
Acta Math. Univ. Comenianae
Vol. LXVII, 2(1998), pp. 343-350

343

THE BLOW–UP RATE FOR A SEMILINEAR PARABOLIC

EQUATION WITH A NONLINEAR BOUNDARY CONDITION

J. D. ROSSI

Abstract. In this paper we obtain the blow-up rate for positive solutions of ut =
uxx−λup, in (0, 1)×(0, T ) with boundary conditions ux(1, t) = uq(1, t), ux(0, t) = 0.
If p < 2q − 1 or p = 2q − 1, 0 < λ < q, we find that the behaviour of u is given by

u(1, t) ∼ (T − t)
− 1

2(q−1) and, if λ < 0 and p ≥ 2q − 1, the blow up rate is given

by u(1, t) ∼ (T − t)
− 1
p−1 . We also characterize the blow-up profile in similarity

variables.

1. Introduction

In this paper we consider positive solutions of the following parabolic problem,

(1.1)


ut = uxx − λup in (0, 1)× [0, T ),

ux(1, t) = uq(1, t) t ∈ [0, T ),

ux(0, t) = 0 t ∈ [0, T ),

u(x, 0) = u0(x) > 0 in (0, 1),

where p, q > 1 and λ 6= 0 are parameters.

This problem with λ > 0 was studied in [2] and [12]. Existence and regularity

of solutions have been proved for initial data that satisfy a compatibility condition.

In the general case one can obtain a solution in H1 by a standard approximation

procedure (see [2] for the details). The solution of (1.1) only exists for a finite

period of time (in this case u becomes unbounded in finite time and we say that it

blows up) or it is defined for all positive t (in this case we call it a global solution).

In our problem one has a nonlinear term at the boundary and a reaction term

in the equation. If λ > 0, these two terms compete and the blow up phenomenon

occurs if and only if p < 2q − 1 or p = 2q − 1 with λ < q (see [2]), [12]). In fact

there holds:
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Theorem 1.1 ([2, Theorems 4.1, 4.2 and 4.7] and [12]).

1. Suppose that p < 2q − 1 or p = 2q − 1 with 0 < λ < q, if u0 > v, where v

is any maximal stationary solution, then u blows up in finite time.

2. Suppose that p > 2q − 1 or p = 2q − 1 with λ ≥ q, then every positive

solution is global.

Our interest is the blow-up rate, so we assume that we are dealing with a

blowing up solution u, and that p < 2q − 1 or p = 2q − 1 with λ < q.

We suppose that the initial data are positive, increasing, verify a compatibility

condition and (u0)xx − λu
p
0 ≥ α > 0 in order to guarantee ut ≥ 0.

The blow-up rate for solutions of (1.1) with λ > 0 was conjectured in [2] (see

Remark 4.2 there). For the blow-up rate for the heat equation with a similar

boundary condition we refer to [5], [9] and for the blow-up rate for a system to

[3], [4] and [13].

In this paper we prove the conjecture of [2] and characterize the blow-up rate.

We prove:

Theorem 1.2. Let p, q > 1 and λ > 0. Under the above assumptions on u0,

a) If p < 2q − 1, there exists positive constants C, c such that

c ≤ max
[0,1]

u(·, t)(T − t)
1

2(q−1) ≤ C (t↗ T ).

b) If p = 2q − 1 with λ < q, there exists positive constants C, c such that

c ≤ max
[0,1]

u(·, t)(T − t)
1

2(q−1) ≤ C (t↗ T ).

In the case λ < 0 both terms cooperate and every positive solution has finite

time blow-up (see [1], [14]). For the blow up rate we observe that if p < 2q − 1

then the nonlinear term at the boundary determines the blow up rate while if

p > 2q−1 the reaction term in the equation dominates and gives the blow up rate.

We prove :

Theorem 1.3. Let p, q > 1 and λ < 0. Under the above assumptions on u0,

a) If p < 2q − 1, there exists positive constants C, c such that

c ≤ max
[0,1]

u(·, t) (T − t)
1

2(q−1) ≤ C (t↗ T ).

b) If p = 2q − 1, there exists positive constants C, c such that

c ≤ max
[0,1]

u(·, t) (T − t)
1

2(q−1) ≤ C (t↗ T ).

c) If p > 2q − 1, there exists positive constants C, c such that

c ≤ max
[0,1]

u(·, t) (T − t)
1

(p−1) ≤ C (t↗ T ).

We want to remark that if p = 2q − 1 then 1
2(q−1) = 1

p−1 .

With this blow-up rate we can characterize the blow-up profile.



THE BLOW–UP RATE 345

Theorem 1.4. a) Let p < 2q − 1. Then for any y ≥ 0,

(T − t)
1

2(q−1) u(1− y
√
T − t, t)→ w0(y) (t→ T )

where w0 is the unique positive bounded solution of wyy −
y
2wy −

1
2(q−1)w = 0 in

(0,∞) with wy(0) = −wq(0).

b) Let p > 2q − 1 and λ < 0. Then for any y ≥ 0,

(T − t)
1
p−1u(1− y

√
T − t, t)→ (−

1

λ(p− 1)
)

1
p−1 (t→ T ).

The convergence is uniform for y ∈ [0, C], C being an arbitrary positive con-

stant.

For the critical case, p = 2q − 1, further investigation is required. Case a) for

λ > 0 was conjectured in [2].

We want to remark that in the first case w0 is not constant, while in the second

the asymptotic profile is a constant. This is due to the predominance of the

nonlinear term at the boundary in the first case or the nonlinear source in the

second.

The paper is organized as follows, in Section 2, we prove Theorem 1.2 and

Theorem 1.3, the main tool used in the proof is a scaling argument due to [8], [9].

In Section 3 we prove Theorem 1.4 using ideas from [6], [7].

2. Blow-up Rate

Let us begin by proving part a) of Theorems 1.2, 1.3.

Let u be a solution of (1.1) with a finite blow-up time T , and for each 0 < t∗ < T ,

let

M(t∗) = u(1, t∗) = max
[0,1]

u(·, t∗).

We define

ϕγ(y, s) =
1

M(t∗)
u(γy + 1, γ2s+ t∗),

in Ωγ = {y ∈ R : γy + 1 ∈ [0, 1]}.
This function ϕγ , satisfies 0 ≤ ϕγ ≤ 1, ϕγ(0, 0) = 1,

∂ϕγ
∂s
≥ 0 and

(2.1)


(ϕγ)s = (ϕγ)yy − λγ2Mp−1(ϕγ)

p,

(ϕγ)y(0, s) = γMq−1(ϕγ)
q(0, s),

(ϕγ)y(−1/γ, s) = 0.

Now we choose γ = 1
Mq−1 and observe that γ goes to zero as t∗ goes to T . We

define Kγ = λγ2Mp−1 = λMp−2q+1 and observe that Kγ goes to 0 as t∗ goes to

T because p < 2q − 1.
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We claim that there exists a constant C such that for every γ small

∂ϕγ

∂s
(0, 0) ≥ C.

To prove this claim, suppose the contrary. Then there exists a sequence γj → 0

such that
∂ϕγj
∂s

(0, 0)→ 0.

As ϕγj is uniformly bounded in C2+α,1+α/2 (see [10], [11]), passing to a sub-

sequence if necessary, we obtain a positive function ϕ, such that ϕγj → ϕ in

C2+β,1+β/2, (for some β < α) and verify 0 ≤ ϕ ≤ 1, ϕ(0, 0) = 1, ∂ϕ
∂s
≥ 0 and

(2.2)

{
ϕs = ϕyy,

ϕy(0, s) = ϕq(0, s)

in {y < 0} × (−∞, 0]. We set w = ϕs and as w satisfies the heat equation, a

boundary condition of the type wy(0, s) ≥ 0 and w(0, 0) = 0, we conclude, using

the Hopf lemma that w ≡ 0, that is ϕ does not depend on s and then, using that

0 ≤ ϕ ≤ 1, ϕ(0, 0) = 1, and that ϕ verifies (2.2) we obtain a contradiction.

So we have proved that
∂ϕγ

∂s
(0, 0) ≥ C.

In terms of u, that is γ2ut(1,t
∗)

M(t∗) ≥ C. As M(t∗) = u(1, t∗) and γ = 1
Mq−1 , this

implies

M1−2q(t∗)M ′(t∗) ≥ C.

Now we integrate between t and T and obtain (using that q > 1)

C(T − t) ≤

∫ T

t

M1−2q(t∗)M ′(t∗) dt∗ ≤

∫ +∞

M(t)

s1−2q ds =
C

M(t)2(q−1)
.

And then,

M(t) ≤
C

(T − t)
1

2(q−1)

.

To prove the other inequality we observe that ϕγ is uniformly bounded in

C2+α,1+α/2 and then there exists a constant C such that,

∂ϕγ

∂s
(0, 0) ≤ C.

In terms of u, that is γ2ut(1,t
∗)

M(t∗) ≤ C. Using again that M(t∗) = u(1, t∗) and that

γ = 1
Mq−1 , we have,

M1−2q(t∗)M ′(t∗) ≤ C.
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Again, we integrate between t and T and obtain (using that q > 1)

c(T − t) ≥

∫ T

t

M1−2q(t∗)M ′(t∗) dt =

∫ +∞

M(t)

s1−2q ds =
C

M(t)2(q−1)
.

Hence,

M(t) ≥
c

(T − t)
1

2(q−1)

as we wanted to prove. �
To prove part b) of Theorems 1.2, 1.3 we proceed as before but in this case

we obtain that ϕγ verifies 0 ≤ ϕγ ≤ 1, ϕγ(0, 0) = 1,
∂ϕγ
∂s
≥ 0 and (2.1) with

Kγ = λγ2Mp−1 = λ. As before we claim that there exists a constant C such that

(2.3)
∂ϕγ

∂s
(0, 0) ≥ C.

If not, passing to a subsequence and using Hopf Lemma, we obtain a nontrivial

solution of {
0 = ϕyy − λϕp, y < 0,

ϕy(0) = ϕq(0) = 1

with 0 ≤ ϕ ≤ 1, which is a contradiction (this solution can not exist). We remark

that in this case, p = 2q − 1, we are using that q > λ.

From inequality (2.3) and the reverse one (that follows by C2+α,1+α/2 regularity,

see [11]) it follows that

c ≤ u(1, t)(T − t)
1
p−1 = M(t)(T − t)

1
2(q−1) ≤ C. �

To prove part c) of Theorem 1.3 we proceed as in the previous case but this time

we choose γ2 = M−(p−1) and hence ϕγ verifies 0 ≤ ϕγ ≤ 1, ϕγ(0, 0) = 1,
∂ϕγ
∂s
≥ 0

and (2.1) with γMq−1 = M q−1/2−p/2, that goes to zero as t∗ goes to T because

p > 2q − 1. As before we claim that there exists a constant C such that

∂ϕγ

∂s
(0, 0) ≥ C.

If not, passing to a subsequence and using Hopf Lemma, we find a nontrivial

solution of 0 ≤ ϕ ≤ 1, ϕ(0) = 1, and{
0 = ϕyy − λϕp,

ϕy(0) = 0

which is a contradiction (λ is negative).

As in the previous cases, from this inequality and the reverse one (that follows

by C2+α,1+α/2 regularity) it follows that

c ≤ u(1, t)(T − t)
1
p−1 = M(t)(T − t)

1
p−1 ≤ C. �
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3. Blow-up Profile

We begin by part a) so we are dealing with p < 2q − 1. Let us introduce the

similarity variables,

w(y, s) = (T − t)
1

2(q−1) u(x, t), y =
1− x
√
T − t

, s = − ln(T − t).

Then w satisfies the following equation and boundary conditions

(3.1)


ws = wyy −

y
2wy −

1
2(q−1)w − λe

−skwp,

wy(0, s) = −wq(0, s),

wy(e
s/2, s) = 0,

w(y,− lnT ) = T
1

2(q−1) u0(1− y
√
T ).

in a domain of the form Ω = {(y, s); 0 < y < es/2, s > − lnT}, here k = 2q−1−p
2(q−1) >

0 because p < 2q − 1.

The corresponding stationary problem was studied in [5].

Lemma 3.1 ([5, Lemma 3.1]). There is a unique positive bounded solution, w0,

of 0 = wyy−
y
2wy−

1
2(q−1)w, (y > 0) with the boundary condition wy(0) = −wq(0)

(for an explicit formula for w0 see [5]).

With this Lemma we can find the blow-up profile.

To prove Theorem 1.4 we have to prove that w(y, s) → w0(y) as s → ∞. We

use ideas from [6].

Part a) of Theorem 1.2 and Theorem 1.3 implies that w is bounded and that

0 < c ≤ w(0, s) ≤ C. Also from the proof of the blow-up rate and the maximum

principle we obtain ut(·, t) ≤ C(T − t)−
2q−1

2(q−1) , ux(·, t) ≤ C(T − t)−
q

2(q−1) and

uxx(·, t) ≤ C(T − t)−
2q−1

2(q−1) . Hence wyy,
y
2wy and ws are bounded.

Now we adapt arguments from Propositions 6 and 7 in [6]. Let sj be a sequence

tending to ∞ and let wj(y, s) = w(y, s+ sj). By the previous estimates there is a

subsequence (that we still denote by wj) such that wj(y, s)→ w∞(y, s) uniformly

on compact sets and (wj)y(y,m) → (w∞)y(y,m) pointwise in {y > 0} for each

integer m.

We have the identity∫ R

0

ρ(y)ws(ws + λe−skwp)(y, s)dy − ρ(R)ws(R, s)wy(R, s) = −
d

ds
ER(w)(s)

where ρ(y) = e−y
2/4 and

ER(w)(s) =
1

2

∫ R

0

ρw2
ydy +

1

4(q − 1)

∫ R

0

ρw2dy −
1

q + 1
wq+1(0, s).
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Taking R(s) = s we obtain

−
d

ds
Es(w)(s) =

∫ s

0

w2
s(y, s)ρ(y)dy −G(s)

where

G(s) = ρ(s)(
1

2
w2
y(s, s) +

1

4(q − 1)
w2(s, s) + wyws(s, s))−

∫ s

0

λe−skwp

Integration in time gives an identity which enables us to proceed exactly as in

Proposition 6 of [6] to prove that w∞ is independent of s, we leave the details to

the reader. Also, in the same way as in [6] we obtain that w∞ is a weak (hence

strong) stationary solution of (3.1) and that E∞(w∞) is independent of sj . To

verify that w∞ is independent of sj we use the fact that

E∞(w0) > E∞(0).

Hence w∞ = w0 or w∞ = 0. To rule out the last possibility we only have

to remark that w(0, s) → w0(0) by the blow-up rate that we have proved in

Section 2. �

To prove part b) of Theorem 1.4 we proceed just as before, but in this case the

similarity variables are

w(y, s) = (T − t)
1
p−1u(x, t), y =

1− x
√
T − t

, s = − ln(T − t),

and w satisfies

(3.2)


ws = wyy −

y
2wy −

1
p−1w − λw

p,

wy(0, s) = −eskwq(0, s),

wy(e
s/2, s) = 0,

w(y,− lnT ) = T
1
p−1u0(1− y

√
T ).

in a domain of the form Ω = {(y, s); 0 < y < es/2, s > − lnT}, in this case k < 0

(p > 2q − 1).

There is a unique positive bounded solution of the associated stationary problem

0 = wyy −
y
2wy −

1
p−1w − λw

p, (y > 0) with the boundary condition wy(0) = 0

(this solution is the constant (− 1
λ(p−1) )

1
p−1 , see [6]).

Now part c) of Theorem 1.3 implies that w is bounded and that 0 < c ≤
w(0, s) ≤ C. Also from Section 2 and the maximum principle we obtain that wyy,
y
2wy and ws are bounded.
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Hence we can proceed just as before with the identity∫ R

0

ρ(y)w2
s(y, s)dy − ρ(R)ws(R, s)wy(R, s) + eskwsw

q(0, s) = −
d

ds
ER(w)(s)

where ρ(y) = e−y
2/4 and

ER(w)(s) =
1

2

∫ R

0

ρw2
ydy +

1

2(p− 1)

∫ R

0

ρw2dy +
λ

p+ 1

∫ R

0

ρwp+1ds.

We obtain a limit w(y, s + sj) → w∞(y) that has to be independent of s and

then w∞ is a weak (hence strong) stationary solution of (3.2) and that E∞(w∞)

is independent of sj . To verify that w∞ is independent of sj we use the fact that

E∞(w0) > E∞(0).

We only have to observe that w∞ is positive because by part c) of Theorem 1.3,

w(0, s) ≥ c > 0. �
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