
Acta Math. Univ. Comenianae

Vol. LXIX, 1(2000), pp. 85–95

85

ON THE COMPUTATION OF SYMBOLIC

POWERS OF SOME CURVES IN A4

�S. SOL�CAN

Abstract. In the paper the powers of the prime ideal P of monomial Gorenstein
curves in affine 4-space are investigated. The equality of the second ordinary and

symbolic powers is shown and 6 elements generating the symbolic cube of P over

the ordinary one are found. An example of symbolic Rees algebra of finite type is
presented.

1. Introduction

Monomial curves C (n1, n2, n3) in affine space A3 with the generic zero
(tn1 , tn2 , tn3) appear frequently in mathematic considerations. It is known that
minimal number µ (P ) of the associated prime P of this curve is either 2 or 3 and
µ (P ) = 2 (i.e. P is a complete intersection) iff the second ordinary and symbolic
powers coincide, P 2 = P (2). This is also equivalent to the fact that the numeric
semigroup S = 〈n1, n2, n3〉 is symmetric. In case µ (P ) = 3 the curve C is a
set-theoretic complete intersection and P 2 6= P (2); P (2) =

(
P 2,∆

)
, see [7]. Schen-

zel and Vasconcelos also showed that in some cases the symbolic Rees algebra
S (P ) = ⊕n≥0P

(n) is an A-algebra of finite type.
W. V. Vasconcelos noted in [8] there were very few general descriptions of

the equations of the symbolic cube algebra R
[
It, I(2)t2, I(3)t3

]
of an ideal I of a

regular local ring R. Schenzel found them for a certain classe of non-complete
intersection prime ideals of monomial curves in A3 (see [7]) and showed that the
module P (3)/P.P (2) is generated by at most 3 elements (see [5]). More complete
picture on symbolic powers and blowup algebras can be found in Vasconcelos nice
book [8]. The above mentioned results are on pp. 201, 203, 221.

Our aim is to extend some techniques and results of [7] in order to get in-
formation on ideals of some monomial curves C (n1, n2, n3, n4) in A4. Here the
symmetry of S = 〈n1, n2, n3, n4〉 does not imply C is complete intersection; the
ideal P of the curve C can be generated by 5 elements given by the Pfaffians of
4× 4 minors obtained from a 5× 5 skew-symmetric matrix I5 (P ) by deleting the
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i-th row and column (see [3] and [1]). It is not difficult to show that this matrix
is (in notation of [1], see Proposition 2.1):

I5(P ) =


0 0 xα13

3 xα21
1 xα32

2

0 0 xα31
1 xα14

4 xα43
3

−xα13
3 −xα31

1 0 xα42
2 xα24

4

−xα21
1 −xα14

4 −xα42
2 0 0

−xα32
2 −xα43

3 −xα24
4 0 0


From [3] one can see that P 2 is generated by all 4 × 4 minors of this matrix.
This can be shown also by direct calculation. It is also known that P is in the
linkage class of a complete intersection (i.e. P is a licci ideal, see [9] or [3]). From
[4], Corollary 2.9 it follows then that the second ordinary and symbolic powers
coincide but the third ones do not, P 3 6= P (3).

We will prove this equality resp. non-equality again by computing some lengths
(Corollaries 3.6 and 3.8) and show that symbolic cube P (3) =

(
P 3, d1, . . . , d6

)
for

some explicit given elements di (Theorem 3.9). Though the latter is made just for
several cases one can see how it works in general. In the last section we compute
the symbolic Rees algebra of the prime ideal P of the curve

(
t5, t6, t7, t8

)
and show

it is an A-algebra of finite type. By virtue of [9] the ideal P is then set-theoretic
complete intersection as known also by Bresinsky [2].

The computation of test examples (some of them are included in this paper, see
Example 3.1 and the Example in the 4th section) has been made using Computer
algebra system Macaulay created by D. Bayer and M. Stillman.

2. Monomial Curves

Let ni, i = 1, 2, 3, 4 be positive integers with g.c.d. (n1, n2, n3, n4) = 1 and
C (n1, n2, n3, n4) a curve in A4

k, k an arbitrary field, given parametricaly by
xi = Tni for i = 1, 2, 3, 4. Let P be the corresponding prime ideal in A =
k [x1, x2, x3, x4](x1,x2,x3,x4). Putting deg xi = ni A becomes a graded k-algebra
and P a homogeneous prime ideal with dim (p) = 1 and height ht (p) = 3.

Denote S = 〈n1, n2, n3, n4〉 the additive semigroup generated by n1, n2, n3,

n4, S = {z ∈ Z; z =
∑
zini, zi ∈N ∪ {0}}. Assume no proper subset of {n1, n2,

n3, n4} generates S. The semigroup S is said to be symmetric if there is an integer
m ∈ Z such that for all z ∈ Z: z ∈ S ⇔ m−z /∈ S (see e.g. [6] or [1]). H. Bresinsky
has shown that if S is symmetric then the prime ideal P has either 3 generators
(i.e. P is a complete intersection) or P is generated minimally by 5 exactly (up to
isomorphism) given elements (see [1], Theorems 3 and 5):

Proposition 2.1. The semigroup S = 〈n1, n2, n3, n4〉 is symmetric and P not
a complete intersection if and only if P = (f1, f2, f3, f4, g), where the polynomials
f1 = xα1

1 −x
α13
3 xα14

4 , f2 = xα2
2 −x

α21
1 xα24

4 , f3 = xα3
3 −x

α31
1 xα32

2 , f4 = xα4
4 −x

α42
2 xα43

3

are unique up to isomorphism and g = xα43
3 xα21

1 − xα32
2 xα14

4 .
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In this case then

n1 = α2α3α14 + α32α13α24,

n2 = α3α4α21 + α31α43α24,

n3 = α1α4α32 + α14α42α31,

n4 = α1α2α43 + α42α21α13,

with αi > 0, 0 < αji < αi, 1 ≤ i, j ≤ 4 and α1 = α31 + α21, α2 = α32 + α42,
α3 = α13 + α43, α4 = α24 + α14.

3. Symbolic Powers

Let (A,M) be local noetherian ring with its maximal ideal M . For a prime
ideal P denote P (n) = PnAP ∩A the n-th symbolic power of P .

For our calculations we need some lemmas.

Lemma 3.1. Let Q be an M -primary ideal of a local ring (A,M) and x an
element of A. Then

L (A/ (Q, x)) = L (A/Q)− L (A/Q : x) .

Lemma 3.2. Let P be a prime ideal of a regular local ring (A,M) with
dimA = 4 and dimP = dimA/P = 1. Let I be an ideal and x /∈ P an element
such that

1. Pn ⊆ I ⊆ P (n)

2. L (A/ (I, x)) =
(
n+2

3

)
· e (x,A/P ) .

Then I = P (n).

The lemma and its proof is a modification of the Lemma 2.3 of [7]. Note that
x is a parameter in A/P and L (AP /Pn.AP ) =

(
n+2

3

)
since Pn.AP is a power of

the maximal ideal in the 3-dimensional regular local ring AP .
Putting I = Pn we can find whether Pn = P (n) or not. Then the converse is

also true:

Lemma 3.3. Let P , x, A be as above. Then Pn = P (n) if and only if
L(A/(Pn, x)) = L(AP /Pn.AP ).e (x,A/P ).

Proof. If Pn = P (n) then A/Pn is Cohen-Macaulay and L (A/ (Pn, x)) =
e (x,A/Pn) = L (AP /Pn.AP ) .e (x,A/P ). If the equation holds then L(A/(Pn, x))
= e (x,A/Pn), the ring A/Pn is Cohen-Macaulay and Pn = P (n). �

In the following let P = (f1, f2, f3, f4, g) be the non-complete intersection prime
ideal of local ring A = k [x1, x2, x3, x4](x1,x2,x3,x4) corresponding to the curve
C (n1, n2, n3, n4) with S = 〈n1, n2, n3, n4〉 symmetric as in Proposition 2.1. Then
it holds
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Corollary 3.1. P 2 = P (2) iff L
(
A/
(
P 2, xi

))
= 4 · ni and P 3 = P (3) iff

L
(
A/
(
P 3, xi

))
= 10 · ni.

Proof. Putting n = 2 (or 3) we get L (AP /Pn.AP ) = 4 (or 10). We use the
previous lemma for x = xi. Though it is known that e (xi, A/P ) = ni, we prove
it for some cases (used in the next Proposition) by our techniques. Consider four
conditions on the numbers αij as follows :

a) α32 ≤ α42 and α13 ≤ α43

b) α32 ≥ α42 and α13 ≤ α43

c) α32 ≤ α42 and α13 ≥ α43

d) α32 ≥ α42 and α13 ≥ α43.

Then in the first 3 cases we show that e (x1, A/P ) = n1 and in the last one that
e (x4, A/P ) = n4. In all cases the element x1 (x4) is a parameter in one-dimensional
Cohen-Macaulay ring A/P and e (xi, A/P ) = L (A/ (P, xi)). Thus it is enough to
calculate the length of A/Q for Q = (xi, P ), i = 1, 4.

In case a) we have xα4+α14
4 ∈ Q. Putting Q0 =

(
xα2

2 , xα3
3 , xα4+α14

4

)
and a1 =

xα32
2 xα14

4 , a2 = xα13
3 xα14

4 , a3 = xα4
4 −x

α42
2 xα43

3 , we get that Q = (x1, Q0, a1, a2, a3).
Since

Q : a1 = (xα42
2 , xα3

3 , xα4
4 ) =:Q1

(Q, a1) : a2 = (xα32
2 , xα43

3 , xα4
4 ) =:Q2

(Q, a1, a2) : a3 = (xα32
2 , xα13

3 , xα14
4 ) =:Q3

it holds

L (A/Q) = L (A/Qo)−
∑

L (A/Qi) = α2α3 (α4 + α14)

− α42α3α4 − α32α43α4 − α32α13α14 = α2α3α14 + α32α13α24 = n1.

The calculations for the cases b) and c) are the same as the first one. In the last
case α32 ≥ α42 and α13 ≥ α43 we show that e (x4, A/P ) = n4. Here Q = (x4, P )
and xα3+α43

3 ∈ Q. The calculations are then similar and we see that

� e (x4, A/P ) = L (A/ (P, x4)) = α1α2α43 + α42α21α13 = n4.

�

Proposition 3.1. Let P = (f1, f2, f3, f4, g) be as before. Assume one of the
conditions a),b),c),d) from the proof of the the Corollary 3.4 holds. Then in the
cases a), b) and c) it follows that

L
(
A/
(
P 2, x1

))
= 4 · n1

and in the case d) it holds

L
(
A/
(
P 2, x4

))
= 4 · n4.
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Corollary 3.2. The second symbolic and ordinary powers of the above prime
ideal P coincide, i.e. P 2 = P (2).

Remark 3.1. It follows then that A/P 2 is a Cohen-Macaulay ring. Though the
ring A/P is Gorenstein (see [2] and [3]), the ring A/P 2 need not to be Gorenstein.
Moreover in all (for me) know examples the type of Cohen-Macaulay ring A/P 2

is 10, so in these cases A/P 2 is not Gorenstein which is of type 1 (see [6, p. 195]).
One can see this also from the resolution of A/P 2 (see [3]). It seems to me that
it holds in general for all non-complete intersection Gorenstein prime ideals of
monomial curves in A4.

Proof. The case a). It is easy to see that(
P 2, x1

)
=
(
x1, x

2α2
2 , x2α3

3 , x2α4
4 , a1, a2, . . . , a12

)
with

a1 = xα2+α32
2 xα14

4 , a2 = x2α32
2 x2α14

4 ,

a3 = xα32
2 xα4+α14

4 , a4 = xα3+α13
3 xα14

4 ,

a5 = x2α13
3 x2α14

4 , a6 = xα13
3 xα4+α14

4 ,

a7 = xα2
2 xα3

3 , a8 = xα32
2 xα13

3 x2α14
4 ,

a9 = xα2
2 xα13

3 xα14
4 , a10 = xα32

2 xα3
3 xα14

4 ,

a11 = xα2+α42
2 xα43

3 , a12 = xα42
2 xα3+α43

3 .

Put I0 =
(
x2α2

2 , x2α3
3 , x2α4

4

)
, I1 = (I0, a1), . . . and Ik = (Ik−1, ak) for all k =

1, 2, . . . , 12.
Let’s denote Ik−1 : ak = Jk and L (A/Jk) = Ak. Then we get

J1 =
(
xα42

2 , x2α3
3 , xα4+α24

4

)
, J2 =

(
xα42

2 , x2α3
3 , x2α24

4

)
,

J3 =
(
xα32

2 , x2α3
3 , xα24

4

)
,

J4 =
(
xα2+α32

2 , xα43
3 , xα4+α24

4 , x2α32
2 xα14

4 , xα32
2 xα4

4

)
,

J5 =
(
x2α32

2 , xα43
3 , x2α24

4 , xα32
2 xα24

4

)
, J6 = J8 = (xα32

2 , xα13
3 , xα24

4 ) ,

J7 =
(
xα2

2 , xα3
3 , x2α14

4 , xα32
2 xα14

4 , xα13
3 xα14

4

)
, J9 = (xα32

2 , xα43
3 , xα14

4 ) ,

J10 = (xα42
2 , xα13

3 , xα14
4 ) , J11 = J12 = (xα32

2 , xα13
3 , xα14

4 ) ,

A1 = 2α42α3 (α4 + α24) , A2 = 4α42α3α24,

A3 = 2α32α3α24, A4 = 2α32α43α14 + 3α32α43α24 + α42α43α14,

A5 = 3α32α43α24, A6 = α32α13α24,

A7 = 2α32α13α14 + α42α13α14 + α32α43α14 + α42α43α14

A8 = α32α13α24, A9 = α32α43α14,

A10 = α42α13α14, A11 = A12 = α32α13α14.
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Using Lemma 3.1 and relations from Proposition 2.1 we get then L
(
A/
(
P 2, x1

))
= 2 (8α2α3α4 + α3 + α4)−

∑
Ai = 4n1.

The proof of case d). The assumptions here imply that x2(α3+α43)
3 is in P 2 and(

P 2, x4

)
=
(
x4, x

2α1
1 , x2α2

2 , x
2(α3+α43)
3 , d1, d2, . . . , d14

)
with

d1 = xα2+α42
2 xα43

3 , d2 = x2α42
2 x2α43

3 , d3 = xα42
2 xα3+2α43

3 ,

d4 = xα1+α21
1 xα43

3 , d5 = x2α21
1 x2α43

3 , d6 = xα21
1 xα3+α43

3 ,

d7 = xα1
1 xα2

2 , d8 = xα31
1 xα2+α32

2 , d9 = xα21
1 xα2

2 xα43
3 ,

d10 = xα21
1 xα42

2 x2α43
3 , d11 = xα1

1 xα42
2 xα43

3 ,

d12 = xα1
1 xα3

3 − x
α1+α31
1 xα32

2 , d13 = xα42
2 xα3+α43

3 − xα31
1 xα2

2 xα43
3 ,

d14 = x2α3
3 − 2xα31

1 xα32
2 xα3

3 + x2α31
1 x2α32

2 .

Then we can calculate as before that

L
(
A/
(
P 2, x4

))
= 8 · α1α4 (α3 + α43)−

∑
Di = 4n4,

having Di = L (A/ (Ik−1 : di)) and Ik = (Ik−1, dk). �

Proposition 3.2. Let P = (f1, f2, f3, f4, g) be the non-complete intersection
prime ideal corresponding to the curve C (n1, n2, n3, n4) with S = 〈n1, n2, n3, n4〉
symmetric; assume one of the following four conditions on the numbers αij is
satisfied

a-1) α32 ≤ α42, α13 ≤ α43 and α14 ≤ α24 or
a-2) α32 ≤ α42, α13 ≤ α43 and α24 ≤ α14 or
b-1) α42 ≤ α32, α13 ≤ α43 and α14 ≤ α24 or
b-2) α42 ≤ α32, α13 ≤ α43 and α24 ≤ α14.

Then L
(
A/
(
P 3, x1

))
= 10 · n1 + 6 · t, where t = α32α13α14 in case a-1),

t = α32α13α24 in case a-2), t = α42α13α14 in case b-1), t = α42α13α24 in case b-2),
i.e. t is a product of 3 numbers: min {α32, α42}, min {α13, α43}, min {α14, α24}.

The proof of this proposition is made in the same way as the proof of the fact
L
(
A/
(
P 2, x1

))
= 4 ·n1 (see Proposition 3.1). It is just more complicated and the

calculations are rather long and unpleasant. In the simplest case a-1) the ideal(
P 3, x1

)
is generated by monomials and contains x3α4

4 ; in the other cases this ideal
is no more monomial and the lowest power of x4 in it is x2α4+2α14

4 in case a-2) and
x3α4+3α14

4 in the last 2 cases.

Corollary 3.3. Under the assumptions of the previous Proposition 3.2 is
P 3 6= P (3).

Remark 3.2. From the Corollaries 3.2 and 3.3 we get that S is symmetric and
P 3 = P (3) iff P is a complete intersection.

Let’s clear the further general computations by an example.
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Example 3.1. The numerical semigroup Sk = 〈5, 5k + 1, 5k + 2, 5k + 3〉 is
symmetric for all k ≥ 1. The corresponding prime ideal of the curve C(5k +
2, 5; 5k+ 1; 5k+ 3) is p = (x2

1−x3x4, x
2k+1
2 −x1x4, x

2
3−x1x

k
2 , x4−xk+1

2 x3, x1x3−
xk2x4). Take k = 1 and S1 = 〈5, 6, 7, 8〉. We use in the following x, y, z, w instead
of x1, x2, x3, x4. Then the prime ideal for C (5, 6, 7, 8) given by computer program
Macaulay is P = (F1 , . . . , F5) where F1 = y2 − xz, F2 = yz − xw, F3 = z2 − yw,
F4 = x3 − zw, F5 = x2y − w2. There are relations

R1: zF1 − yF2 + xF3 = 0

R2: wF1 − zF2 + yF3 = 0

R3: −wF2 − yF4 + xF5 = 0

R4: −x2F1 − wF3 − zF4 + yF5 = 0

R5: −x2F2 − wF4 + zF5 = 0.

From the relations R1, R2, R3 we can derive a new one

y
(
F 2

2F5 − F1F3F5 − F2F3F4

)
= w

(
F 2

1F5 + F 2
2F3

)
.

Since y /∈ P there is an element d1 such that yd1 = F 2
1F5 + F 2

2F3 and d1 ∈ P (3).
In this way we can find further relations and elements d2 . . . , d6:

wd2 = F 3
5 − xF1F4F5 − xF2F

2
4 , zd3 = xF1F

2
2 − F 2

3F4,

wd4 = F3F4F5 − F2F
2
5 + xF1F2F4, zd5 = F 3

3 − xF 2
1F2 + F1F3F5,

zd6 = F3F4F5 − xF1F2F4 + xF 2
2F3.

Then

d1 ≡ yz4 − y3w2 − y2z2w ( mod x) , d2 ≡ w5 ( mod x) ,

d3 ≡ z4w − 2yz2w2 + y2w3 ( mod x) , d4 ≡ z3w2 − 2yzw3 ( mod x) ,

d5 ≡ z5 − 3yz3w + 2y2zw2 ( mod x) , d6 ≡ z2w3 − yw4 ( mod x) .

It is easy to see that all the elements di are different.
We show that P (3) = (P 3, d1, . . . , d6). First we see that (P 3, x) = (x, (y, z, w)6)

and L(A/(P 3, x)) = 56 = 10n1 + 6.
Put Q0 =

(
P 3, x

)
, Qi = (Qi−1, di) for i = 1, 2, . . . , 6, then

Qi−1 : di = (y, z, w) ( mod x) .

Then L(A/(P 3, x, d1, . . . , d6)) = 56 − 6 = 50 = 10 · n1 and P (3) =
(P 3, d1, d2, . . . , d6) by virtue of Lemma 3.2.

We can now generalize these computations:
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Theorem 3.1. Let P, f1, f2, f3, f4, g be as in the Proposition 3.2. There are
6 elements d1, . . . , d6 ∈ P (3) such that

(
P 3, d1, . . . , d6

)
= P (3) and the following

relations hold:
(putting ε1 = max {0, α31 − α21}, δ1 = max {0, α21 − α31})

1. if α32 ≤ α42, α13 ≤ α43 and α14 ≤ α24 then

xα32
2 d1 = xα24−α14

4 f4g
2 − xα43−α13

3 f2
2 f3

xα14
4 d2 = xδ11 f1f

2
4 − x

ε1
1 x

α42−α32
2 f2g

2

xα13
3 d3 = xδ11 x

α42−α32
2 f3

3 − x
ε1
1

(
xα24−α14

4 f2
1 g + f1f2f3

)
xα14

4 d4 = xδ11 x
α43−α13
3 f1f3f4 − xε11

(
f4g

2 + xα43−α13
3 f1f2g

)
xα14

4 d5 = xδ11 f
3
4 − x

α42−α32
2 xα43−α13

3

(
xδ11 f2f3f4 + xε11 f

2
2 g
)

xα32
2 d6 = xδ11

(
xα43−α13

3 f1f2f3 − f3f4g
)
− xε11 f2g

2

2. if α32 ≤ α42, α13 ≤ α43 and α24 ≤ α14

xα32
2 d1 = f4g

2 − xα43−α13
3 xα14−α24

4 f2
2 f3

xα24
4 d2 = xδ11 f1f

2
4 − x

ε1
1 x

α42−α32
2 f2g

2

xα13
3 d3 = xδ11 x

α42−α32
2 xα14−α24

4 f3
3 − x

ε1
1

(
f2

1 g + xα14−α24
4 f1f2f3

)
xα24

4 d4 = xδ11 x
α43−α13
3 f1f3f4 − xε11

(
f4g

2 + xα43−α13
3 f1f2g

)
xα24

4 d5 = xδ11 f
3
4 − x

α42−α32
2 xα43−α13

3

(
xδ11 f2f3f4 + xε11 f

2
2 g
)

xα32
2 d6 = xδ11

(
xα43−α13

3 f1f2f3 − f3f4g
)
− xε11 f2g

2.

Remark 3.3. Comparing a-1) and a-2) one can see how the relations change if
some inequality does. So if in a-1) changes α13 ≤ α43 to α43 ≤ α13 (we get b-1) case
from the Proposition 3.2) the relation for d1 changes from xα32

2 d1 = xα24−α14
4 f4g

2−
xα43−α13

3 f2
2 f3 to xα32

2 d1 = xα13−α43
3 xα24−α14

4 f4g
2−f2

2 f3 etc. Relations not involving
x3 in positive power stay unchanged (e.g. xα14

4 d2 = xδ11 f1f
2
4 − x

ε1
1 x

α42−α32
2 f2g

2)
but relations with xα13

3 on the left side change the power to xα43
3 :

xα43
3 d3 = xδ11 x

α42−α32
2 f3

3 − x
ε1
1

(
xα24−α14

4 f2
1 g + f1f2f3

)
.

Proof of the Theorem 3.2. From the Proposition 3.2 we know that L(A/(P 3, x1))
= 10 · n1 + 6 · t, where t = αβγ is a product of 3 numbers: α = min {α32, α42},
β = min {α13, α43},γ = min {α14, α24}.

Using the notation of Bresinsky (see Proposition 2.1) we have 5 relations:

R1: xα43
3 f1 + xα14

4 f3 − xα31
1 g = 0

R2: xα32
2 f1 + xα21

1 f3 − xα13
3 g = 0

R3: xα43
3 f2 + xα32

2 f4 + xα24
4 g = 0

R4: xα14
4 f2 + xα21

1 f4 + xα42
2 g = 0

R5: xα24
4 f1 + xα31

1 f2 + xα42
2 f3 + xα13

3 f4 = 0
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(they can be obtained from the matrix equation I5 (P ) .JT = 0 where J =
(−f4,−f2,−g, f3, f1) and symbol I5 (P ) is defined in Section 1.1).

As in the above Example 3.2 we can derive from these relations new ones and
to find elements d1, . . . , d6 which have in different situations little modified form.

We prove our claim for a-1) ; the other cases are in principle the same. In the
following we need in some cases to differ between the numbers α21 and α31. Denote
the wanted elements di, d′i, d

′′
i in case α31 > α21, α31 = α21, resp. α31 < α21.

Then in case a-1)

d1 ≡ d′1 ≡ d′′1 ≡ x
α32
2 x2α4

4 − xα2
2 xα43

3 xα4
4 − x

α2+α42
2 x2α43

3 ( mod x1) ,

d2 ≡ xα13
3 x2α4

4 − 2xα42
2 xα3

3 xα4
4 + x2α42

2 xα3+α43
3 ( mod x1) ,

d′2 ≡ d2 + x2α2
2 xα14

4 ( mod x1) ,

d′′2 ≡ d′2 − d2 ≡ x2α2
2 xα14

4 ( mod x1) ,

d3 ≡ xα42−α32
2 x2α3+α43

3 ( mod x1) ,

d′3 ≡ d3 + xα32
2 xα13

3 xα4+α14
4 + xα2

2 xα3
3 xα14

4 ( mod x1) ,

d′′3 ≡ d′3 − d3 ≡ xα32
2 xα13

3 xα4+α14
4 + xα2

2 xα3
3 xα14

4 ( mod x1) ,

d4 ≡ xα42
2 xα3+2α43

3 − xα3+α43
3 xα4

4 ( mod x1) ,

d′4 ≡ d4 + x2α32
2 xα4+2α14

4 ( mod x1) ,

d′′4 ≡ d′4 − d4 ≡ x2α32
2 xα4+2α14

4 ( mod x1) ,

d5 ≡ x2α4+α24
4 − 3xα42

2 xα43
3 xα4+α24

4 + 2x2α42
2 x2α43

3 xα24
4 ( mod x1) ,

d′5 ≡ d5 − x2α2+α42
2 xα43−α13

3 ( mod x1) ,

d′′5 ≡ d5 − d′5 ≡ x
2α2+α42
2 xα43−α13

3 ( mod x1) ,

d6 ≡ 2xα42
2 xα3+α43

3 xα14
4 − xα3

3 xα4+α14
4 ( mod x1) ,

d′6 ≡ d6 − xα2+α32
2 x2α14

4 ( mod x1) ,

d′′6 ≡ d6 − d′6 ≡ x
α2+α32
2 x2α14

4 ( mod x1) .

Following the idea from the above example put Q0 =
(
P 3, x1

)
, Qi = (Qi−1, di) for

i = 1, 2, . . . , 6, then

Qi−1 : di = (xα32
2 , xα13

3 , xα14
4 ) ( mod x1) for all i.

Then we have L
(
A/
(
P 3, x1, d1, . . . , d6

))
= (10.n1 + 6 · t) − 6 · t with t =

α32α13α14. It follows then that
(
P 3, d1, . . . , d6

)
= P (3).

4. Finite Symbolic Algebras

Let us turn to the curve C (5, 6, 7, 8) from the previous example. Put D =
(d1, . . . , d6) and R = A

[
Pt,Dt3

]
.
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Let ϕ:A [T1, T2, . . . , T11]→ R be the natural epimorphism sending

Ti 7→ fit for i = 1, 2, 3, 4

T5 7→ gt and

Ti 7→ di−5t
3 for i = 6, . . . , 11.

Then ϕ induce isomorphisms

ϕ′:A [T1, . . . , T11] /Kerϕ→ R and

ϕ∗: k [T1, . . . , T11] / (Kerϕ,M)→ R/MR.

We need to compute the analytic spread a(P (3)) of P (3) in order to use the following
lemma for deciding on finiteness of S (P ) (see [7, Theorem 2.1 and Corollary 2.2]).

Lemma 4.4. For a P -primary ideal Q of an unmixed local ring (A,M) the
following conditions are equivalent:

1. S (Q) is an A-algebra of finite type.
2. There is an integer k such that a(Q(k)Ap) < dimAp for all prime ideals

p ⊃ P .

Using computer program Macaulay we get that

Kerϕ∗ = I = (g1, . . . , g40) =
(
T 3

2 − T1T2T3 + T 2
1 T4, . . . , T6T7 + T 2

11

)
and dimR/MR = 3. Because P (3) =

(
P 3, d1, . . . , d6

)
,

a(P (3)) = dimR
(
P (3)

)
/MR

(
P (3)

)
= dimR/MR = 3 < 4 = dimAM ,

thus the symbolic Rees algebra S (P ) is an A-algebra of finite type.
Note that the computations were on the edge of our computer possibilities;

e.g. we could not correctly compute the standard basis of Kerϕ∗ for the curve
C (5, 7, 8, 9) though it is not too much “complicated” curve.
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