite algorithm. We examine
in detail the structure of the corresponding sequences and give some examples

1. Introduction

We consider an hyperbolic reflection group WS generated by the finite set S of

the reflections in the faces of a fundamental chamber in the Poincaré half-space

Hp of Rp. We suppose that is of finite volume and that the only vertex at

infinity is ∞. For z in the floor Rp−1 = ∂Hp, a moving point on the vertical line

(∞z) from ∞ to z crosses a sequence w0( ), w1( ), . . . , wn( ), . . . of adjacent

chambers (with w0 = 1). This algorithm (originally due to Hermite [5]) produces

parabolic points wn(∞) which are the convergents of a multidimensional continued

fraction expansion of z. The main purpose of this paper is to prove the Lagrange

Theorem for this framework. We assert that z is a loxodromic fixed point if and

only if there are two integers N and k > 0, and w ∈WS such that wN+nk = wNw
n

for n ≥ 0. In this case, the asymptotic behavior of the w−1
n (∞z) is described by

a finite graph. In the last section, we give a way to study exact periodicity with

some examples.

2. Stabilizer

For p ≥ 2, we denote by Hp = {x ∈ Rp |xp > 0} the Poincaré upper half-

space of the Euclidean space Rp with an orthonormal basis (εi)1≤i≤p. The floor

is Rp−1 = {x ∈ Rp |xp = 0} and we use the notation R̃p−1 for Rp−1 ∪ {∞}. The

group Möb(Hp) of Möbius transformations acting on {x ∈ Rp |xp ≥ 0} ∪ {∞} is

generated by the inversions in half spheres and half hyperplanes orthogonal to Rp.
A Möbius transformation has at least one fixed point. A transformation with a

fixed point in Hp is termed elliptic and is conjugate to an Euclidean motion. A
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transformation w with no fixed point in Hp has exactly one or two fixed points in

R̃p−1 and we say that w is respectively parabolic or loxodromic. A parabolic

transformation is conjugate to an affine Euclidean motion. A loxodromic transfor-

mation is conjugate to a similarity and one of its fixed points is attracting and

the other is repulsive (see [10]).

In this paper, WS denote an hyperbolic reflection group generated by the finite

set S of reflections in the walls of the fundamental chamber which is supposed

to have a finite volume. Hence the set of vertices of in R̃p−1 is finite. We see WS

as an injective representation of an abstract Coxeter group (see [3]). The length

lS(w) of w ∈WS is the smallest integer q such that w = s1 · · · sq with si ∈ S.

We denote the stabilizer of z in Hp ∪ R̃p−1 by Stab(z). If z is in ∪w∈WSw( )

then Stab(z) = WS(z) where S(z) is the set of reflections s in WS (necessarily

conjugate to reflections of S) such that s(z) = z.

If z ∈ R̃p−1 is equivalent to a vertex $ ∈ then Stab(z) is conjugate to WS($).

We say that z is a parabolic fixed point.

Suppose that z ∈ R̃p−1 is not parabolic. In this case there is unique y 6= z in

R̃p−1 such that Stab(y) = Stab(z). The elements in Stab(z) of infinite order are

loxodromic with axis the geodesic (yz) in Hp. We say that z is a loxodromic

fixed point. The set of elements of finite order in L(y, z) = Stab(y) = Stab(z) is

the finite normal subgroup

L0(y, z) = WS(y) ∩WS(z) = WS(y)∩S(z),

and L(y, z)/L0(y, z) is an infinite cyclic group. The group L(y, z)/L0(y, z) acts on

(yz) as a discrete group of dilatations.

We note that for any w in WS , the inner automorphism u 7→ wuw−1 of WS

induces the isomorphisms L(y, z)→ L(w(y), w(z)) and L0(y, z)→ L0(w(y), w(z)).

3. The Hermite Algorithm

We denote by Ps the mirror of the reflection s ∈ S. It is a half-sphere or a

half-hyperplane with added ∞. The corresponding face of is Fs = Ps ∩ .

Let y and z be different points in R̃p−1. The geodesic (yz) inHp is an Euclidean

half-circle or a half-line orthogonal to R̃p−1. We suppose that (yz) is oriented from

y to z: (zy) = −(yz). We denote (yz) ∪ {y, z} by [y, z].

We define Ssucc(y, z) to be the subset of S formed by the reflections s such that

• (yz) goes out of through Fs
• (yz) is not in Ps

A necessary and sufficient condition to have Ssucc(y, z) 6= ∅ is [y, z] ∩ 6= ∅.

An example is illustrated on figure 1 in the case of W{s1,s2,s3} = PGL2(Z) for

the golden number φ = 1+
√

5
2 .
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Figure 1. Ssucc(1− φ, φ) = {s2} and Ssucc(φ, 1− φ) = {s1, s3}.

We introduce an oriented graph Γ(y, z) whose set of vertices is

Arc(y, z) = {w[y, z] | ∩ w[y, z] 6= ∅}.

The edges are (a, s, b) with b = s(a) for s ∈ Ssucc(a). This graph is simple

and without loops. It is possible to deduce Γ(z, y) from Γ(y, z) by reversing the

orientation of vertices and edges. For w in WS , we have Γ(w(y), w(z)) = Γ(y, z).

Each vertex of Γ(y, z) has at least one successor and one predecessor. The

infinite paths give us a way to cover geodesics by reduced galleries.

Let σ = (σ0, . . . , σn−1) be a finite path in Γ(y, z) with edges σi = (ai, si+1,

ai+1). We denote by wi(σ) the word s1 · · · si of WS with w0(σ) = 1. We know

that (s1, . . . , si) is a reduced decomposition of wi(σ). This means that the length

lS(wi(σ)) of wi(σ) is i. The intersection of [y, z] with ∪0≤i≤nwi( ) is a connected

part of [y, z].

Let a0 be a vertex in Γ(y, z) and σ = (σn)n∈Z be an infinite path such that a0 is

the beginning of σ0. Setting w−n(σ) = s−1 · · · s−n for n > 0, we obtain an infinite

reduced gallery (wn( ))n∈Z which covers a0 minus its extremities (see [7]).

4. Finite Graphs

It is possible to characterized the finite graphs. They are closely related to

closed geodesics in Hp/WS .

From the fact that (wn( )) covers a0, we deduce that there is at least one

vertex a in Γ(y, z) such that a ∩ is not a point. We say that in this case a is

general.

Theorem 1. The graph Γ(y, z) is finite if and only if (yz) is the axis of a

loxodromic transformation in WS. In this case, we have:

(i) the graph Γ(y, z) is a circuit

(ii) the general vertices belong to all circuits

(iii) let a be a vertex in Γ(y, z) and σ be an elementary circuit with extremity a.

The element w(σ) ∈ WS is the word of minimum length which generates
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the cyclic group L(a)/L0(a) and for which the ending extremity of a is

attracting. This length is independent of a.

Proof. Suppose that Γ(y, z) is finite. There exists a circuit σ in Γ(y, z) because

all vertex have a successor. Let a be the extremity of σ. From the fact that σn is

in Γ(y, z) for all n ≥ 0, we deduce that a is the axis of an element of infinite order.

Hence z is a loxodromic fixed point.

Suppose that (yz) is the axis of a loxodromic transformation. Without loss of

generality, we may assume that (yz) is a general vertex of Γ(y, z).

Let u be a generator of the infinite cyclic group L(y, z)/L0(y, z). Let a be a

vertex of Γ(y, z): there is w ∈ WS such that a = w[y, z]. We can find an integer

n ∈ Z such that (yz)∩w−1( ) is between (yz)∩un( ) and (yz)∩un+1( ). Hence

u−nw−1( ) is a chamber intersecting (yz) between (yz)∩ and (yz)∩u( ). There

is only a finite number of possibilities because WS is discrete. From a = wun[y, z],

we deduce that Γ(y, z) is finite.

(i) Going over Γ(y, z) from a, and over Γ(z, y) from −a, we obtain reduced

galleries which intersect un( ) and un+1( ) by composing with w−1. Thus we

get a circuit which contains a and [y, z].

(ii) In particular, when σ is a circuit with extremity a, we deduce that [y, z] is a

vertex of some σn by considering the infinite path (σn)n∈Z. But the set of vertices

of σ and σn are the same.

(iii) Without loss of generality, we may suppose that a = [y, z]. Let u be

a generator of L(a)/L0(a). Changing u in u−1, we can suppose that z is the

attracting point for u and for w(σ).

First, we suppose that a is general. In this case, there is an integer n > 0 such

that (yz)∩w(σ)( ) is in (yz)∩ un( ). The corresponding gallery must intersect

(yz) ∩ u( ). We deduce that n = 1 because σ is elementary.

It is easy to see that w−n(σ)un ∈ L0(a) for all n because w−1(σ)u ∈ L0(a). Let

N = sup {lS(w) |w ∈ L0(a)}. From the following inequalities:

nlS(w(σ)) = lS(wn(σ)) ≤ lS(un) +N ≤ nlS(u) +N,

we obtain lS(w(σ)) ≤ lS(u).

We have the unicity because w(σ) is (∅, S(y) ∩ S(z))-reduced (see [3]).

If a is not general then we note that σ contains a general vertex b. By circular

permutation of the edges of σ, we get an elementary circuit τ with extremity b.

The words w(σ) and w(τ) are conjugate.

By conjugation, the length is independent of the choice of a. �

Remark 1. From (iii), we have w(σ) = w(τ) whenever σ and τ are two ele-

mentary paths with the same extremities.
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5. Pseudo-periodicity

We consider the 2p−1-dimensional associative and unitary algebra Clp−1 gener-

ated by ε2, · · · εp verifying {
ε2i = −1

εiεj = −εjεi, i 6= j .

By identifying ε1 with 1, one can see Rp = ⊕pi=1Rεi as a vector subspace of

Clp−1. The products of non null vectors form the Clifford group Γp−1. We put an

Euclidean norm | | on the vector space Clp−1 which coincides with the Euclidean

norm ‖ ‖ on Rp. For x and y in Γp−1, we have |xy| = |x| |y|.
Let f be a homography in Möb(Hp). There are a, b, c and d in Γp−1 ∪ {0}

such that f(z) = (az + b)(cz + d)−1 and ad∗ − bc∗ = 1 where x 7→ x′ is the

anti-automorphism of Clp−1 defined by ε∗i = εi (see [1]). For an anti-homography

f , using the automorphism x 7→ x′ of Clp−1 defined by ε′i = −εi, we have the

existence of a, b, c and d in Γp−1 ∪ {0} such that f(z) = (az′ + b)(cz′ + d)−1 and

ad∗ − bc∗ = −1 (see [8]). These transformations are respectively denoted by the

Cliffordian matrices (
a b

c d

)
and

(
a b

c d

)′
.

In each case, (a, b, c, d) is unique up to multiplication by ±1.

From now on, we suppose that ∞ is the only parabolic vertex of . Let z

be in Rp−1. Let σ = (σn)n∈N be a path in Γ(∞, z) beginning with [∞, z]. We

say that the corresponding sequence (wn) is a H-sequence associated to z. We

know that limn→∞wn(∞) = z. Using Cliffordian matrices, it is possible to write

wn(∞) = pnq
−1
n with pn and qn in Γp−1∪{0}. The fractions pnq

−1
n have the same

properties as those obtained from the usual continued fraction expansions. We

say that the pnq
−1
n are convergents. The discrete sequence of |qn| increases, and

limn→∞ |qn| <∞ if and only if z is parabolic.

Lemma 1. Let (yz) be the axis of a loxodromic element w in WS. Let (wn) be

a H-sequence associated to z. For all ε > 0, we can find an integer N such that,

for a given n ≥ N , there is [α, β] in the finite set Arc(y, z) verifying w−1
n (z) = α

and |w−1
n (∞)− β| ≤ ε.

Proof. It is clear that w−1
n wwn is loxodromic with axis w−1

n (yz). We have:

|w−1
n (y)− w−1

n (∞)| =
1

|qn|2|wn(∞)− y|
.

From the fact that limn→∞ |qn| = ∞ and limn→∞wn(∞) = z 6= y, we deduce

that w−1
n [∞, z] and w−1

n [y, z] are as near as we want. Moreover, the number of

w−1
n [y, z] is finite because {w−1

n wwn} is finite from Theorem 4 in [7]. We have
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w−1
n [∞, z] ∩ 6= ∅ for all n. This implies the existence of an integer p such that

w−1
n [y, z] ∩ 6= ∅ for n ≥ p. In this case w−1

n [y, z] is a vertex of Γ(y, z). �

When (yz) is the axis of a loxodromic transformation, the graph Γ(y, z) depends

only on z. We shall say that it is the reduced graph for z denoted by Γred(z). The

graphs Γ(∞, z) and Γred(z) are related by

Corollary 1. Let z be a loxodromic fixed point and (wn) be a H-sequence

associated to z. There are an integer N and a path σ in Γred(z) verifying wn =

wn(σ) for all n ≥ N .

Proof. From Lemma 1, there is an integer N such that, for n ≥ N :

Ssuccw
−1
n [∞, z] ⊂ Ssuccw

−1
n [y, z]. �

Definition 1. We say that a H-sequence (wn) is pseudo-periodic if there

are two integers k and N , and w ∈WS such that wN+nk = wNw
n for all n ≥ 0.

The main result of this paper is the Lagrange Theorem for the Hermite Algo-

rithm:

Theorem 2. Let z ∈ R̃p−1 \WS(∞). A H-sequence (wn) associated to z is

pseudo-periodic if and only if z is a loxodromic fixed point.

Proof. Suppose that the H-sequence (wn) associated to z is pseudo-periodic.

We have limn→∞wNw
n(∞) = z and w is of infinite order. We deduce that w is

parabolic or loxodromic. But w is not parabolic because z is not equivalent to∞.

Let z be a loxodromic fixed point. From Corollary 1, we have an integer N

and an elementary circuit σ such that wN+nk = wNw
n(σ) where k is the length

of w(σ). �

We say that the length in Theorem 1(iii) is the pseudo-period of z denoted

by l(z).

For z ∈ R̃p−1 \WS(∞), we have defined in [7] the approximation constant by

γ(z) = lim sup (|q| |p− zq|)−1,

the limsup being taken over all pq−1 ∈WS(∞). From Theorem 3 in [7], we deduce

Corollary 2. Let z be a loxodromic fixed point in Rp−1. We have

γ(z) = sup {|α− β| | [α, β] ∈ Arcred(z)}

where Arcred(z) denotes the finite set of vertices of Γred(z).
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6. An Example

Following an idea of Professor Y. Hellegouarch, we consider the hyperbolic

reflection group WS ⊂ Möb(H5) generated by

s1 =

(
0 1

1 0

)′
: x 7→ 1/x′, s2 =

(
−1 1

0 1

)′
: x 7→ −x′ + 1,

s3 =

(
−ξ′ 0

0 ξ

)′
: x 7→ −ξ′x′ξ′, s4 =

(
i 0

0 i

)′
: x 7→ −ix′i,

s5 =

(
j 0

0 j

)′
: x 7→ −jx′j, s6 =

(
k 0

0 k

)′
: x 7→ −kx′k,

where ξ = 1
2 (1 + i+ j + k). Its Coxeter scheme is

Let y = 1
2 + 1+

√
5

4 i+ 1−
√

5
4 j and z = 1

2 + 1−
√

5
4 i+ 1+

√
5

4 j. The geodesic (y z) is

an edge of the fundamental chamber and the axis of a loxodromic transformation.

The reduced graph of z is illustrated on Figure 2.

Figure 2. Γred(
1
2 + 1−

√
5

4 i+ 1+
√

5
4 j).

The pseudo-period is 30. The vertex a = (y z) is general and the corresponding

word of Theorem 1 is

w = s4s3s6s2s3s4s1s2s3s6s5s3s4s2s3s5s1s2s3s4s6s3s5s2s3s6s1s2s3s5.
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With a computer, we obtained γ(z) =
√

5/2. This is the Hurwitz constant for the

approximation in R4 respect to the ring of the Hurwitz integers Z[i, j, 1
2 (1 + i +

j + ij)]. One can see [9] and for other proofs of this result.

7. Periodicity

A H-sequence (wn) associated to z in R̃p−1 is said to be periodic if there are

two integers N and T > 0 such that sn+T = sn for n ≥ N . For a loxodromic

fixed point, it is natural to study periodicity. The difficulty increases with the

dimension. We did not obtain definitive results, but it is sometimes possible to

know if there is a periodic H-sequence associated to a given loxodromic fixed point

by working in the Euclidean framework. We present the method.

Let z be a loxodromic fixed point in R̃p−1 and (wn) be a H-sequence associated

to z. We consider a general vertex a = (z1z2) in Γred(z2). Let w be the corre-

sponding loxodromic transformation. From Corollary 1, we know that there is an

integer N verifying

(i) w−1
N (z) = z2

(ii) wN+k l(w) = wNw
k for k ≥ 0.

We get wN+(k+1 )l(w) = wN+k l(w)w by the elementary circuit σi = (s
(i)
1 , . . . , s

(i)
l(w))

if w−1
N+k l(w)[∞, z] and the faces F

(i)
j = s

(i)
1 · · · s

(i)
j (F

s
(i)
j+1

) are intersecting for 0 ≤

j < l(w). Let u ∈ Möb(Hp) such that u[z1, z2] = [∞, 0]. We use σi if

uw−1
N+k l(w)(∞) is in the orthogonal projection R

(i)
j of u(F

(i)
j ) on the floor Rp−1.

We note that

R(i) =
⋂

0≤j≤l(w)−1

R
(i)
j

is the convex Euclidean hull of a finite number of points. The attracting point of

the similarity uwu−1 is 0 ∈ R(i). We consider an Euclidean ball B with center 0

in ∪iR(i). There is an integer k1 such that w−1
N+k l(w)(∞) ∈ B for k ≥ k1. From

the fact that B(i) = R(i) ∩ B is a spherical cone, we can replace the similarity

uwu−1 : x 7→ αxα∗ or x 7→ −αx′α∗ by the associated Euclidean isometry v : x 7→
αxα∗/|α|2 or v : x 7→ −αx′α∗/|α|2. Hence a necessary condition for the appearance

of the elementary circuit σi at the step k ≥ k1 is vk−k1uw−1
N+k1 l(w)(∞) ∈ B(i). This

condition is not sufficient when

vk−k1uw−1
N+k1 l(w)(∞) ∈ B(i1) ∩B(i2)

with i1 6= i2. The problem of periodicity is related to the behavior of the orbit of

uw−1
N+k1 l(w)(∞) under the semi-group 〈v〉 in the tessellation of B by the B(i). It is

possible that the periodicity would depend on w−1
N+k1 l(w)(∞). But from the fact

that uWS(z1)∩S(z2)u
−1 is a finite group, only a finite number of cases may occur.
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The simplest result that we can deduce from the preceding discussion in higher

dimension is the following: if the Euclidean transformation v associated to w is of

finite order then there is a periodic H-sequence associated to z.

For approximation in R (see [6]) or C (see [4]), we can state

Theorem 3.

(i) Let z be a loxodromic fixed point in R. The H-sequences associated to z

are periodic. The period is l(z) (when l(z) is even) or 2l(z) (when l(z) is

odd).

(ii) Let z be a loxodromic fixed point in C. If Γred(z) is not a elementary

circuit and the Euclidean transformation associated to is of infinite order

then there is no periodic H-sequence associated to z.

Proof. (i) The Euclidean motion is x 7→ x or x 7→ −x on R. The first case

corresponds to homography and the second to anti-homography.

(ii) The orbit is dense in a circle with center 0. Consequently, it is not possible

to encounter the B(i) periodically. �

Example 1. For q ≥ 3, we consider the group Wq acting on the upper complex

half-plane and generated by the reflections
s1 : z 7→ 1/z̄

s2 : z 7→ 2 cos(π/q)− z̄

s3 : z 7→ −z̄

in the walls of the fundamental chamber

q = {z ∈ C | 1 ≤ |z| , 0 ≤ <(z) ≤ cos (π/q)} ∪ {∞} .

The subgroup W+
q formed by the homographies is the Hecke group (see [2]). In

particular, W+
3 is isomorphic to the modular group PSL2(Z).

The transformation w = s2s1s3 : z 7→ 1/z̄ + λq is loxodromic with repulsive

point yq = (λq −
√
λ2
q + 4)/2 and attracting point zq = (λq +

√
λ2
q + 4)/2 where

λq = 2 cos (π/q). The geodesic (yq zq) and the interior of q are intersecting.

Hence a = (yq zq) is a general vertex of Γred(zq). We have two elementary circuits

with extremity a (see Figure 3):{
σ1 = (s2, s1, s3)

σ2 = (s2, s3, s1).

The H-sequences associated to any real number equivalent to zq are periodic with

period σ1σ2 = (s2, s1, s3, s2, s3, s1).
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Figure 3. Γred(zq).

Example 2. We consider the hyperbolic reflection group W acting on the

Poincaré half-space of R3 and generated by the reflections si which are defined on

C ∪ {∞} by 
s1 : z 7→ −1/z̄

s2 : z 7→ 1− z̄

s3 : z 7→ i z̄

s4 : z 7→ z̄

The subgroup W+ formed by homographies is isomorphic to PGL2(Z[i]).

Figure 4. Γred(
1+i
√

3
2 ).

Let z = (1+ i
√

3)/2. The geodesic (z̄ z) is an edge of the fundamental chamber

and z is a loxodromic fixed point. We obtain a = (z̄ z) as a general vertex of

Γred(z). We have two elementary circuits with extremity a (see Figure 4):{
σ1 = (s3, s2, s3, s1, s2, s3, s4)

σ2 = (s3, s2, s1, s3, s2, s3, s4).

The corresponding loxodromic transformation on C ∪ {∞} is

w : z 7→
−z̄ + 1 + i

i z̄ + 1
.

The Euclidean transformation s corresponding to w is a reflection because the

pseudo-period is odd. One can verify that if u ∈ L(a) then u(∞) lies on the

union of the axes of s1, s2 and s1s2s1 which is globally invariant under s because

s2 = ss1s (see Figure 5). Moreover, the axis of s separates B(1) and B(2). This

proves that H-sequences associated to any complex number equivalent to z are

periodic with period σ1σ2.
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Figure 5.

Figure 6. Γred

(√
1+
√

5
2 + i

√
−1+

√
5

2

)
.

Example 3. We give another example from the previous group. We consider

the loxodromic transformation acting on C ∪ {∞} by

w : z 7→
(1 + i)z + 1 + 2i

z + 1 + i
.

The attracting point is z =
√

1+
√

5
2 + i

√
−1+

√
5

2 . The other extremity of the axis

is y = −z. One can verify that a = (y z) is a general vertex of Γred(z).

We have four elementary circuits with extremities a (see Figure 6):
σ1 = (s2, s3, s2, s1, s4, s2, s3, s2, s3, s4, s3, s4)

σ2 = (s2, s3, s2, s4, s1, s2, s3, s2, s3, s4, s3, s4)

σ3 = (s2, s3, s2, s1, s4, s2, s3, s2, s4, s3, s4, s3)

σ4 = (s2, s3, s2, s4, s1, s2, s3, s2, s4, s3, s4, s3)

The corresponding Euclidean motion is a rotation r with angle θ verifying cos 2θ =
−105+1456

√
5

3929 . By considering the Chebyshev polynomials over Q(
√

5), one can

verify that the order of r is infinite. Hence H-sequences associated to any complex

number equivalent to z are not periodic.
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