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MAXIMAL ELEMENTS OF SUPPORT

S. YASSEMI

Abstract. We introduce a set that is tightly close to the set of the Jacobson radical
of module (the intersection of all maximal elements in support). In the last section,
it is proved that the set of zero divisors of a module is equal to the union of the
maximal elements of the support of module if the module is finitely generated and
injective.

0. Introduction

Throughout this note the ring R is commutative (not necessarily Noetherian)

with non-zero identity. The notion of prime ideals is central in the commutative

ring theory. The set Spec(R) of prime ideals of a ring R is a topological space, and

the localization of rings with respect to this topology is an important technique

for studying them. In addition, the maximal element of this set is very useful.

There is a similar notion for modules that is support of modules. The set of prime

ideals p such that there exists a cyclic submodule M , and is written Supp(M).

Let JR(M) be the Jacobson radical of the R-module M (the intersection of all

maximal elements of the support of M). Let NR(M) be the union of all maximal

elements of the support of M . Then it is easy to see that JR(M) ⊆ NR(M) and

the equality holds if and only if the support of M has only one element. The set

N′R(M) is defined by

N′R(M) =
{
x ∈ NR(M) | x+ NR(M) ⊆ NR(M)

}
.

We show that JR(M) ⊆ N′R(M) and there is equality if the support of M has only

finite elements. By an example we show that the inequality may be strict. In the

last section we prove that for any finitely generated and injective R-module M ,

the set of zero divisors of M is equal to the set NR(M). As a corollary of this

result we have that “if R is a self-injective ring then each non-unit element in R

is a zero divisor in R”.
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1. Support of Modules

In this section we study the intersection and the union of the maximal elements

of the support of a module.

Definition 1.1. Let M be an R-module. The support of M is denoted by

Supp(M) and it is defined by

Supp(M) = {p ∈ Spec(R) | p ⊇ Ann(N) for some cyclic submodule N of M}.

Note that this definition is equivalent with the classical definition of support

(cf. [M, pp. 26]) that is

Supp(M) = {p ∈ Spec(R) |Mp 6= 0}.

The next lemma is a well-known result, cf. [M, pp. 25].

Lemma 1.2. The following hold:

a) M 6= 0 if and only if Supp(M) 6= ∅.
b) Supp(M) ⊆ Spec(R/Ann(M)).

c) MaxSupp(M) ⊆ MaxSpec(R/Ann(M)), where MaxSupp(M) is the set of

all maximal elements in Supp(M).

d) If M is a finitely generated R-module then we have equality in (b) and (c).

Remark 1.3. The inequality of (1.2b) may be strict, for example, if (R,m) is a

local ring and M = E(R/m), injective envelope of the field R/m, then Ann(M) = 0

and so Spec(R/Ann(M)) = Spec(R). On the other hand Supp(M) = {m}.
Also the inequality in (1.2c) may be strict. For example let R be an integral

domain and {m, n} ⊆ MaxSpec(R). LetM = E(R/m). Then MaxSupp(M) = {m}
but n ∈ MaxSpec(R/Ann(M)) = MaxSpec(R).

Definition 1.4. Let M be an R-module. The Jacobson radical of M is

denoted by JR(M) and it is the intersection of all elements in MaxSupp(M). Also

the union of all elements in MaxSupp(M) is denoted by NR(M).

Lemma 1.5. Let M be an R-module. Then r ∈ JR(M) if and only if 1 + tr /∈
NR(M) for any t ∈ R.

Proof. “if” Let m ∈ MaxSupp(M) such that r /∈ m. Then m ∈ MaxSpec(R)

and hence m+rR = R. Therefore, there exist x ∈ m and t ∈ R such that x+tr = 1

and hence 1− rt ∈ NR(M), which is a contradiction.

“only if” Let t ∈ R such that 1 + tr ∈ NR(M). Then there exists a maximal

ideal m ∈ MaxSupp(M) such that 1+tr ∈ m. On the other hand tr ∈ m. Therefore

1 ∈ m, which is a contradiction. �



MAXIMAL ELEMENTS OF SUPPORT 233

Definition 1.6. The R-module M is said to be local module if

|MaxSupp(M)| = 1. Also the R-module M is said to be semi-local module

if |MaxSupp(M)| < ∞. Clearly, all non-zero modules over a semi-local (resp.

local) ring is a semi-local (resp. local) module.

Theorem 1.7. The following are equivalent:

i) M is a local module.

ii) JR(M) = NR(M).

iii) NR(M) is an ideal of R.

Proof. “(i⇒ ii)” and “(ii⇒ iii)” are obvious.

(iii⇒ i)” Since 1 /∈ NR(M) we have NR(M) 6= R and hence there exists m ∈
MaxSpecR such that NR(M) ⊆ m. On the other hand m ⊆ NR(M). Therefore

NR(M) = m and hence MaxSupp(M) = {m}. �
Definition 1.8 (see [C]). Let M be an R-module. We define N′R(M) by

N′R(M) = {x ∈ NR(M) | x+ NR(M) ⊆ NR(M)}.

Theorem 1.9. Let M be an R-module. Then the following hold:

a) JR(M) ⊆ N′R(M) ⊆ NR(M)

b) JR(M) = N′R(M) if and only if N′R(M) is an ideal of R.

c) If M is a semi-local then JR(M) = N′R(M).

Proof. “(a)” Set x ∈ JR(M) and t ∈ NR(M). Then there exists m ∈
MaxSupp(M) such that t ∈ m. Since x ∈ m we have x + t ∈ m and hence

x+ t ∈ NR(M). Thus JR(M) ⊆ N′R(M).

“(b)” The ‘Only if’ part is obvious. For the ‘If’ part, set x ∈ N′R(M) and t ∈ R.

Since N′R(M) is an ideal of R we have tx ∈ N′R(M). We claim that 1+tx /∈ NR(M).

In the other case if 1 + tx ∈ NR(M) then 1 ∈ NR(M), which is a contradiction.

Therefore x ∈ JR(M).

“(c)” Let MaxSupp(M) = {m1,m2, ...,mt}. Suppose x ∈ N′R(M). Then there

exists 1 ≤ r ≤ t such that x ∈
⋂r
i=1mi and x /∈

⋃t
i=r+1mi. We claim that

r = t. In the other case by the prime avoidence theorem we have
⋂t
i=r+1mi 6⊆⋃r

i=1mi and hence there exists y ∈
⋂t
i=r+1mi\

⋃r
i=1mi. Since y ∈ NR(M) we

have x+ y ∈ NR(M). On the other hand x+ y /∈ mi for each 1 ≤ i ≤ t, which is

a contradiction. �
Remark 1.10. The inequalities in 1.9(a) may be strict. For the inequality in

the right-hand side let M be a semi-local module but not local then JR(M) =

N′R(M) 6⊆ NR(M). For the inequality in the left-hand side, let (D,m) be a local

regular ring that is not a field. Then JD(D) = m 6= 0. It is easy to see that

JD[x](D[x]) = 0 and

ND[x](D[x]) = ND(D) ∪ {g ∈ D[x] | deg(g) ≥ 1}.
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Now we show that N′D(D) ⊆ N′D[x](D[x]). Assume that a ∈ N′D(D) then a ∈
ND(D) and hence a ∈ ND[x](D[x]). Let f ∈ ND[x](D[x]). Then we have two cases:

(i) “f ∈ ND(D)” In this case we have a + f ∈ ND(D) and hence a + f ∈
ND[x](D[x]).

(ii) “f ∈ D[x] with deg f ≥ 1” Let f = Σni=0aix
i and let an 6= 0. Then

deg a+ f ≥ 1 and hence a+ f ∈ ND[x](D[x]). Therefore a ∈ N′D[x](D[x])

and so N′D(D) ⊆ N′D[x](D[x]).

Since 0 6= JD(D) ⊆ N′D(D) ⊆ N′D[x](D[x]) we have that N′D[x](D[x]) 6= 0. On

the other hand JD[x](D[x]) = 0.

By using the next lemma we can put N′R(M) instead of JR(M) in the Nakayama

lemma and in the Krull’s intersection theorem, cf. [M, 2.2 and 8.9].

Lemma 1.11. Let M be an R-module and let a be an ideal of R. Then a ⊆
N ′R(M) if and only if a ⊆ JR(M).

Proof. Let x ∈ a and r ∈ R. Then rx ∈ a and hence 1+rx /∈ N′R(M). Therefore

x ∈ JR(M) by (1.5). �

2. Injective and Flat Modules

Let M be an R-module. The prime ideal p is said weakly associated to M if

there exists an element x ∈ M such that p is a minimal among the prime ideals

containing the annihilator Ann(x), see [B, Chapt. 4, Sect. 1, Exercise 17]. The set

of weakly associated prime ideals of the R-module M is denoted by As̃sR(M).

Recall that the set of zero divisors of M , ZR(M), is defined by

ZR(M) = {a ∈ R |M
a·
→M is not injective}

Theorem 2.1 (see [B, Chapt. 4, Sect. 1, Exercise 17]). Let M be an R-module.

Then the following hold:

a) As̃sR(M) ⊆ Supp(M),

b) ZR(M) =
⋃
p∈As̃sRM

p.

Now we bring the dual notion of ZR(M).

Definition 2.2 (see [Y1]). For the R-module M the subset WR(M) of R is

defined by

WR(M) = {a ∈ R |M
a·
→M is not surjective}.

Lemma 2.3. Let M be an R-module. Then the following hold;

a) WR(M) ⊆ NR(R)

b) JR(R) ⊆WR(M) if M is a finitely generated R-module.
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Proof. “(a)” Set x ∈ WR(M). Then xM 6= M and hence x is a non-unit

element of R. Therefore x ∈ NR(R).

“(b)” Set x ∈ JR(R). Then Rx ⊆ JR(R) and hence by the Nakayama lemma

we have that xM = (Rx)M 6= M . �

Theorem 2.4. Let M be an R-module. Then the following hold;

a) WR(M) ⊆ NR(M)

b) We have equality in (a) if M is a finitely generated R-module.

Proof. “(a)” If M = 0 then there is nothing to prove. Let M 6= 0 and let

x ∈WR(M). Then xM 6= M and hence M/xM 6= 0. Let m ∈MaxSupp(M/xM).

Then (M/xM)m 6= 0 and hence Mm/(x/1)Mm 6= 0. Therefore by (2.3a) we have

x/1 ∈WRm(Mm) ⊆ NRm(Rm) = mRm and hence x ∈ m. Now the assertion follows

from the fact that m ∈MaxSupp(M).

“(b)” If M = 0 then there is nothing to prove. Let M 6= 0 and let x ∈ NR(M).

Then there exists m ∈ MaxSupp(M) such that x ∈ m. Thus x/1 ∈ mRm =

JR(Rm). Since M is a finitely generated R-module we have Mm is a non-zero

finitely generated Rm-module. Therefore by (2.3b), we have that JRm(Rm) ⊆
WRm(Mm) and hence x/1 ∈ WRm(Mm). Thus Mm/(x/1)Mm 6= 0 and hence

(M/xM)m 6= 0. Therefore M/xM 6= 0 and so x ∈WR(M). �

Definition 2.5 (see [SV]). An R-module M is said to be finitely cogenerated

(the dual notion of finitely generated) if E(M) is isomorphic to a direct sum of

finitely many injective envelope of simple modules.

Theorem 2.6. Let M be an R-module. Then the following hold;

a) ZR(M) ⊆ NR(M)

b) We have equality in (a) if M is a finitely cogenerated R-module.

Proof. “(a)” Use (2.1).

“(b)” Since M is finitely cogenerated we have that Supp(M) ⊆ MaxSpec(R)

and hence ZR(M) = NR(M) by (2.1). �

Theorem 2.7. Let M be an injective R-module. Then the following hold;

a) WR(M) ⊆ ZR(M)

b) We have equality in (a) if M is a finitely generated R-module.

Proof. “(a)” Set x ∈WR(M). If x /∈ ZR(M) we have the map ϕ : xM→M with

ϕ(xt) = t for any t ∈ M . Since M is an injective R-module, the map ϕ induces

the map ψ : M→M such that for all t ∈ M we have that t = ϕ(xt) = ψ(xt) =

xψ(t) ∈ xM . Thus xM = M , which is a contradiction.

“(b)” We have x ∈ ZR(M) ⊆ NR(M) by (2.1). Now the assertion follows from

(2.4b). �
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Corollary 2.8. If R is a self-injective ring then the set of zero divisors of R

is equal to the set of non-units in R.

Theorem 2.9. Let M be a flat R-module. Then the following hold;

a) ZR(M) ⊆WR(M)

b) We have equality in (a) if M is a finitely cogenerated R-module.

Proof. “(a)” Set x ∈ ZR(M). Then there exists a non-zero element t ∈M such

that xt = 0. Thus we have the non-zero map ϕ : R/(x) −→M with ϕ(r+(x)) = rt

for any r ∈ R. Therefore Hom(R/(x),M) 6= 0 and hence there exists an injective

module E such that Hom(Hom(R/(x),M), E) 6= 0. Since

Hom(Hom(R/(x),M), E) ∼= R/(x)⊗Hom(M,E),

we have that x ∈ WR(Hom(M,E)). Since Hom(M,E) is an injective module we

have x ∈ ZR(Hom(M,E) by (2.6), and hence Hom(R/(x),Hom(M,E)) is non-zero.

Therefore Hom(R/(x)⊗M,E) 6= 0 and hence R/(x)⊗M 6= 0. Thus x ∈WR(M)

“(b)” By (2.4) and (2.6b) we have

WR(M) ⊆ NR(M) = ZR(M).

Now the assertion follows from (a). �
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