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SUBALTERNATIVE ALGEBRAS

A. CEDILNIK

Abstract. An algebra is called subalternative if the associator of any three linearly
dependent elements is their linear combination. We prove that in characteristic
# 2,3 any such algebra is Maltsev-admissible and can be identified with a hyperplan
in certain unital alternative algebra.

1. INTRODUCTION

In [2] we discussed subassociative algebras in which any associator is a linear
combination of its arguments. A subassociative algebra is always Lie-admissible.
In any associative unital algebra G, one can make a hyperplan H, which does not
contain the unit, a subassociative algebra by projecting the multiplication from G
into H; any subassociative algebra in characteristic not 2, 3 can be made in this
way.

The following article is a continuation of [2]. We shall generalize the previous
results to subalternative algebras, in which any associator of linearly dependent
elements is their linear combination. It is not surprising that any such algebra is
Maltsev-admissible and can be constructed on a hyperplan of some alternative
algebra (except of course pathological cases in characteristic 2 or 3).

In [4] there are classified anticommutative algebras (over an algebraically closed
field of characteristic # 2) in which there exist bilinear forms (x,y) — N(z,y) sat-
isfying the identities: N(z,y) = N(y,z) (symmetry), N(zy, z) = N(z,yz) (invari-
ancy), (zy)y = N(z,y)y — N(y,y)x (which is a special form of subalternativity,
since (zy)y = [z,vy,y] = —[y,y,z]). We will prove that the existence and the
properties of such a form are consequences of subalternativity, even if the base
field is not algebraically closed, which gives a still wider significance to the above
mentioned classification.

Throughout the article we will suppose the conventions and definitions from [2].
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2. PRELIMINARY FACTS

Definition 1. Let H be an algebra with a multiplication (z,y) — xy, over a
field IF. H is subalternative algebra if V(z,y) € H? 3(a, §,7,6) € F*:

[z, 2,y] = ax + By, [z,y,y] = vz + oy.

Definition 2. A subalternative algebra H from Definition [] is proper if
there exists such a bilinear form A: H? — IF that the following holds:

(1) [x,x,y] :A(x,y)x—A(x,m)y,
(2) [l'vyay] = A(y,y)iﬂ - A(.’ﬂ, y)y,
3) A(z?,y) = Az, zy)
(4) Alzy,y) = Alz,y?)
Because of the identity
(5) [xvyax] = [LU,JJ —l—y,fc-i-y] - [:c,a:,:v] - [x,x,y] - [w,y,y]

the associator [x,y,x] in a subalternative algebra is also a linear combination of
its arguments. This implies the following proposition.

Proposition 3. An algebra H over [F is subalternative if and only if for any
linerly dependent triple {x,y,z} C H, the associator [x,y, 2] is a linear combina-
tion of its arguments.

Of course, any subassociative algebra is subalternative, and any proper subas-
sociative algebra is proper subalternative.
The next proposition is obvious.

Proposition 4. Any subalternative algebra of dimension < 3 is subassociative.

Propositions 5 and 6 from [2] are (mutatis mutandis) correct also for alternative
and subalternative algebras.

Proposition 5. Let G be an alternative algebra with multiplication (a,b) —
ax*b and with a unit e. Further let P: G — [F be a linear functional and P(e) = 1.

Define in H := Ker P a new multiplication
(,y) > 2y =z xy — A(z,y)e,

where A(x,y) := P(zx+y). Then H is a proper subalternative algebra and A is the
bilinear form from Definition H.
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Proposition 6. Let H be a proper subalternative algebra from Definition @,
and G :=Fe ® H, where e ¢ H. Introduce in G a new multiplication

(e +z,8e+y) — (ae+z) * (Be+y) :=
= (af + A(z,y))e + oy + Bx + xy.

G with this multiplication is an alternative algebra with unit e.

Corollary 7. Let H be a proper subalternative algebra from Definition B.
Then for any linearly dependent triple {x,y,z} C H there holds:

(6) [x,y,2) = Ay, 2)x — Az, y)z,
(7) Alzy, z) = Az, yz) .

Proposition 8. Improper subassociative algebra is also improper subalterna-
tive.

Proof. For the twodimensional strange subassociative algebras from [2, Tables 7
and 8], it is enough to look over the associators [p, p, ¢] and [q, p, p].

In the case of threedimensional strange subassociative algebras [2, Table 9], the
best way to check the proposition is to use a computer.

Now, suppose that the observed algebra is improper non-strange (with a di-
mension > 2 and chr IF = 2). Then:

[z,y,2] = A'(y,2)x + B (2, 2)y + C'(z,y)2
identically, for certain bilinear forms A’ B’, C’.

[z,y,y) = A'(y, y)x + B'(z,y)y + C'(z,y)y
= A(y,y)z + Az, y)y

Then: A(z,y) = B'(z,y) + C'(z,y) = A'(z,y) by [2, (15)] for any x, y linearly
independent, and then also A(y,y) = A'(y,y).

[z, 2,y] = A'(z,y)x + B'(x,y)x + C'(z, 2)y
= A(z,y)r + Az, z)y

This gives B’(z,y) = 0 for any x,y, which is impossible. O
Remark. In fact, we proved a little more: if a subassociative algebra has a
bilinear form A with the identities () and (H), it is proper subassociative.

From Propositions fl, [l, B and Corollary [l we find the following interesting
consequences:
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a) Alternative algebra of dimension < 3 is associative.
b) Unital alternative algebra of dimension < 4 is associative.

For U C H, let alg;; U be the subalgebra of H generated by U, and for V C G
let alg, V' be the subalgebra of G generated by V; here H and G are the algebras
from Propositions [l and [|. Any element from alg {u, v} is also from alg{u, v, e}.
If x € algy{u, v} then there exists such « € IF that ae+x € alg{u,v}. According
to Artin’s theorem, alg.{u,v} is associative subalgebra of G. If z,y, z are from
alg;{u, v} and hence for certain a, 8, also ae+z, fe+y, ve+z from alg-{u, v},
then

0= [Oé@+$,ﬂ6+y,’)/€+2]g = [‘Tayaz]G
= [l‘, Y, Z]H + A(l‘, y)Z - A(y7 Z).’II + (A(l‘y, Z) - A(J?, yz))e .

So we have

Proposition 9. Let H be a proper subalternative algebra. Then for any
(u,v) € H?, alg{u,v} is a proper subassociative algebra.

3. PROPER SUBALTERNATIVE ALGEBRAS

Theorem 10. Let H be a subalternative algebra over IF, chr IF # 2, excluding
also the case dim H = 2, IF = Z3. Then there exists such a bilinear form A that

(M) and (B) hold.

Proof. If dim H < 3, H is subassociative and the theorem holds. Hence we
shall suppose also that dim H > 3.

[, z,y] + [z, 2,y = [z + z,2 + 2,y] — [z, z,y] — [2, 2,y] € lin{x,y, z}.
By [2, Lemma 7] there exist three bilinear forms Ay, A, As, such that:
[z,2,y] + [2,2,y] = As(y, 2)x + Ax(z, 2)y + As(z,y)z.
For z = x we get:
[z, 2z,y] = %(Al(y,:c) + Asz(x,y))z + %Ag(x,x)y.

Analogous conclusion holds for [y, x,z]. Hence, there exist four bilinear forms
A, B,C, D, such that the following identities hold:

(8) [x,x,y] = A(a:,y)ac - B({IJ7LL‘)y7
(9) [y,fE,.T] :C(I’,I)ny(y,I)fE
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(@) and (B) give for = y a new identity:
(10) A(z,z) + D(z,z) = B(z,z) + C(z, x).
From ([]) if follows:

(11) [x,y, x] = (A(y7$) + D(y’m) - B(y7x) - B(x’ y))x+
+ (A(z,z) — C(z,2))y .

If we have for some x : 2 = Az, the associator [z, z, z] gives us
(12) B(z,x) = Az, x) .

Next, suppose that 22 # Az. If we use (J), (I) and (1) in Teichmiiller equation
E(z,z,x,x), we get:

0= (3A(x,x) — B(x,2) — 2C(z,z))z* + (... )z.
Therefore,
(13) B(z,x) = 3A(z,z) — 2C(z,x) .

Suppose additionally that B(x,z) # A(x,z). Then A(x,z) # C(z,z) and from
E(x,z,2%, ) it follows: z2? = ayx + B122. Then: 2%x = [z, 2, 2] + v2% = asx +
Bra?. Further: A(x,2%)z— B(z,7)2? = [z, 2,2%] = 222% —x(a2+ B12?) = 2222 —
(a1 +82)2% — a1 811, and 2202 = azx+ [Ba2?. alg{z} is therefore a twodimensional
algebra and hence subassociative. If it is proper subassociative, it possesses two
bilinear forms A’, B’ for which the following identities hold: B’(u,u) = 0 and

[u,v,w] = A’ (v,w)u + B'(u,w)v — (A" (u,v) + 2B’ (u,v))w.

From [z,z,2% and [22,z,7] we get B(z,x) = A'(z,z) and C(x,z) = A'(x,z).
But then we find the contradiction in ([fJ). Hence, alg{z} is an algebra from [2,
Table 8] and x = +p. From this table and (J) and (fI), the associators [p, p, p] and
[p,p, q] determine A(p,p) = 1 — « and the associator [g,p, p] also C(p,p) =1 — «
and the contradiction is final.

So, () holds in any case. (L) gives also D(z,z) = C(z,z) and (f), () and
(O0) can be formulated with only two bilinear forms:

(14) [ZE,LL’,y] :A(.’E,y) —A(iL’,ZZ?)y,
(15) [yﬂQj?x] =D(x,x)y—D(y,a:)a:,
(16) [z,y,2] = (D(y,x) — A(z,y))z + (A(z,2) — D(z,z))y .
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We have seen that if 22 # Az then ([IJ) holds and consequently A(z,z) = D(x,x).
We claim that this is always true. So, suppose that 22 = Az and A(z, ) # D(x,x).
Choose y linearly independent from z. From E(z,y, z, z) it follows: yx = az+ %y
(for some «). From E(z,z,y,x) it follows: zy = Sz + %y (for some (). But then
[z, y,z] = ’8770‘/\96, which is in a contradiction with (E)
The linearized form of A(x,x) = D(x,z) is
(17) Az, y) + Aly, x) = D(z,y) + D(y,z)
and the linearized form of () is
(18) ly,z, 2] + [y, z, 2] = =D(y, 2)x + (D(x, z) + D(2,2))y — D(y,x)z.
From E(y,z,x,x) it follows:
(19) [y,.’IJ,LL'Q] - [y,xQ’x] = D(y{E,{E)(E—D(y,I').T2
We add the identity ([§), with z = 22, to ([J):
(20) [y, 2, 2% = (... )z + (...)y — D(y, z)z?>.
From E(z,y,x,x) it follows:
(21) [z,y,2%] = (... )z — A(z,y)z>.
In the identity
[37 + y,r + Y, $2} - [l’, z, .172] - [ya Y, xQ] = [I‘, Y, .’1,'2] + [ya z, 1‘2]
we use () on the left side and (E]) and (El) on the right side:
0 = az + (A(y,z) - D(y, )2 + By

If we choose y ¢ lin{x, 2%}, we find 3 = 0, and since 3 depends only to z, it then
follows identically:

(22) (A(y,z) — D(y,z))z* + ax = 0.

Suppose that z and y are such elements that A(y,z) # D(y,z). Then 2?2 =
Az and because of ([[]) also y? = uy. Since A(y,yx + 6y) — D(y,vx + dy) =
v(A(y, ) — D(y, r)), we have w? = vw for each w = yz + dy. If dim alg{z,y} = 2,
this is an algebra from [2, Table 5] (without condition pg # ¢p). But in this
algebra A = Dj; hence, dimalg{z,y} > 2. Since (z + y)> = 7(z + y) and then
xy +yxr = (1 — Nx + (1 — p)y, it must be: z := zy ¢ lin{z,y}. From the
associators [z,y,9], [y, 2,y], [z, z,y] and [x,y,z] we get that zy, yz, 2z and zz
are linear combinations of z,y and z. If z and 2? were linearly independent,
it would be A(y,z) = D(y,z) and consequently A(y,z + z) # D(y,z + z) and
(v + 2)? = £(x + 2), which means that 22 is a linear combination of x,y and 2.
Therefore, dim alg{z,y} = 3 and according to [2, Theorem 12] we conclude that
alg{z,y} is proper subassociative and again A = D. O
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Theorem 11. Let H be a subalternative algebra with a bilinear form A for
which () and (@) hold.

(i) If chrlF # 3 or if H is a subassociative algebra, then H is a proper subal-
ternative algebra.

(ii) If chrIF = 3 and H is not subassociative then the following weaker identi-
ties hold:

B

(24) A(2?,y) + A(yz, ) = A(z, 2y) + A(y, 22).

Proof. As it was pointed out in Remark after Proposition i, the subassociativity
is sufficient for properness. Therefore we may suppose that dim H > 3.

Denote:
R(z,y) := A(:r2, y) — Az, zy),
M(l‘, y) = A(fﬁy, SC) - A(SC, ya:) s
L(z,y) = A(yz,z) — Ay, 2*).
(25) [$2,$,y] = [372,1‘ + Y,z + y] + [.T,Z‘,yl‘] - [J?Z,JI,J?} - [xQ’yay]

- x[x,y,x] - [x,x,y]m - [m,xy,x]
= A(x7y)x2 - A(xZ,x)y - (R(JZ, y) + M(JZ, y))x7

considering ([]) and consequently

[IIT,y,SC} = (A(y,IE) - A(x,y))x :

(26) [x7x27y] = [%,(E2 + yvxz + y} + [:Ey,xw] - [x7x27x2] - [xvyvy}
—zly,x, 2] — [z,y, z]x — [z, yx, ]
= A(z?,y)x — Az, 2?)y — (M (2,9) + L(z,y))z

If we put (F) and () into the identity
@+ 2%, @+ 2% y] = [z, 2,y] + [, 2%, 9] + 2%, 2, 9] + [2,2%, ],
we get:

(27) R(z,y) +2M(z,y) + L(z,y) = 0.
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Further,

(28) [yax27x] = [1’2 + y7332 + ya‘T] + [557.'1},:(/-'17] - [mQal'zvx] - [:%y,x]

- I‘[’I‘,y,fﬂ] - [l’,ﬁC,y]lIZ‘ - [II?,LTJy,IL’]
= A(a?, 2)y — Ay, 2*)x — (R(z,y) + M(z,y))z .

Considering (E]) and (B), we also get:

(29) [y,l',.TQ] = [y,x + $27$ + .’E2] - [y,m,x] - [yamzaxz] - [y?xzax]
= A(z,2)y — Ay, 2)2® — (M(z,y) + L(z,y))z.

Including (F) and (BQ) into E(z,z,x,y), we find:
(A(z?,2) — Az, %))y = (L(z,y) — 2R(z,y))z .

Choosing = and y linearly independent we get A(x2,z) = A(z,2?), which then
implies:

(30) L(z,y) = 2R(x,y) .
Similarly we find from (B), (E9) and E(y,z,x,x):
(31) R(z,y) = 2L(z,y) .

If chr IF # 3, from (BQ) and (Bl]) we already find L = R = 0. From R(x+y,z) =0
follows also M = 0.

In the case chrIF = 3, (BQ) and (Bl) are equivalent with (Bg) and further (EJ)
with (). O

Theorem 12. Let H be a subalternative algebra over IF. Each of the following
conditions
(i) dim H < 3;
(ii) H is subassociative;
(iii) chrlF # 2,3;
(iv) H is proper subalternative;

implies that H is Maltsev-admissible.

Proof. (i) = (ii) = H is Lie-admissible, by [2, Theorem 13] = H is Maltsev-
admissible.

From Theorems [ and [[J the implication (iii) = (iv) follows. Further, G from
Proposition [l is alternative algebra, the commutator algebra G~ is Maltsev and
H~ =G~ /(IFe)~ is also Maltsev. O
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Theorem 13. Let H be an anticommutative subalternative algebra over IF
with chrIF # 2. Then H is proper subalternative and also Maltsev algebra and for
the bilinear form A from () and (B) the following identities hold:

(32) A(x’ y) = A(y’ ‘T) 5
(33) Ay, z) = Az, y2)
(34) (zy)y = Ay, y)z — Az, 9)y -

Proof. If dim H < 3, H is subassociative and, according to [2, Theorem 13],
the theorem above is correct. For dim H > 3, () and (f) hold for an adequate
A, by Theorem [. The anticommutativity implies flexibility [z,y,x] = 0 and ()
implies (B). (B3) is a consequence of () and the anticommutativity. If we linearize
(E3), which is implied either by chrlF = 3 or by chrF # 3 and (f]), according to
Theorem [, we get:

A(zy, 2) + A(zy, ) = Alw,yz) + Az, yx) .
Using (B2) and anticommutativity, we transform this identity into
2A(zy, 2) = 2A(x,y2)

which is (BJ), and the properness of the algebra is proved. Then, by Theorem [[J,
H is Maltsev-admissible and hence Maltsev. g

The classification of algebras from Theorem [ for IF algebraically closed is
described in [4, Theorem 3.3].

A natural question for the end: is it possible and significant to generalize the
theory treated in this article? We suggest two ways of thinking. Non-commutative
Jordan algebras are a kind of natural generalization of alternative algebras and
are defined with associator identities; hence, perhaps sub-(non-commutative Jor-
dan) algebras are suitable research target. Secondly, an important example for
motivation for further research is the color algebra ([3]).
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