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THE STABILITY OF THE EQUATION

f(xy) − f(x) − f(y) = 0 ON GROUPS

V. FA�IZIEV

Abstract. Let G be a group and let E be a Banach space. Suppose that a mapping

f : G → E satisfies the relation ||f(xy) − f(x) − f(y)|| ≤ c for some c > 0 and
any x, y ∈ G. The problem of existence of mappings l : G → E such that the

following relations hold 1) l(xy) − l(x) − l(y) = 0 for any x, y ∈ G; 2) the set
{ ||l(x)− f(x)|| ; ∀x, y ∈ G} is bounded is considered.

The question ‘if we replace a given functional equation by a functional inequal-
ity, then under what conditions we can state that the solutions of the inequality
are close to the solutions of the equation’ was posed for the functional equation
f(xy) = f(x) · f(y) for x, y in the group G in [11] in connection with the results
of the papers [6–8].

For a mapping f of the group G into a semigroup of linear transformations of
a vector space,in the papers [1], [2], [10] the problem on sufficient conditions of
the coincidence of the solution of a functional inequality ‖f(xy)− f(x) · f(y)‖ < c

with a solution of the corresponding functional equation f(xy) − f(x) · f(y) = 0
was studied. In the papers [4], [5], [9] it was independently shown that if a
continuous mapping f of a compact group G into the algebra of endomorphisms
of a Banach space satisfies the relation ‖f(xy) − f(x) · f(y)‖ 6 δ for all x, y ∈ G
with a sufficiently small δ > 0, then it is ε-close to a continuous representation g

of the same group in the same Banach space (i.e., we have ‖f(x) − g(x)‖ < ε for
all x ∈ G).

In the paper [6] D. H. Hayers proved that if f : E → E′ is a mapping between
Banach spaces such that

||f(x+ y)− f(x)− f(y)|| ≤ ε

for some ε > 0 and any x, y ∈ E, then there is unique mapping l : E → E′ such
that the following relations hold

||f(x)− l(x)|| ≤ ε, l(x+ y)− l(x)− l(y) = 0, ∀x, y ∈ E.
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This property Hyers in [6] and Ulam in [11] called the stability of the equation

f(x+ y)− f(x)− f(y) = 0.

Suppose that G is an arbitrary group and E is an arbitrary Banach space.
Consider the following equation

(1) f(xy)− f(x)− f(y) = 0 , x, y ∈ G, f(x) ∈ E.

Definition 1. We say that the equation (1) is (G,E)–stable if for any ψ : G→
E satisfying the functional inequality

(2) ||ψ(xy)− ψ(x)− ψ(y)|| ≤ ε

for some ε > 0 and any x, y ∈ G there is l : G → E such that for some δ > 0 the
following relations hold

(3) ||ψ(x)− l(x)|| ≤ δ, l(xy)− l(x)− l(y) = 0, ∀x, y ∈ G.

Let T be nonempty set, by B(T ) we denote the Banach space of real bounded
functions on T .

In this paper we consider the problem of (G,B(T )) stability.

Definition 2. By a quasicharacter of group G we mean real-valued function
f such that the set {f(xy)− f(x)− f(y); x, y ∈ G} is bounded.

The set of quasicharacters of group G is real linear space (with respect to the
usual operations of addition of functions and their multiplication by numbers)
which we denote by KX(G).

Definition 3. We say that a quasicharacter ϕ is a pseudocharacter if for
any x ∈ G and any n ∈ Z the relation f(xn) = nf(x) holds.

The subspace of KX(G) consisting of pseudocharacters denote by PX(G). By
X(G) denote the subspace of PX(G) consisting of real additive characters of the
group G.

We say that a pseudocharacter ϕ of a group G is nontrivial if ϕ /∈ X(G).

Proposition 1. If a group G has nontrivial pseudocharacter, then the equation
(1) is not (G,E) stable for any Banach space E.

Proof. Letϕ be a nontrivial pseudocharacter of group G and let e be an element
of E such that ||e|| = 1. Define a map f : G → E as follows: for any x ∈ G we
set f(x) = ϕ(x)e. Then for some ε > 0 the function f satisfies to (2). Suppose
that there is l : G → E such that for some δ > 0 the relation (3) holds. Then for
any x ∈ G and any n ∈ Z we have n||f(x)− l(x)|| = ||f(xn)− l(xn)|| ≤ δ. Hence,
f ≡ l. This contradicts to the relation ϕ /∈ X(G).

The Proposition is proved. �



THE STABILITY OF FUNCTIONAL EQUATION 129

Lemma 1. Let G be a group and ϕ ∈ PX(G). Suppose that for any x, y ∈ G
we have |ϕ(x · y)− ϕ(x)− ϕ(y)| < ε; then

1) the inequality |ϕ(x1 · x2 · . . . · xn+1) −
∑n+1
i=1 ϕ(xi)| < n · ε holds for any

positive integer n and any x1, x2, . . . , xn ∈ G;
2) if ϕ is a bounded function, then ϕ ≡ 0;
3) the set { ϕ(a−1b−1ab); ∀a, b ∈ G} is bounded;
4) ϕ(a−1ba) = ϕ(b) for any a, b ∈ G.

Proof. Assertion 1) is easily proved by induction on n. Let us prove 2). If δ is a
positive number such that |ϕ(x)| < δ for any x ∈ G, then for any positive integer
n we have n|ϕ(x)| = |ϕ(xn)| < δ, therefore, ϕ(x) = 0. Assertion 3)immediately
follows from 1). Let us prove 4).

From assertion 1) it follows that |ϕ((a−1ba)n) − ϕ(a−1) − ϕ(bn) − ϕ(a)| < 2ε.
Hence, |ϕ(a−1bna)− ϕ(bn)| < 2 · ε, or n|ϕ(a−1ba)− ϕ(b)| < 2 · ε. Since the latter
inequality holds for all n > 1, we obtain ϕ(a−1ba) = ϕ(b).

The Lemma is proved. �

Proposition 2. Let G be a group and ϕ ∈ KX(G). Then:

1) for each x ∈ G there exist a limn→∞
1
nϕ(xn);

2) a function ϕ̂(x) = limn→∞
1
nϕ(xn) is a pseudocharacter of G and the

following decomposition

KX(G) = PX(G)+̇B(G)

holds;
3) the kernel of the mapping ϕ→ ϕ̂ coincide with the space B(G).

Proof. 1) Let c be a positive number such that

(4) |ϕ(xy)− ϕ(x)− ϕ(y)| ≤ c, ∀x, y ∈ G.

The assertion 1) from the Lemma 1 implies that for any x ∈ G and any n ∈ N the
following relations hold

|ϕ(xn)− nϕ(x)| ≤ (n− 1) · c,∣∣∣∣ 1nϕ(xn)− ϕ(x)
∣∣∣∣ ≤ c.(5)

Let us fix x ∈ G. Denote by S(x) the subsemigroup ofG generated by element x.
From (5) it follows that there exist a sequence of positive integers M = {mi;
i ∈ N}, such that there exist a limit

a(x) = lim
m→∞
m∈M

1
m
ϕ(xm).
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Let us show that for each y ∈ S(x) there exist a limit

a(y) = lim
m→∞
m∈M

1
m
ϕ(ym)

and if y = xk k ∈ N , then a(y) = ka(x). Indeed, from (5) it follows

(5-a)
∣∣∣∣ 1nϕ(xk·n)− ϕ(xk)

∣∣∣∣ ≤ c.
Hence, ∣∣∣∣ 1

k · n
ϕ(xk·n)− 1

k
ϕ(xk)

∣∣∣∣ ≤ 1
k
c.

The latter estimation implies

1
n

lim
k→∞
k∈M

1
k
ϕ(xkn) = a(x),

and

(6) lim
m→∞
m∈M

1
m
ϕ(xm·n) = n · a(x), ∀n ∈ N.

From (6) it follows that ∀y ∈ S(x) there exists

lim
m→∞
m∈M

1
m
ϕ(ym).

Denote this limit by a(y). Let y = xn, from (6) we get a(y) = na(x). For
l ∈ N we have yl = xnl, therefore a(yl) = l · n · a(x) = l · a(y). And we obtain the
following equality

(7) a(yl) = l · a(y), ∀y ∈ S(x), ∀l ∈ N.

From (5-a) it follows that ∀y ∈ S(x) we have the inequality

(8) |a(y)− ϕ(y)| ≤ c.

Now suppose that K is a sequence of positive integers different from M such that
there exists a limit

b(x) = lim
k→∞
k∈K

1
k
ϕ(yk).
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Then as above we obtain that for each l ∈ N and each y ∈ S(x) the following
relations hold

b(yl) = l · b(y),(7-a)

|b(y)− ϕ(y)| ≤ c.(8-a)

From (8) and (8-a) it follows

|a(y)− b(y)| ≤ 2c, ∀y ∈ S(x).

Taking into account (7), (7-a), we get that for each l ∈ N the relation

2 · c ≥ |a(yl)− b(yl)| = l|a(y)− b(y)|

holds. This means that a(y) = b(y), ∀y ∈ S(x). From the latter we obtain that
for each x ∈ G there exist limn→∞

1
nϕ(xn).

2) Denote by ϕ̂ which is given by the formula

ϕ̂(x) = lim
n→∞

1
n
ϕ(xn), x ∈ G.

From (7), (7–a) we obtain

(9) ϕ̂(xl) = lϕ̂(x), ∀x ∈ G, ∀l ∈ N.

From (5) it follows that

|ϕ̂(x)− ϕ(x)| ≤ c, ∀x ∈ G.

Hence, taking into account (4), we get

(10) |ϕ̂(xz)− ϕ̂(x)− ϕ̂(z)| ≤ 4c, ∀x, z ∈ G.

From (9) it follows that ϕ̂(1) = 0. Further, |ϕ̂(xx−1)−ϕ̂(x)−ϕ̂(x−1)| ≤ 4c. Hence,
for each x ∈ G the following inequality |ϕ̂(x) + ϕ̂(x−1)| ≤ 4c holds. Therefore,
∀m ∈ N we obtain

4c ≥ |ϕ̂(xm) + ϕ̂((x−1)m)| = m|ϕ̂(xm) + ϕ̂(x−1)|.

From the latter we have

(11) ϕ̂(x−1) = −ϕ̂(x), ∀x ∈ G.

Now let m ∈ N , then from (11) and (9) it follows ϕ̂(x−m) = ϕ̂((xm)−1) =
−ϕ̂(xm) = −mϕ̂(x).
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Thus, for any x ∈ G and any m ∈ Z the following relation ϕ̂(xm) = mϕ̂(x)
holds. Hence, taking into account (10), we get ϕ̂ ∈ PX(G).

Now let us verify the following decomposition KX(G) = PX(G)+̇B(G).
It is clear that subspace of KX(G) generated by PX(G) and B(G) is their

direct sum. Let us show that the latter is coincide with KX(G).
Suppose that ϕ ∈ KX(G), c > 0 and

|ϕ(xy)− ϕ(x)− ϕ(y)| < c, ∀x, y ∈ G.

From the assertion 1) we have ϕ̂ ∈ PX(G) and |ϕ(x)− ϕ̂(x)| ≤ c. Hence, ϕ(x) =
ϕ̂(x) + δ(x), where δ ∈ B(G).

3) It is evidently that the mapping ϕ→ ϕ̂ is linear. Now 3) follows from 2) and
the relation

ϕ̂ = ϕ, ∀ϕ ∈ PX(G).

The Proposition is proved. �

Proposition 3. Suppose ϕ ∈ KX(G); then the following conditions are equiv-
alent:

1) ϕ ∈ PX(G);
2) ϕ is a real additive character on each abelian subgroup in G;
3) ϕ(xn) = nϕ(x), ∀x ∈ G, ∀n ∈ N ;
4) there exists integer m such that |m| > 1 and ϕ(xm) = mϕ(x), ∀x ∈ G.

Proof.
1) → 2). Let c > 0 such that for any x, y from G the following inequality

|ϕ(xy)−ϕ(x)−ϕ(y)| ≤ c holds. Suppose that A is an abelian subgroup of G and
a, b ∈ A. Then for each n ∈ N we get

c ≥ |ϕ(anbn)− ϕ(an)− ϕ(bn)|

= |ϕ((ab)n)− ϕ(an)− ϕ(bn)| = n|ϕ(ab)− ϕ(a)− ϕ(b)|.

Hence, ϕ(ab) = ϕ(a)− ϕ(b).
2) → 3) Obviously.
3) → 1) Obviously.
1) → 4) Obviously.
4) → 3) Let m > 1. Let

(12) ϕ = ϕ̂+ δ, where ϕ̂ ∈ PX(G), δ ∈ B(G).

From the condition it follows that for each k ∈ N and each x ∈ G the equality
ϕ(xm

k

) = mkϕ(x) holds. Taking into account (12), we obtain δ(xm
k

) = mk(ϕ(x)−
ϕ̂(x)). Therefore, δ ≡ 0 and ϕ ≡ ϕ̂.
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Now assume that m < −1. Then m2 > 1 and ϕ(xm
2
) = m2ϕ(x), ∀x ∈ G.

Hence, ϕ ≡ ϕ̂ and ϕ ∈ PX(G).
The Proposition is proved. �

Denote by NPX the class of groups consistion of all groups G such that
PX(G) = X(G). And denote by PX the class of groups consisting of all groups
G such that PX(G) 6= X(G).

The class PX is not empty because any noncyclic free group F belongs to PX.
In the paper [3] a description of the space PX(F ) is given.

Suppose that E is finite dimensional Banach space. It is easy to see that the
equation (1) is (G,E) stable if and only if G ∈ NPX.

Now consider the problem of (G,E) stability for E = B(T ).
Let ψ ∈ B(T ) and let ||ψ|| denote a usual norm of element ψ in B(T ). Let

f : G → E and ε > 0 such that the relation (2) holds. The mapping f : G → E

may by considered as a function on two arguments (x, t); x ∈ G, t ∈ T . For any
t0 ∈ T the function x→ f(x, t0) is an element from KX(G) such that the relation

(13) ||f(xy, t0)− f(x, t0)− f(y, t0)|| ≤ ε, ∀x, y ∈ G

holds.
Now for every t0 ∈ T let us fix some quasicharacter x→ f(x, t0) such that the

relation (13) holds. Then it is clear that the function x→ f(x, t) ∈ B(T ) satisfies
to (2).

Now from Proposition 2 we obtain the following fact.

Proposition 4. The equation (1) is (G,B(T )) stable if and only if G ∈ NPX.

Lemma 2. Let G be an arbitrary group and let G′ be its commutator subgroup.
Suppose that ϕ is a pseudocharacter of G, such that ϕ

∣∣
G′
≡ 0.Then ϕ ∈ X(G).

Proof. First consider the case when G = F is a free group of rank two with
free generators x, y. Suppose that ϕ(x) = α, ϕ(y) = β and ξ is real additive
character of group F such that ξ(x) = α, ξ(y) = β. Then ψ = ϕ − ξ ∈ PX(F )
and ψ(x) = ψ(y) = 0. Each element z of group F is uniquely representable in the
form

z = xiyj · c,

where c ∈ F ′. Let ε > 0 such that the relation

|ϕ(uv)− ϕ(u)− ϕ(v)| ≤ ε, ∀u, v ∈ F

holds.
Then from Lemma 1 we get |ψ(z) − ψ(xi) − ψ(yj) − ψ(c)| ≤ 2ε. The latter

implies |ψ(z)| ≤ 2ε, ∀z ∈ F . Hence, ψ ≡ 0.
Thus we have ϕ ≡ ξ on F and ϕ ∈ X(F ).
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Now assume that F is a free group of arbitrary rank, ϕ ∈ PX(F ) and
ϕ
∣∣
F ′
≡ 0. Let a, b be an arbitrary elements from F . Then the subgroup

generated by elements {a, b} is either cyclic or free group of rank two. Hence,
ϕ(ab) = ϕ(a) + ϕ(b) and ϕ ∈ X(F ).

Now let G be an arbitrary group and τ : F → G an epimorphism of some free
group F onto G. Suppose that ϕ is an element from PX(G) such that ϕ

∣∣
G′
≡ 0.

Consider the mapping ψ = ϕ ◦ τ ∈ PX(F ). Since τ : F ′ → G′ then ψ
∣∣
F ′
≡ 0.

Therefore ψ ∈ X(F ).
Let us check that ϕ ∈ X(G). Indeed, suppose that there are a, b ∈ G such that

ϕ(ab) 6= ϕ(a) +ϕ(b). Let u, v be elements from F such that uτ = a, vτ = b. Then
ψ(u) = ϕ(a), ψ(v) = ϕ(b), ψ(uv) = ϕ(ab).

Hence, ψ(uv) 6= ψ(u) + ψ(v) and we come to contradiction to the relation
ψ ∈ X(F ). Thus, for any u, v from G we have ϕ(uv) = ϕ(u) + ϕ(v).

The Lemma 2 is proved. �

Suppose that G is an arbitrary group and a, b, α, β ∈ G. It is easily to verify
that the following relations hold:

(14) [a, b]α = [aα, b] · [α, b]−1, [a, b]β = [a, β]−1 · [a, bβ],

Theorem 1. Let G be an arbitrary group and let G(k) be k-th member of its
derivative series. If ϕ ∈ PX(G) and ϕ

∣∣
G(k) is a character of G(k), then ϕ ∈ X(G).

Proof. First consider the case when G = F is a free group. Suppose that
ϕ
∣∣
F ′
∈ X(F ′), then from (14) we obtain the following equalities:

ϕ([aα, b]) = ϕ([a, b]) + ϕ([α, b]) , ϕ([a, bβ]) = ϕ([a, b]) + ϕ([a, β]).

Therefore,
ϕ([an, bm]) = n ·mϕ([a, b]) ∀n,m ∈ N.

Now from Lemma 1 assertions 2) and 3) it follows ϕ
∣∣
F ′
≡ 0.

Therefore, by Lemma 2 we get ϕ ∈ X(F ).
Suppose that for numbers 1, . . . , k the theorem in the case G = F is true.

Let us prove for k + 1. Let ϕ
∣∣
F (k+1) be a character. Let us check that in this

case the function ϕ
∣∣
F (k) is a character too. Suppose that there are a, b ∈ F (k)

such that ϕ(ab) 6= ϕ(a) + ϕ(b). Then subgroup H generated by elements a, b is
free group of rank two. Since H ′ ⊂ F (k+1), then by the induction hypothesis we
obtain that ϕ

∣∣
H′

is a character. From Lemma 2 it follows that the function ϕ
∣∣
H

is
character. Thus, ϕ

∣∣
F (k) is a character. By the induction hypothesis the function

ϕ is a character of group F .
Now let G be an arbitrary group and let τ be an epimorphism of free group

F onto G. Then for each k ∈ N we have τ(F (k)) = G(k). Let ϕ ∈ PX(G) and
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ϕ
∣∣
G(k) ∈ X(G(k)). Then the function ψ = ϕ ◦ τ is a pseudocharacter of group F

such that ψ
∣∣
F (k) ∈ X(F (k)). Hence, ψ ∈ X(F ). Thus, ϕ ∈ X(G).

The Theorem is proved. �

It is evidently that any periodical group belongs to NPX. Theorem implies
that if a group G is solvable, then G is an NPX-group.

Corollary 1. Let G be an arbitrary group. Suppose that H is an invariant
subgroup of G, G/H is a solvable group and PX(H) = X(H). Then PX(G) =
X(G) ,i.e., the class NPX relatively solvable extensions is closed.

Proof. There exists k ∈ N such that G(k) ⊂ H. Hence, ∀ϕ ∈ PX(G) the
relation ϕ

∣∣
G(k) ∈ X(G(k)) holds. Now from Theorem 1 we obtain ϕ ∈ X(G). �
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