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FORCED SUPERLINEAR OSCILLATIONS

VIA PICONE’S IDENTITY

J. JARO�S, T. KUSANO and N. YOSHIDA

Abstract. In the paper a nonlinear version of an identity known in the literature
as the Picone’s formula is derived and then it is used to extend the classical Sturmian
comparison theory to forced superlinear equations of the second order.

1. Introduction

In this paper we are concerned with the forced second order super-linear ordi-
nary differential equation

(A) (P (t)y′)′ +Q(t)|y|β sgn y = f(t), t ≥ t0,

where β > 1 and P,Q, f : [t0,∞) → R are continuous real-valued functions with
P (t) > 0 for t ≥ t0.

By a solution of (A) on an interval I ⊂ [t0,∞) we understand a function
y : I → R which is continuously differentiable on I together with Py′ and satisfies
(A) at every point of I. Such a solution is called oscillatory if it is defined on an
interval of the form [tx,∞), tx ≥ t0, and has arbitrarily large zeros in this interval.

Recently, there was a renaissance of interest in studying forced second-order
equations, both linear and nonlinear (see [12] and the references cited therein) mo-
tivated by the absence of oscillation tests that would be sensitive enough to cover
some important specific examples (including Mathieu’s equation with a forcing
term y′′ + (a + b cos 2t)y = ctδ sin t where a, b, c, δ ∈ R and forced Emden-Fowler
equations of the form (A) with an oscillatory “potential” Q(t)) and would not only
deduce oscillation of solutions itself, but would also provide information about the
number and distribution of zeros in a given interval.

In the linear oscillation theory, one of such powerful techniques is offered by
the well-known Picone’s formula ([8]; see also [5] and [10]). There were several
attempts to extend this formula to nonlinear equations (see, for instance, [2]), but
none of these extensions applies to forced superlinear equations of the form (A).
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Thus, the purpose of this paper is to show how Picone’s formula can be used, in a
rather surprising but simple way, to extend the classical Sturmian theory to forced
superlinear equations of the form (A). Our main results improve and extend those
in [7].

2. Sturmian Theorems for the Forced Superlinear Equation (A)

Consider the nonlinear second-order differential equation

(A) Lβ [y] ≡ (P (t)y′)′ +Q(t)|y|β sgn y = f(t),

where β > 1 and P , Q and f are continuous real-valued functions on a given
interval I ⊂ [t0,∞) and P (t) > 0 for all t ∈ I. Denote by DL(I) the domain of
the operator Lβ , i.e., the set of all continuous real-valued functions y defined on I
such that y and Py′ are continuously differentiable on I.

We begin with the following preliminary result which is a nonlinear version
of an identity used by Leighton in proving his well-konwn improvement of the
classical Sturm-Picone theorem (see also Swanson [9, Lemma 1.3]). The proof is
straightforward and it is omitted.

Lemma 1. If y ∈ DL(I0) for some non-degenerate subinterval I0 ⊂ I and
y(t) 6= 0 in I0, then for any x ∈ C1(I0) the following identity holds:

d

dt

[
x2

y
P (t)y′

]
= P (t)x′2 −

[
Q(t)|y|β−1 − f(t)

y

]
x2 − P (t)

(
x′ − x

y
y′
)2

(1)

+
x2

y
{Lβ [y]− f(t)}.

To obtain our first application of the identity (1), assume that Q(t) ≥ 0 on
some interval [a, b] ⊂ I and consider the quadratic functional J defined by

J [η] ≡
∫ b

a

[
P (t)η′2 − β(β − 1)

1−β
β [Q(t)]

1
β |f(t)|

β−1
β η2

]
dt

with the domain U = {η ∈ C1[a, b] : η(a) = η(b) = 0}. Then the following
nonlinear extension of Leighton’s variational theorem is valid.

Theorem 1. If there exists an η ∈ U, η 6≡ 0, such that

(2) J [η] ≤ 0,
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then every solution y of (A) defined on [a, b] and satisfying

(3) y(t)f(t) ≤ 0

in this interval must have a zero in [a, b].

Proof. Suppose, to the contrary, that there exists a solution y(t) 6= 0 in [a, b]
of (A) that satisfies (3). Then the identity (1) from Lemma 1 with x(t) = η(t) is
valid and since y solves Lβ [y] = f , (1) reduces to

(4)
[
η2

y
P (t)y′

]′
= P (t)η′2 −

[
Q(t)|y|β−1 − f(t)

y

]
η2 − P (t)

(
η′ − η

y
y′
)2

.

Taking the nonnegativity of Q(t) and the inequality (3) into account, and con-
sidering the expression in the brackets on the right-hand side of (4) as the function
of y, we obtain

(5) min
y 6=0

[
Q|y|β−1 +

|f |
|y|

]
= β(β − 1)

1−β
β Q

1
β |f |

β−1
β .

Thus, (4) becomes

(6)
[
η2

y
P (t)y′

]′
≤ P (t)η′2−β(β− 1)

1−β
β [Q(t)]

1
β |f(t)|

β−1
β η2−P (t)

(
η′ − η

y
y′
)2

,

and integrating the inequality (6) from a to b yields

(7) 0 ≤ J [η]−
∫ b

a

P (t)
(
η′ − η

y
y′
)2

dt,

which is a contradiction unless J [η] = 0 and η′ − ηy′/y ≡ 0 in [a, b]. The last
relation implies that y must be a constant multiple of η, and so we have, in
particular, y(a) = y(b) = 0. This is the contradiction with the assumption y(t) 6= 0
on [a, b]. The proof is complete. �

As an immediate consequence of Theorem 1 we have the following oscillation
result.

Corollary 1. Let there exist two sequences of disjoint intervals (a−n , b
−
n ),

(a+
n , b

+
n ), t0 ≤ a−n < b−n ≤ a+

n < b+n , a−n →∞ as n→∞ such that

Q(t) ≥ 0 on [a−n , b
−
n ] ∪ [a+

n , b
+
n ],(8)

f(t) ≤ 0 on [a−n , b
−
n ],(9)

f(t) ≥ 0 on [a+
n , b

+
n ],(10)
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n = 1, 2, . . . , and two sequences of nontrivial continuously differentiable functions
η−n (t) and η+

n (t) defined on [a−n , b
−
n ] and [a+

n , b
+
n ], respectively, such that

η−n (a−n ) = η−n (b−n ) = η+
n (a+

n ) = η+
n (b+n ) = 0,

n = 1, 2, . . . , and

(11) J [η±n ] ≡
∫ b±n

a±n

[
P (t)(η±n )′2 − β(β − 1)

1−β
β [Q(t)]

1
β |f(t)|

β−1
β η±2

n

]
dt ≤ 0

for every n ∈ N . Then all solutions of (A) are oscillatory.

Remark 1. Theorem 1 and Corollary 1 improve and extend the corresponding
results in [7].

Our next results will be obtained by comparing the superlinear equation (1)
with the Sturm-Liouville equation

(B) l[x] ≡ (p(t)x′)′ + q(t)x = 0,

where p, q : [t0,∞) → R are continuous functions and p(t) > 0 for t ≥ t0. Analo-
gously as in the case of the nonlinear differential operator Lβ , by Dl(I) we denote
the set of all real-valued functions which are defined and continuous on an interval
I ⊂ [t0,∞) and such that both x and px′ are continuously differentiable on I.

In what follows, instead of the weaker form of Picone’s identity (1) involving
an arbitrary C1-function x, the following stronger version will be used. It can be
readily derived by a straightforward calculation and the verification is left to the
reader.

Lemma 2. If x ∈ Dl(I0) and y ∈ DL(I0) for some non-degenerate subinterval
I0 ⊂ I and y(t) 6= 0 for t ∈ I0, then

d

dt

{
x

y
[yp(t)x′ − xP (t)y′]

}
(12)

= [p(t)− P (t)]x′2 +
[
Q(t)|y|β−1 − f(t)

y
− q(t)

]
x2

+ P (t)
(
x′ − x

y
y′
)2

+ xl[x]− x2

y
{Lβ [y]− f(t)}.

Theorem 2 (Leighton-type comparison theorem). If there exists a nontrivial
solution x ∈ Dl([a, b]) of the linear equation l[x] = 0 in [a, b] such that x(a) =
x(b) = 0 and

V [x] ≡
∫ b

a

[
(p(t)− P (t))x′2 + (β(β − 1)

1−β
β [Q(t)]

1
β |f(t)|

β−1
β − q(t))x2

]
dt(13)

≥ 0,
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then every solution y of the forced superlinear equation (A) satisfying y(t)f(t) ≤ 0
in (a, b) has a zero in [a, b].

Proof. Assume that there exists a solution y of (A) such that y(t) 6= 0 and
y(t)f(t) ≤ 0 in [a, b]. An application of the identity (12) together with (5) leads
to the Picone-type inequality

d

dt

{
x

y
[yp(t)x′ − xP (t)y′]

}
(14)

≥ [p(t)− P (t)]x′2 +
[
β(β − 1)

1−β
β [Q(t)]

1
β |f(t)|

β−1
β − q(t)

]
x2

+ P (t)
(
x′ − x

y
y′
)2

+ xl[x]− x2

y
{Lβ [y]− f(t)}.

Taking the equations (A) and (B) into account and integrating (14) from a to
b gives a contradiction to (13) unless V [x] = 0 and y(t) = cx(t) for some constant
c, i.e., in particular, y(a) = y(b) = 0. But this is again the contradiction with the
assumption y(t) 6= 0 in [a, b]. �

Remark 2. Theorem 2 can be proved also indirectly (without refering to (12))
in the following way.

Since l[x] = 0 on [a, b] and x(a) = x(b) = 0, integration by parts yields

(15)
∫ b

a

[p(t)x′2 + q(t)x2] dt = 0.

Thus, combining (13) with (15) we obtain V [x] = −J [x] ≥ 0 and the conclusion
follows from Theorem 1.

Corollary 2 (Sturm-Picone type comparison theorem). Let Q(t) ≥ 0 in [a, b].
If

p(t) ≥ P (t) > 0,(16)

β(β − 1)
1−β
β [Q(t)]

1
β |f(t)|

β−1
β ≥ q(t),(17)

in [a, b] and there exists a nontrivial solution x ∈ Dl([a, b]) of the linear equation
(B) such that x(a) = x(b) = 0, then any solution of (A) satisfying y(t)f(t) ≤ 0 in
(a, b) has a zero in [a, b].

As a consequence of Theorem 2, we have the following comparison result relating
oscillation property of the forced superlinear equation (A) to that of “conjugacy”
of two sequences of associated “minorant” linear Sturm-Liouville equations (B−n )
and (B+

n ) below considered on sequences of corresponding disjoint intervals [a−n , b
−
n ]

and [a+
n , b

+
n ], respectively.
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Corollary 3. If there exist two sequences of disjoint intervals (a−n , b
−
n ),

(a+
n , b

+
n ), t0 ≤ a−n < b−n ≤ a+

n < b+n , a−n →∞ as n→∞ such that

Q(t) ≥ 0 on [a−n , b
−
n ] ∪ [a+

n , b
+
n ],(18)

f(t) ≤ 0 on [a−n , b
−
n ],(19)

f(t) ≥ 0 on [a+
n , b

+
n ],(20)

n = 1, 2, . . . , and two sequences of Sturm-Liouville equations

l−n [x] ≡ (p−n (t)x′)′ + q−n (t)x = 0,(B−n )

l+n [x] ≡ (p+
n (t)x′)′ + q+

n (t)x = 0,(B+
n )

where p−n , q
−
n : [a−n , b

−
n ] → R and p+

n , q
+
n : [a+

n , b
+
n ] → R are continuous functions

with p−n (t) > 0 and p+
n (t) > 0 with respective nontrivial solutions x−n ∈

Dl−n ([a−n , b
−
n ]) and x+

n ∈ Dl+n ([a+
n , b

+
n ]) satisfying

(21) x−n (a−n ) = x−n (b−n ) = x+
n (a+

n ) = x+
n (b+n ) = 0,

n = 1, 2, . . . , and

V [x±n ] ≡
∫ b±n

a±n

{
[p±n (t)− P (t)](x±n )′2(22)

+ [β(β − 1)
1−β
β (Q(t))

1
β |f(t)|

β−1
β − q±n (t)]x±2

n

}
dt

≥ 0,

for every n ∈ N , then all solutions of (A) are oscillatory.

In our next comparison result which is an immediate consequence of Corollary 2
and which relates oscillation of (A) to that of the linear equation (B), by consec-
utive sign change points of the oscillatory forcing function f we understand
points t1, t2 ∈ [t0,∞), t1 < t2, such that f(t) ≥ 0 (resp. f(t) ≤ 0) on [t1, t2] and
f(t) < 0 (resp. f(t) > 0) on (t1 − ε, t1) ∪ (t2, t2 + ε) for some ε > 0 (see [2]).

Corollary 4. Let Q(t) ≥ 0 on [t0,∞),

p(t) ≥ P (t),(23)

β(β − 1)
1−β
β [Q(t)]

1
β |f(t)|

β−1
β ≥ q(t),(24)

for t ≥ t0 and either (23) or (24) do not become an identity on any open interval
where f(t) ≡ 0. Moreover, suppose that the linear equation (B) is oscillatory
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and the distance between consecutive zeros of any solution of (B) is less than the
distance between consecutive sign change points of the forcing function f . Then
every solution of the superlinear equation (A) is oscillatory.

In the last Corollary, by a quickly oscillating solution of (B) we mean an
oscillatory solution for which the distance between consecutive zero points tn and
tn+1 tends to zero as n → ∞. Also, the oscillatory function f(t) is said to be a
moderately oscillating function if the distance between any consecutive sign
change points of f remains bounded from below by some positive constant c.

Corollary 5. Suppose that Q(t) ≥ 0 for t ≥ t0. If (23) and (24) hold, the
function f is moderately oscillating function and every solution of (B) is quickly
oscillatory, then every nontrivial solution of (A) is oscillatory, too.
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