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COMPARING A CAYLEY DIGRAPH WITH ITS REVERSE

M. ABAS

Abstract. A Cayley digraph G = C(Γ, X) for a group Γ and a generating set

X is the digraph with vertex set V (G) = Γ and arcs (g, gx) where g ∈ Γ and

x ∈ X. The reverse of C(Γ, X) is the Cayley digraph G−1 = C(Γ, X−1) where
X−1 = {x−1;x ∈ X}. We are interested in sufficient conditions for a Cayley digraph
not to be isomorphic to its reverse and focus on Cayley digraphs of metacyclic groups
with small generating sets.

1. Introduction

Let Γ be a finite group and let X be a generating set for Γ; we assume that
the unit element of the group is not in X. The Cayley digraph G = C(Γ, X) is
a digraph with vertex set V (G) = Γ and arc set D(G) = {(g, gx); g ∈ Γ, x ∈ X}.
If, in addition, the set X is closed under taking inverses (i.e., if x ∈ X implies
x−1 ∈ X) then the two arcs (g, gx) and (gx, g) are usually identified to form a
single undirected edge, which turns the digraph into an (undirected) Cayley graph.

Cayley digraphs are automatically vertex-transitive. In fact, for each fixed
h ∈ Γ the mapping θh : V (G) → V (G) given by θh(g) = hg is an automorphism
of the Cayley digraph C(Γ, X). Thus, the (full) automorphism group of a Cayley
digraph contains a subgroup acting regularly on its vertex set. The converse is
true as well: By the (digraph modification of) Sabidussi’s Theorem [7], if the
automorphism group of digraph contains a subgroup acting regularly on its vertex
set, then the digraph is necessarily a Cayley digraph.

In both theory and applications, Cayley graphs and digraphs play an increas-
ingly important role [4]. Among the variety of research directions here, in the
last few years there has been a considerable activity in the study of isomorphism
of Cayley (di)graphs. The basic motivation is provided by following simple ob-
servation: If C(Γ, X) and C(Γ, Y ) are two Cayley digraphs for the same group
and if there is an automorphism σ of the group Γ such that σ(X) = Y , then σ

naturally extends to an isomorphism of the two Cayley digraphs. The important
Cayley-Isomorphism problem is to characterize the groups Γ for which every
isomorphism of two Cayley digraphs C(Γ, X) and C(Γ, Y ) is induced by a group
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automorphism in the above sense. For substantial results in this area we refer
to [1], [5], [6].

Cayley digraphs have been successfully used in constructing large digraphs of
given (comparatively small) degree and diameter [3]. In a detailed study of these
digraphs [2] it was observed that some of the large Cayley digraphs G described
in [3] have the following interesting property: The digraph G−1 obtained from G

by reversing the direction of each arc is isomorphic to G. For obvious reasons we
call the digraph G−1 the reverse of G. In the Cayley digraph setting, the reverse
of G = C(Γ, X) is the digraph G−1 = C(Γ, X−1) where X−1 = {x−1;x ∈ X}.
The interesting question thus is: Which Cayley digraphs are isomorphic to their
reverse? Does the isomorphism occur frequently or is it rather rare? In which
Cayley digraphs is such an isomorphism induced by a group automorphism of Γ
which takes X to X−1?

The answers to the above questions are easy in the case of Cayley digraphs of
Abelian groups. Indeed, if A is an Abelian group then the map φ : A → A such
that φ(a) = a−1 for each element a ∈ A is a group automorphism which induces
a digraph isomorphism C(A,X) ∼= C(A,X−1). In this note we therefore focus on
metacyclic groups Γ (which are semidirect products of cyclic groups, thus, in some
sense, “simplest” nonabelian groups) and show that there are only few groups for
which G = C(Γ, X) is isomorphic to G−1 = C(Γ, X−1) for each generating set X.

2. Metacyclic Groups

Throughout this paper we use the following notation. For an arc (a, b) where
b = ax we shall often use the alternative notation a

x−→ b to emphasize that one
can pass from the vertex a to the vertex b along an arc using the generator x. We
reserve the symbol e for the unit element of a group.

Metacyclic groups are defined as semidirect products of cyclic groups and they
have the following standard presentation:

Zn ok Zm = 〈a, b | an = bm = e, ba = akb〉,

where gcd(n, k) = 1, 1 < k < n and km ≡ 1 (mod n).
Note that for each i (mod n) and j (mod m) we have

(1) bjai = aik
j

bj .

Equivalently, metacyclic groups are split extensions of Zn by Zm under the
group homomorphism θ : Zm → Aut(Zn) which sends each i ∈ Zm to the au-
tomorphism θi ∈ Aut(Zn) where θi(s) = kis,s ∈ Zn. In this setting the group
multiplication is given by (r, i)(s, j) = (r + θi(s), i+ j).

Let x ∈ X be a generator of order t in Γ. In what follows, the cycle (g, gx, . . . ,
gxt−1) in the digraph C(Γ, X) will be denoted simply by Cx(g); the corresponding
cycle (g, gx−1, . . . , gx1−t) in the reverse digraph will be denoted by C−1

x−1(g).
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3. Reverses of Cayley digraphs of Valence 2

In this section we focus on comparing Cayley digraphs C(Γ, X) with C(Γ, X−1)
such that |X| = 2.

Lemma 1. Let G = C(Γ, X) be a Cayley digraph for the group Γ = Zn ok Zm
(n 6= m) and the generating set X = {a, b}. If φ is an isomorphism φ : G→ G−1

such that φ(e) = e, then φ(aibj) = a−ib−j.

Proof. We consider only the case n > m; the argument for n < m is similar. An
easy inspection shows that for every vertex g of the digraph G (G−1) there is only
one cycle of length m passing through g, namely Cb(g) (C−1

b−1(g)). As φ(e) = e,
φ must map the cycle Cb(e) onto the cycle C−1

b−1(e). Therefore φ(bi) = b−i. Now,
the only possibility for the image of a is φ(a) = a−1. From this it follows that
φ(abi) = a−1b−i and the only possibility for a2 is φ(a2) = a−2. Continuing in this
manner we eventually obtain that φ(aibj) = a−ib−j and the result follows. �

Lemma 2. Let G = C(Γ, X) be a Cayley digraph for the group Γ = Zn ok Zm
(n 6= m) and the generating set X = {a, b}. If m is odd, or if m is even and
k2 6≡ 1 (mod n), then G � G−1.

Proof. Assume the contrary and let φ : G → G−1 be a digraph isomorphism.
Because every Cayley digraph is vertex-transitive, without loss of generality we
may assume that φ(e) = e. According to Lemma 1, this isomorphism must have
the form φ(aibj) = a−ib−j . Then, for an arbitrary vertex aibj of G, the two arcs
emanating from this vertex are

aibj
a−→ aibja = ai+k

j

bj ,

and
aibj

b−→ aibjb = aibj+1.

Similarly, the two arcs of G−1 emanating from the vertex a−ib−j are

a−ib−j
a−1

−−→ a−ib−ja−1 = a−i−k
−j
b−j ,

and
a−ib−j

b−1

−−→ a−ib−jb−1 = a−ib−j−1.

Since φ(aibj) = a−ib−j , it follows that

{φ(ai+k
j

bj), φ(aibj+1)} = {a−i−k
j

b−j , a−ib−j−1}.

On the other hand, evaluating φ turns the preceding equality into the following
one:

{a−i−k
j

b−j , a−ib−j−1} = {a−i−k
−j
b−j , a−ib−j−1}.
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Now, the two sets above are equal if and only if

a−i−k
j

b−j = a−i−k
−j
b−j .

Thus,
−kj ≡ −k−j (mod n)

for each j. This implies that k2j ≡ 1 (mod n), and for j = 1 we have k2 ≡ 1
(mod n). If m is even we already have a contradiction with our assumptions. If
m = 2r + 1 then our last congruence implies that km = k2r+1 ≡ k (mod n). But
by our description of the semidirect product we have km ≡ 1 (mod n); since k ≡ 1
(mod n), we arrive at a contradiction again. �

Lemma 3. Let G be a Cayley digraph for the group Γ = Zn ok Zn and the
generating set X = {a, b}. If n is odd, or if n is even and k2 6≡ 1 (mod n), then
G � G−1.

Proof. Assume the contrary, again, and let φ : G → G−1 be a digraph isomor-
phism; we may assume that φ(e) = e. In this case, through any vertex g there are
only two vertex-disjoint (up to the vertex g) cycles of length n, namely

Ca(g) and Cb(g)

in the digraph G and
C−1
a−1(g) and C−1

b−1(g)

in the digraph G−1. It is easy to verify that a possible isomorphism φ(e) = e must
satisfy one of the following conditions:

a) φ(aibj) = a−ib−j or
b) φ(aibj) = b−ia−j .

In the case a) we have a situation similar to the case when n 6= m. In the case b)
let us consider the two arcs

aibj
a−→ aibja = ai+k

j

bj ,

and
aibj

b−→ aibjb = aibj+1

in the digraph G. For G−1 it then holds that

φ(aibj) = b−ia−j
a−1

−−→ a(−j−1)k−ib−i,

and
φ(aibj) = b−ia−j

b−1

−−→ a−jk
−i
b−i−1.
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Now, using b) and the relations (1) we obtain

φ(ai+k
j

bj) = a−jk
(−i−kj)

b−i−k
j

,

and
φ(aibj+1) = a(−j−1)k−ib−i.

Since φ is assumed to be a digraph isomorphism, we have

{φ(ai+k
j

bj), φ(aibj+1)} = {a−i−k
j

b−j , a−ib−j−1};

therefore (see the proof of Lemma 2)

{a(−j−1)k−ib−i, a−jk
−i
b−i−1} = {a−jk

(−i−kj)
b−i−k

j

, a(−j−1)k−ib−i};

in particular,

a−jk
−i
b−i−1 = a−jk

(−i−kj)
b−i−k

j

for all i, j. This implies that kj ≡ 1 (mod n) for all j. Setting j = 1 we obtain
kj = k1 = k ≡ 1 (mod n), a contradiction. �

Note that in the case k2 ≡ 1 (mod n) in Lemma 2 and 3, the mapping φ : G→
G−1 such that φ(aibj) = a−ib−j is a digraph isomorphism.

4. Reverses of Cayley Digraphs of Valence 4

In the next part of this paper we will consider the case when m is even and
k2 ≡ 1 (mod n) only. The reason for continuing with the case of four generators
will be clear from the conclusion of this section. The following three Lemmas will
serve as auxiliary results for proving Lemma 7.

Lemma 4. Let G be a Cayley digraph for the group Γ = ZnokZm (n 6= m) with
the generating set X = {a, b, bai1 , bai2}, where i1, i2 6= 0, i1 6≡ i2 (mod n), and
let n ≥ 6. Let there exist an isomorphism φ : G→ G−1 such that φ(e) = e. Then,
fore some p, we have {b−1ap, b−1a−i1+p, b−1a−i2+p} = {b−1, b−1a−i1k, b−1a−i2k}.

Proof. i) Let n > m. Because the generators b, bai1 , bai2 all have order m, each
vertex g ∈ G is contained in exactly three cycles of length m (which is the shortest
cycle length in G), namely

Cyi(g) = (g, gyi, gyi2, . . . , gyim−1, gyi
m = g),

where y1 = b, y2 = bai1 , y3 = bai2 . The situation is similar in the digraph G−1,
with y−1

i in place of yi. Because isomorphism preserves cycle lengths, all arcs of the
form (g, gyi) must be mapped by φ onto arcs of the form (g′, g′y−1

j ). Since φ(e) = e,



64 M. ABAS

the isomorphism φ has to map ai to a−i, and this implies that φ(bjai) = b−ja−i+pj ,
where 0 ≤ pj ≤ n− 1.

Except for the vertex a, the neighbourhood of the vertex e in the digraph G is
the set of vertices {b, bai1 , bai2}, and it is mapped onto the set {b−1ap, b−1a−i1+p,

b−1a−i2+p} by the isomorphism φ.
Similarly, except for the vertex a−1, the neighbourhood of the vertex e in the

digraph G−1 is the set of vertices {b−1, (bai1)−1 = b−1a−i1k, (bai2)−1 = b−1a−i2k}.
ii) Let n < m. By similar arguments as above, the isomorphism φ must satisfy

φ(ai) = a−i and φ(bjai) = b−ja−i+pj . �

Lemma 5. Let G be a Cayley digraph for the group Γ = Znok Zn with gener-
ating set X = {a, b, bai1 , bai2}, where i1, i2 6= 0, i1 6≡ i2 (mod n), and let n ≥ 6.

If φ : G→ G−1 is an isomorphism such that φ(e) = e then φ(ai) = a−i.

Proof. Considering the three cycles Cb(e), Cbai1 (e), Cbai2 (e), we have eight
cases:

1) |Cb(e) ∩ Cbai1 (e)| = 1 ∧ |Cb(e) ∩ Cbai2 (e)| = 1 ∧ |Cbai1 (e) ∩ Cbai2 (e)| = 1,
2) |Cb(e) ∩ Cbai1 (e)| = 1 ∧ |Cb(e) ∩ Cbai2 (e)| = 1 ∧ |Cbai1 (e) ∩ Cbai2 (e)| > 1,
3) |Cb(e) ∩ Cbai1 (e)| = 1 ∧ |Cb(e) ∩ Cbai2 (e)| > 1 ∧ |Cbai1 (e) ∩ Cbai2 (e)| = 1,
4) |Cb(e) ∩ Cbai1 (e)| > 1 ∧ |Cb(e) ∩ Cbai2 (e)| = 1 ∧ |Cbai1 (e) ∩ Cbai2 (e)| = 1,
5) |Cb(e) ∩ Cbai1 (e)| = 1 ∧ |Cb(e) ∩ Cbai2 (e)| > 1 ∧ |Cbai1 (e) ∩ Cbai2 (e)| > 1,
6) |Cb(e) ∩ Cbai1 (e)| > 1 ∧ |Cb(e) ∩ Cbai2 (e)| = 1 ∧ |Cbai1 (e) ∩ Cbai2 (e)| > 1,
7) |Cb(e) ∩ Cbai1 (e)| > 1 ∧ |Cb(e) ∩ Cbai2 (e)| > 1 ∧ |Cbai1 (e) ∩ Cbai2 (e)| = 1,
8) |Cb(e) ∩ Cbai1 (e)| > 1 ∧ |Cb(e) ∩ Cbai2 (e)| > 1 ∧ |Cbai1 (e) ∩ Cbai2 (e)| > 1.

The cases 5), 6), 7), 8) are quite easy. For example, in the case 5) the cycle Ca(e)
is vertex-disjoint (except vertex e) from the cycles Cb(e), Cbai1 (e) and Cbai2 (e).
The image of the cycle Ca(e) has the same property. But |Cx(e) ∩ Cy(e)| ≥ 2,
where x, y ∈ {b, bai1 , bai2} for some x 6= y. So φ(ai) = a−i.

The remaining cases are 1) and 2). (The cases 3) and 4) are similar to the
case 2).) In the case 1), the set {a, b, bai1 , bai2} is equal to the set {a, b′, b′ai′1 , b′ai′2}
for b′ = bai1 and some i′; without loss of generality we may assume the con-
trary and let φ(ai) = b−i. There are three arcs emanating from e and termi-
nating in the cycle C−1

a−1(b−1) = (b−1, b−1a−1, b−1a−2, . . . , b−1a) in the digraph
G−1. Similarly there are three arcs emanating from e and terminating in the
cycle Cy(a) = (a, ay, ay2, . . . , ay−1), where y ∈ {b, bai1 , bai2} in the digraph
φ(G). These three arcs must terminate in the vertices a, bai1 , bai2 . But the cycle
(a, ay, ay2, . . . , ay−1) has the form (a, bar1 , b2ar2 , . . . , bn−1arn−1 , a) and hence it is
impossible to find there two elements of the form b1arj .

As regards the case 2), the considerations are similar to the case 1). �

Lemma 6. Let G be the Cayley digraph for the group Γ = Zn ok Zn with
generating set X = {a, b, bai1 , bai2}, where i1, i2 6= 0, i1 6≡ i2 (mod n), and let
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n ≥ 6. If φ : G→ G−1 is an isomorphism such that φ(ai) = a−i then, for some p,

(2) {b−1ap, b−1a−i1+p, b−1a−i2+p} = {b−1, b−1a−i1k, b−1a−i2k}.

Proof. There are just three arcs emanating from the vertex e and terminating
in the cycle of the form (b, ba, ba2, . . . , b) in the digraph G. Similarly, there are just
three arcs emanating from the vertex e and terminating in the cycle of the form
(b−1, b−1a−1, b−1a−2, . . . , b−1) in the digraph G−1. Because φ(e) = e it holds that
φ({b〈a〉}) = {b−1〈a〉}, i.e.: the cycle (b, ba, ba2, . . . , b) is mapped onto the cycle
(b−1, b−1a−1, b−1a−2, . . . , b−1) by the isomorphism φ. In the cycle (b, ba, ba2, . . . , b)
the distance from the vertex bai to the vertex baj is d(bai, baj) ≡ j − i (mod n).
Applying the isomorphism φ, we have d(φ(bai), φ(baj)) ≡ j − i (mod n), for all
i, j. This is true if and only if φ(bai) = b−1a−i+p for some p ∈ [0, n− 1].

Now, there are three arcs emanating from the vertex e and terminating in
the set of vertices {b−1, (bai1)−1, (bai2)−1} = {b−1, b−1a−i1k, b−1a−i2k} and one
arc terminating in the vertex a−1, in the digraph G−1. Similarly, there are
three arcs emanating from the vertex e and terminating in the set of vertices
{b−1, b−1a−i1+p, b−1a−i2+p} and one arc terminating in the vertex a−1, in the
digraph φ(G). Comparing the above two sets we obtain (2). �

Summing up the preceding three Lemmas we have:

Lemma 7. Let G be a Cayley digraph for the group Γ = Zn ok Zm with the
generating set X = {a, b, bai1 , bai2}, where i1, i2 6= 0, i1 6≡ i2 (mod n), and let
n ≥ 6. Let there exist an isomorphism φ : G→ G−1 such that φ(e) = e. Then, for
some p, we have {b−1ap, b−1a−i1+p, b−1a−i2+p} = {b−1, b−1a−i1k, b−1a−i2k}.

Lemma 8. Let G be a Cayley digraph for the group Γ = Znok Zm, n ≥ 6 and
k2 ≡ 1 (mod n), k 6= 1, with the generating set X = {a, b, bai1 , bai2} such that
i1, i2 6= 0, i1 6≡ i2 (mod n). Then there exist i1, i2 such that G � G−1.

Proof. Let φ be an isomorphism such that φ(e) = e.
i) If i1 = 1, i2 = 3, then

{b−1ap, b−1a−1+p, b−1a−3+p} = {b−1, b−1a−k, b−1a−3k},

by Lemma 7. We can see that the above is equivalent with

{ap, a−1+p, a−3+p} = {e, a−k, a−3k}.

I) Let ap = e, then p = 0 and we have the following two possibilities:
If a−1+p = a−k, the k ≡ 1 (mod n) and this implies that k = 1; a contradiction.
If a−1+p = a−3k then 3k ≡ 1 (mod n) and at the same time a−3+p = a−k; hence
k ≡ 3 (mod n) and this implies that k = 3. Thus 9 ≡ 1 (mod n) which implies
that n = 8.
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The remaining case to be investigated is Z8 o3 Zm, ba = a3b.

II) Let a−1+p = e, then p = 1 and the possibilities to be considered are ap = a−k

and ap = a−3k.
Let ap = a−k. Then k ≡ −1 (mod n) that is, k = n − 1. Together with

a−3+p = a−3k we obtain 3k ≡ 2 (mod n). Hence 3(n− 1) = 3n− 3 ≡ 2 (mod n)
and now 5 ≡ 0 (mod n) which implies that n = 5. But n ≥ 6; a contradiction.

If ap = a−3k then 3k ≡ −1 (mod n). So a−3+p = a−k and it follows that k ≡ 2
(mod n), thus k = 2. Consequently 6 ≡ −1 (mod n) which implies that n = 7.
But k2 = 22 = 4 6≡ 1 (mod 7); a contradiction.

III) Let a−3+p = e. Then p = 3 and we have the following two cases:
If ap = a−k, then k ≡ −3 (mod n). Therefore k = n− 3 and so a−1+p = a−3k ⇒
3k ≡ −2 (mod n). From this it follows that 3(n− 3) = 3n− 9 ≡ −2 (mod n) and
accordingly 7 ≡ 0 (mod n); so now n = 7. But k = n − 3 = 4, k2 = 42 = 16 6≡ 1
(mod 7); a contradiction.
If ap = a−3k, then 3k ≡ 3 (mod n) and at the same time a−1+p = a−k. This
implies that k ≡ −2 (mod n) and consequently k = n − 2. Thus, 3(n − 2) =
3n − 6 ≡ 3 (mod n) and hence 9 ≡ 0 (mod n). From this it follows that n = 3
or n = 9. Since n ≥ 6, the only possibility is n = 9. But k = n − 2 = 7,
k2 = 72 = 49 6≡ 1 (mod 9); a contradiction.

ii) Let i1 = 1, i2 = 4. We consider this possibility only for the case Z8 o3 Zm,
ba = a3b, n = 8, k = 3. By part i),

{ap, a−1+p, a−4+p} = {e, a−k, a−4k},

thus
{ap, a7+p, a4+p} = {e, a5, a4}.

I) Let ap = e. Then p = 0 and it follows that a7+p = a7. But a7 6= e, a7 6= a5 and
a7 6= a4.

II) Let a7+p = e. Then we have p = 1 which implies that ap = a. But a 6= e,
a 6= a5 and a 6= a4.
III) Let a4+p = e. Then p = 4 and consequently a7+p = a3. As in the above cases,
a3 6= e, a3 6= a5 and a3 6= a4. �

5. Groups of Type Zn ok Z2m for n ≤ 5 and Special m

In order to complete our investigation, the remaining cases to be considered are

Γ1 = Z3 o2 Z2m, ba = a2b,

Γ2 = Z4 o3 Z2m, ba = a3b,

Γ3 = Z5 o4 Z2m, ba = a4b.
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Lemma 9. Let Γ1 = Z3 o2 Z2m, ba = a2b, and let 2m = 2r3sq; where r ≥ 1,
s ≥ 0, q > 1, gcd(q, 2) = gcd(q, 3) = 1, so q > 4. Let 2r3s = p. Then

Γ1
∼= Z3q o2 Zp.

Proof. We take the group generated by elements a and b1, namely H1 = 〈a, b1〉,
where b1 = bp. Then b1a = bpa = a2pbp = abp = ab1, because p is even. Now
since |〈b1〉| = q and 3 - q we have 〈a, b1〉 ∼= Z3 × Zq ∼= Z3q. We can see that
(aibj)ai1b1j1(aibj)−1 = ai2b1

j2 , and so 〈a, b1〉 C Γ1. Let b2 = bq, and 〈b2〉 = H2.
Then H1 ∩H2 = {e}, and H1 ∪H2 = Γ1.

Accordingly
Γ1 = Z3 o2 Zpq ∼= Z3q ok Zp. �

Remark 1. The group Z3q ok Zp has a presentation Z3q ok Zp = 〈c, d | c3q =
bp = e, dc = ckd〉 where kp ≡ 1 (mod 3q) and at the same time k ≡ 2 (mod 3).
The isomorphism φ : Z3o2Zpq → Z3qokZp has the form φ(a) = cq and φ(b) = cd.

Remark 2. By similar arguments,

Γ2 = Z4 o3 Zpq ∼= Z4q ok Zp,

where p = 2r; r ≥ 1, gcd(q, 2) = 1; q > 1. Here the group Z4q ok Zp has a
presentation Z4q ok Zp = 〈c, d | c4q = bp = e, dc = ckd〉 where kp ≡ 1 (mod 4q)
and k ≡ 3 (mod 4). The isomorphism φ : Z4 o3 Zpq → Z4q ok Zp is given by
φ(a) = cq and φ(b) = cd.

Similarly
Γ3 = Z5 o4 Zpq ∼= Z5q o4 Zp,

and p = 2r5s; r ≥ 1, s ≥ 0, gcd(q, 2) = 1, gcd(q, 5) = 1, q > 1. The group
Z5q ok Zp has a presentation Z5q ok Zp = 〈c, d | c5q = bp = e, dc = ckd〉 where
kp ≡ 1 (mod 5q) and k ≡ 4 (mod 5). The isomorphism φ : Z5o4Zpq → Z5qokZp
has the form φ(a) = cq and φ(b) = cd.

Lemma 10. Let
Γ1 = Z3 o2 Zpq,

where p = 2r3s; r ≥ 1, s ≥ 0, gcd(q, 2) = 1, gcd(q, 3) = 1, q > 1;

Γ2 = Z4 o3 Zpq,

where p = 2r; r ≥ 1, gcd(q, 2) = 1, q > 1;

Γ3 = Z5 o4 Zpq,

where p = 2r5s; r ≥ 1, s ≥ 0, gcd(q, 2) = 1, gcd(q, 5) = 1, q > 1.
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Then there are generating sets Xi, i = 1, 2, 3, such that for Gi = C(Γi, Xi) it
holds that Gi � Gi

−1.

Proof. By Lemma 9 and Remark 1, the groups Γi have the form Zn ok Zm,
where n ≥ 6, cn = dm = e, dc = ckd, km ≡ 1 (mod n), k 6= 1.

i) If k2 6≡ 1 (mod n), the result follows from Lemmas 2 and 3.
ii) If k2 ≡ 1 (mod n), the result follows from Lemma 8.

�

6. Reverses of Cayley Digraphs of Valence 3

Lemma 11. Let Γ = Z3 o2 Z2r3s , ba = a2b, r ≥ 1, s ≥ 1, 2r = r1, 3s = s1,
2r3s = m and let X = {a, b, abs1}. Let G = C(Γ, X). If an isomorphism φ : G→
G−1 is such that φ(e) = e then φ(aibj) = a−ib−j.

Proof. It is obvious that for each g ∈ G there exists exactly one cycle through g
of the length 3 in G(G−1), namely Ca(g)(C−1

a−1(g)). Similarly Cabs1(g)(C−1
(abs1 )−1(g))

is the unique cycle of length r1, through g, and Cb(g)(C−1
b−1(g)) is the unique

cycle of length m, through g in G(G−1), respectively. In particular, from this it
follows that the arcs of the form (g, gabs1) must be mapped by an isomorphism
to the arcs of the form (g′, g′(abs1)−1). Hence an isomorphism (if any) must be
the same as in the case with the generating set {a, b}. Now by Lemma 1 we have
φ(aibj) = a−ib−j . �

Lemma 12. Let Γ = Z3 o2 Z2r3s , ba = a2b, r ≥ 1, s ≥ 1, 2r = r1, 3s = s1,
2r3s = m and let X = {a, b, abs1}. Then C(Γ, X) � C(Γ, X−1).

Proof. Let φ(e) = e. By Lemma 11, φ(aibj) = a−ib−j . Hence in the digraph G

we have e abs1−−−→ abs1 and for the digraph φ(G) it holds that φ(e)
(abs1 )−1

−−−−−→ (abs1)−1.
Therefore (abs1)−1 = a−1b−s1 and this implies that a−2−s1 b−s1 = a−1b−s1 . Con-
sequently −2−s1 ≡ −1 (mod 3) and thus 2m−s1 ≡ 1 (mod 3), where m − s1 is
odd. But 22h+1 ≡ 2 (mod 3) for all positive integers; a contradiction. �

Lemma 13. Let Γ = Z5 o4 Z2r5s , ba = a4b, r ≥ 1, s ≥ 1, 2r = r1, 5s = s1,
2r5s = m and let X = {a, b, abs1}. If an isomorphism φ : G → G−1 is such that
φ(e) = e then φ(aibj) = a−ib−j.

Proof. The proof is similar to the proof of Lemma 11. �

Lemma 14. Let Γ = Z5 o4 Z2r5s , ba = a4b, r ≥ 1, s ≥ 1, 2r = r1, 5s = s1,
2r3s = m and let X = {a, b, abs1}. Then C(Γ, X) � C(Γ, X−1).

Proof. Let φ(e) = e. By Lemma 13, φ(aibj) = a−ib−j . Hence in the digraph G

it holds that e abs1−−−→ abs1 and for digraph φ(G) we have φ(e)
(abs1 )−1

−−−−−→ (abs1)−1.
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Therefore (abs1)−1 = a−1b−s1 and this implies that a−4−s1 b−s1 = a−1b−s1 . Con-
sequently −4−s1 ≡ −1 (mod 5) and thus 4m−s1 ≡ 1 (mod 5), where m − s1 is
odd. But 42h+1 ≡ 4 (mod 5) for all positive integers; a contradiction. �

Lemma 15. Let Γ = Di, i ∈ {3, 4, 5}, be the dihedral group of the form Di =
Zioi−1Z2, ba = ai−1b. Then C(Γ, X) ∼= C(Γ, X−1) for all X ⊂ Γ.

Proof. It is easy to see that φ(aibj) = a−i+pj b−j defines an isomorphism φ : G→
G−1 for a suitable choice of pj . (The numbers pj depend on the generating
set X.) �

7. Summary

In order to facilitate the formulation we set

Γ′i = Zioi−1Z2r , r ≥ 2, ba = ai−1b, i ∈ {3, 4, 5}

and
Di = Zioi−1Z2, ba = ai−1b, i ∈ {3, 4, 5}.

The above results about comparing Cayley digraphs of metacyclic groups with
their reverses (disregarding the vertex valence) may now be summed up as follows.

Theorem 1. Let Γ be an abelian or metacyclic group.
If Γ is abelian or Di then C(Γ, X) ∼= C(Γ, X−1) for every generating set X.
If Γ is any metacyclic group such that Γ 6= Γ′i and Γ 6= Di then there exist

generating sets X for Γ such that C(Γ, X) � C(Γ, X−1).

The comparison of the Cayley digraphs C(Γ, X) and C(Γ, X−1) for the groups
Γ = Γi′ remains open.
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