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ON THE COMPUTATION OF SYMBOLIC
POWERS OF SOME CURVES IN A%

S. SOLCAN

ABSTRACT. In the paper the powers of the prime ideal P of monomial Gorenstein
curves in affine 4-space are investigated. The equality of the second ordinary and
symbolic powers is shown and 6 elements generating the symbolic cube of P over
the ordinary one are found. An example of symbolic Rees algebra of finite type is
presented.

1. INTRODUCTION

Monomial curves C (ni,no,n3) in affine space A% with the generic zero
(t™,t"2 ¢"3) appear frequently in mathematic considerations. It is known that
minimal number p (P) of the associated prime P of this curve is either 2 or 3 and
wu(P) =2 (i.e. P is a complete intersection) iff the second ordinary and symbolic
powers coincide, P? = P(?). This is also equivalent to the fact that the numeric
semigroup S = (n1,n2,n3) is symmetric. In case pu(P) = 3 the curve C is a
set-theoretic complete intersection and P? # P(); p(2) = (Pz, A), see m Schen-
zel and Vasconcelos also showed that in some cases the symbolic Rees algebra
S(P) = @nZOP(”) is an A-algebra of finite type.

W. V. Vasconcelos noted in [8] there were very few general descriptions of
the equations of the symbolic cube algebra R [It, 12 1(3)t3] of an ideal I of a
regular local ring R. Schenzel found them for a certain classe of non-complete
intersection prime ideals of monomial curves in A? (see [7]) and showed that the
module P /P.P(?) is generated by at most 3 elements (see [5]). More complete
picture on symbolic powers and blowup algebras can be found in Vasconcelos nice
book [8] The above mentioned results are on pp. 201, 203, 221.

Our aim is to extend some techniques and results of [7] in order to get in-
formation on ideals of some monomial curves C (ny,ng,n3,n4) in A*. Here the
symmetry of S = (ny,na,n3,n4) does not imply C' is complete intersection; the
ideal P of the curve C can be generated by 5 elements given by the Pfaffians of
4 x 4 minors obtained from a 5 x 5 skew-symmetric matrix Is (P) by deleting the
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i-th row and column (see [3] and [I]). It is not difficult to show that this matrix
is (in notation of [IJ, see Proposition 2.1):

0 0 xgm $i¥21 1‘332

0 0 1.<1131 xZM 1:?43

I5 (P) — 756?13 71:(1131 0 x;mz 1,2424
*1‘(1121 71,214 733342 0 0
793332 71,?43 793224 0 0

From [3] one can see that P? is generated by all 4 x 4 minors of this matrix.
This can be shown also by direct calculation. It is also known that P is in the
linkage class of a complete intersection (i.e. P is a licci ideal, see [@] or [3]). From
[E], Corollary 2.9 it follows then that the second ordinary and symbolic powers
coincide but the third ones do not, P? # P(®),

We will prove this equality resp. non-equality again by computing some lengths
(Corollaries 3.6 and 3.8) and show that symbolic cube P®) = (P3,dy, ..., dg) for
some explicit given elements d; (Theorem 3.9). Though the latter is made just for
several cases one can see how it works in general. In the last section we compute
the symbolic Rees algebra of the prime ideal P of the curve (¢°,¢%,¢7,¢®) and show
it is an A-algebra of finite type. By virtue of [J] the ideal P is then set-theoretic
complete intersection as known also by Bresinsky [Z].

The computation of test examples (some of them are included in this paper, see
Example 3.1 and the Example in the 4th section) has been made using Computer
algebra system Macaulay created by D. Bayer and M. Stillman.

2. MoNOMIAL CURVES

Let n;, @ = 1,2,3,4 be positive integers with g.c.d. (ni,ne,ng,ng) = 1 and
C (n1,n2,n3,m4) a curve in A}, k an arbitrary field, given parametricaly by
x; = T™ for i = 1,2,3,4. Let P be the corresponding prime ideal in A =
klx1, 2,23, %4] (4, 4y 05,00 Putting degz; = n; A becomes a graded k-algebra
and P a homogeneous prime ideal with dim (p) = 1 and height ht (p) = 3.

Denote S = (ni,ns,n3,ng) the additive semigroup generated by ni,ns,ns,
ng, S={2€Z;2=>2zmn;,2, € NU{0}}. Assume no proper subset of {n,ns,
ng, ng} generates S. The semigroup S is said to be symmetric if there is an integer
m € Z suchthat forallz € Z:z€ S < m—2z ¢ S (seee.g.[B] or [I]). H. Bresinsky
has shown that if S is symmetric then the prime ideal P has either 3 generators
(i.e. P is a complete intersection) or P is generated minimally by 5 exactly (up to
isomorphism) given elements (see [I], Theorems 3 and 5):

Proposition 2.1.  The semigroup S = (n1,ng, ng, ng) is symmetric and P not
a complete intersection if and only if P = (f1, fo, f3, fa,9), where the polynomials

_ Q1 (13,0014 Q2 (21, (i2g __ Q3 (31,0032 Q4 042, 0143
fi =2 3Pyt fo = x5 =M xy?t, f3 = 257 — 1P 2y, fa = xyt — x5y

are unique up to isomorphism and g = x5z — 532y,

Ty
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In this case then

n1 = Q03014 + 320013024,
Ny = Q30igQia1 + (31430024,
ng = Q10yQ32 + 140420031,

N4 = Q102043 + Q2021 0013,

with oy > 0, 0 < a3 < a3, 1 < 7,5 <4 and aq = ag1 + a1, 0 = a3z + auo,
a3 = 013 + 043, g = Qo4 + Q14

3. SYMBOLIC POWERS

Let (A, M) be local noetherian ring with its maximal ideal M. For a prime
ideal P denote P("™) = P"Ap N A the n-th symbolic power of P.
For our calculations we need some lemmas.

Lemma 3.1. Let Q be an M-primary ideal of a local ring (A, M) and x an
element of A. Then

L(A/(Q,x)) = L(A/Q) = L(A/Q :x).

Lemma 3.2. Let P be a prime ideal of a regular local ring (A, M) with
dimA =4 and dim P = dim A/P = 1. Let I be an ideal and x ¢ P an element
such that

1. prcIcCpm
2. L(A/(Lz) = ("§?) -e(x, A/P).
Then I = P(™).

The lemma and its proof is a modification of the Lemma 2.3 of [Z]. Note that
x is a parameter in A/P and L (Ap/P". Ap) = (";‘2) since P". Ap is a power of
the maximal ideal in the 3-dimensional regular local ring Ap.

Putting I = P™ we can find whether P" = P or not. Then the converse is

also true:

Lemma 3.3. Let P, x, A be as above. Then P" = P if and only if
L(A/(P",z)) = L(Ap/P".Ap).e(z,A/P).

Proof. If P" = P then A/P" is Cohen-Macaulay and L (A/(P",z))
e(x,A/P™)=L(Ap/P™.Ap).e(x,A/P). If the equation holds then L(A/(P™, x)
= e(x, A/P"), the ring A/P™ is Cohen-Macaulay and P™ = P(™),

o=

In the following let P = (f1, fo, f3, fa, g) be the non-complete intersection prime
ideal of local ring A = k[I17I2,$3,$4](I1 2,53,34) corresponding to the curve
C (n1,n2,n3,n4) with S = (nq, ng, n3, n4) symmetric as in Proposition EZJ. Then
it holds
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Corollary 3.1. P? = P® ff L(A/(P% ;) = 4-n; and P? = P® ff
L(A/(P% ;) =10-n;.

Proof. Putting n = 2 (or 3) we get L (Ap/P™.Ap) = 4 (or 10). We use the
previous lemma for £ = x;. Though it is known that e (x;, A/P) = n;, we prove
it for some cases (used in the next Proposition) by our techniques. Consider four
conditions on the numbers «;; as follows :

a) azz < agz and ag3 < s

b) sz > ayz and a1z < ags

¢) aze < age and a1z > aus

d) asz > aye and a3 > aus.
Then in the first 3 cases we show that e (z1, A/P) = ny and in the last one that
e (x4, A/P) = ny. In all cases the element x; (x4) is a parameter in one-dimensional
Cohen-Macaulay ring A/P and e (z;, A/P) = L(A/ (P, x;)). Thus it is enough to
calculate the length of A/Q for Q = (z;, P), i =1, 4.

In case a) we have z{*T** € Q. Putting Qo = (ng,x§3,xf4+o‘14) and a; =

@32 ,,014 Q13,14 Q42,43

xS2rgM ) ag = x§PagM, ag =zt — 292 xd*, we get that Q = (x1, Qo, a1, a2, as).
Since
Q:ap = (x5*2, 253, 24*) =:(h
(Q,a1) a2 = (5°%, 23", 24*) =1 Q2
(Q,a1,a2) a3 = (2532, 23", x4**) =: Q3
it holds

L(A/Q) =L (A/Qo) =Y L(A/Qi) = asas (a4 + a1a)
— Olg2(i30y — (32043004 — (X32(X13( 4 = (N2 (V3 (Y14 + Q320013024 = 1.

The calculations for the cases b) and c) are the same as the first one. In the last
case iz > oy and agg > ayg we show that e (x4, A/P) = ng. Here Q = (x4, P)
and x§3+a43 € Q. The calculations are then similar and we see that

O e(x4,A/P) = L(A/(P,x4)) = c1aaoys + o1z = ny.
O

Proposition 3.1. Let P = (f1, f2, f3, fa,9) be as before. Assume one of the
conditions a),b),c),d) from the proof of the the Corollary 3.4 holds. Then in the
cases a), b) and c) it follows that

L(A/(P* 1)) =4-m
and in the case d) it holds

L (A/ (PQ, 304)) =4-ny.
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Corollary 3.2. The second symbolic and ordinary powers of the above prime
ideal P coincide, i.e. P? = P,

Remark 3.1. It follows then that A/P? is a Cohen-Macaulay ring. Though the
ring A/ P is Gorenstein (see [Z] and [3]), the ring A/P? need not to be Gorenstein.
Moreover in all (for me) know examples the type of Cohen-Macaulay ring A/P?
is 10, so in these cases A/P? is not Gorenstein which is of type 1 (see [6_p. 195]).
One can see this also from the resolution of A/P? (see [3]). It seems to me that
it holds in general for all non-complete intersection Gorenstein prime ideals of
monomial curves in A%,

Proof. The case a). It is easy to see that

2 2c 2« 2c
(P 71‘1): (x17‘r2 2 l'3 3 '/E4 4,@1,@2,...70,12)
with
_ .02t ase aig _ 2a32 20014
a; = x5 xy ag = x5 a1,
as = xga2x$4+a14’ ay = xfév3+a13$<114
_ 2013 26!14 _ Q13 Oé4+a14
a5 = Ty Ty 5 ag = T3 "Iy
_ 02,03 __ Q32,003 20414
ar = x5%x53, ag = x5 xg B,
ag = '1,g2xgl3x26147 ayo = xgazxs .13214
_ .02tou, aus __ .02, a3+0us
ail = Ty Tg 12 = Ty " T3 .
Put Iy = (232,23, 23*), I = (Ip,a1), ... and Iy = (I_1,ax) for all k =
1,2,...,12.

Let’s denote Iy : ap = Jx and L (A/Jy) = Ak. Then we get

Jy = ( Ot42 2113 x2¥4+a24)’ Jy = ( 342 J;%C‘la7 4210424),

Jsy = ( as2 20z3 12424) ,

Ji = ( 2+a32 543,$$4+a24,$3a32$214 186321,4 ) ;

Js = ( 2a32 0143 .”L'ia247.’17332 0424> Jg = Jg = ( Qasz2 x?ls 354(124)7
Jr = ( 421&147333321’21471'?13 a14) Jg = ( 332 xg437x$14)’
Jio = (:L,gt42 xgm 1.2414)7 Ji = Jio = (xgtm xgqs xZém),

Ay = 2a4903 (g + a24) , Ap = doyoazaing,

A3 = 2303094, Ay = 2300043014 + 30320430004 + 420430014,
As = 3azp0i430094, Ag = aizp03024,

A7 = 20320130014 + 02013004 + 320030014 + 0243004

Ag = azaonzagg, Ag = azpouzany,

AlO = Oiy2(x13014, Al = A = 32001314,
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Using Lemma E and relations from Proposition E we get then L (A / (P2, xl))
=2 (80(20[30(4 + a3z + 014) — ZAz =4n,.

The proof of case d). The assumptions here imply that xg(a3+°‘43) is in P2 and

2 _ 2c 2c 2(as+aqs) .
(P 7374)— (.Z‘4,$1 bas™?, oy ,di,da, ..., d14 ) with
_ .Q2tau 043 _ 2042 2043 _ .42 0312043
di = x5 x3*,  dy =23 x3™, dy = x5y ,
_ ot a Quy: _ 2« 20ty o« as+ao
d4—$11 21x343 d5—$1 21.1.3 43 d6—$121$33 a3

— 0,0 _ 031 ,,a2+a32 021,02 (43
dr = 2{"x5?, dg =27 x5 ,  dg = xgPxs"?,

— %1 .02 (43
s din =2y ey eyt
dyy = ¢ xds — portos
13 1

_ 203 as1 Q32,03 2a31 2032
dig = 257 — 227 252 x5 + 7" 250

_ Q21 042 2043
dip = 21 Ty x5

Qa2 a3+Qa3 Q31,002,043

32 —
,  diz = x5y A B

)

Then we can calculate as before that
L (A/ (P2,$4>> =8 -aj0y (013 + (143) — ZDl = 4ny,

having D2 =L (A/ (Ik,1 : dz)) and Ik = (kaladk)‘ O

Proposition 3.2. Let P = (f1, fo, f3, f4,9) be the non-complete intersection
prime ideal corresponding to the curve C (ni,na,ns,ng) with S = (ny,n9, n3, ng)
symmetric; assume one of the following four conditions on the numbers «;; is
satisfied

a-1) a3z < gz, 003 < aygz and oy < agy or
a-2) a3z < g2, 013 < aygz and agy < gy o7
b-1) a2 < asz,a13 < auz and agg < agy or

b-2) ays < aszp,a13 <

Then L (A/ (Pg,xl)) = 10-ny + 6 - t, where t = asaqiza14 in case a-1),
t = azor13ia4 N case a-2), t = ayaq13Q14 in case b-1), t = ayozag in case b-2),
i.e. t is a product of 3 numbers: min {asz, a2}, min {ai3, sz}, min {a14, @os}.

ay3 and agy < aqy.

The proof of this proposition is made in the same way as the proof of the fact
L(A/(P? 21)) =4-n; (see Proposition B-J). It is just more complicated and the

calculations are rather long and unpleasant. In the simplest case a-1) the ideal

(1337 xl) is generated by monomials and contains :z:io“*; in the other cases this ideal

is no more monomial and the lowest power of 2, in it is 22 T2%1 in case a-2) and

2343014 4 the last 2 cases.
Corollary 3.3.  Under the assumptions of the previous Proposition 3.2 is
P3 £ PG,

Remark 3.2. From the Corollaries B and B we get that S is symmetric and
P3 = PB) iff P is a complete intersection.

Let’s clear the further general computations by an example.
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Example 3.1. The numerical semigroup Sy = (5,5k + 1,5k + 2,5k + 3) is

symmetric for all & > 1. The corresponding prime ideal of the curve C(5k +

. 2k+1 k+1
2,5;5k+1;5k +3) is p = (23 — w324, 75" ' — 2124, 72 — 2125, 04 — 25 T w3, 2103 —

r5xy). Take k =1 and S; = (5,6,7,8). We use in the following x,y, z, w instead
of 21, xa, x3,x4. Then the prime ideal for C (5,6, 7,8) given by computer program
Macaulay is P = (Fy, ..., Fs) where F} = y? —xz, Fy = yz — 2w, F3 = 2% — yw,
F, = 23 — zw, F5 = 2%y — w?. There are relations

Ri: zFy —yFy+2F3=0

Ro: wkFy — zFy +yF3=0

Rs: —wFy —yFy+axF5=0

Ry —a’Fy —wFy — 2Fy +yF5 =0
Rs:  —2?Fy —wFy + 2F5 = 0.

From the relations R;, R, R3 we can derive a new one
y (F3Fs — [y F3Fs — [ F3Fy) = w (FPFs + F3F)

Since y ¢ P there is an element d; such that yd; = FZF5 + F#F; and d; € P®).
In this way we can find further relations and elements ds ..., dg:

wdy = F3 — xF\FyFs — 2 FyF?, 2ds = cFyFy — FiFy,
wdy = F3FyFs — FoF2 + xF\ FyFy, zds = Fy — 2 F2Fy + Fy F3 s,
2dg = F3FyFs — xF1 Fy Fy + xF3F3.

Then

dy = yz* — y*w? —y?22w ( mod z) ,dy = w® ( mod z),
ds = 2w — 2y22w? + y*w? ( mod ), dy = 22w? — 2yzw® ( mod ),

ds = 2° — 3yz3w + 2y*2w? ( mod z) , dg = 2*w® — yw* ( mod ).

It is easy to see that all the elements d; are different.

We show that P®) = (P3 dy, ..., dg). First we see that (P3,z) = (z, (y, z,w)®)
and L(A/(P3,z)) =56 = 10n; + 6.

Put Qo = (P?’,x)7 Qi = (Qi—1,d;) fori=1,2, ..., 6, then

Qi—1:di = (y,2,w) ( mod ).

Then L(A/(P% x,dy,...,ds)) = 56 — 6 = 50 = 10 - n; and P®) =
(P3,dy,ds,...,ds) by virtue of Lemma B3.

We can now generalize these computations:
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Theorem 3.1. Let P, f1, f2, f3, f1,9 be as in the Proposition BA. There are
6 elements di,...,ds € P®) such that (P3,d1, .. .,d6) = P®) and the following
relations hold:
(putting e1 = max {0, g1 — a21}, 61 = max {0, a9 — as1})
1. if azp < aun, anz < ays and ary < any then
xgmdl — xa24*a14f4g2 _ xa43*0413f2f
x$l4d2 — xll f1f4 1 0142 aSQf g
251 dy = afiage “32f3 2t (2§ f2g + fufefs)
a§dy = af a0 fy fa fy — af L (fag® + 3BT £ fag)

w§ttds = 2t £ = ag a0 (o fofy fo 4 23 fg)
292 dg = x3 ($g437a13f1f2f3 — f3f19) — 25 f29°
2. if aga < ayz, a13 < gz and azg < g
2532 dy = f1g° — x?“‘“”xi“‘““fzf
zry*tdy = 51f1f4 — 2wy fy 9
w51 dy = afafe Qo i af (flg 4 ad T fifo fs)

$2‘24d4 _ 51 543 a13f1f3f4 _ xl (f492 + .13?437a13f1f29)
x$24d5 _ :1711 f4 7 xgz;z—aszxgz;s—aw (33(151 f2f3f4 + x? f229)
2592dg = 27 (257 f1 fofs — fafag) — 27" fag®.

Remark 3.3. Comparing a-1) and a-2) one can see how the relations change if
some inequality does. Soifin a-1) changes a3 < ays to ayg < ag3 (we get b-1) case
from the Proposition B) the relation for d; changes from 2532 d; = 2524~ f,¢% —
G TN 2 fato 2532 dy = g T B TN f,9% — 2 f5 ete. Relations not involving
3 in positive power stay unchanged (e.g. z5dy = 29t fy f2 — 25 2542722 f,42)
but relations with x5** on the left side change the power to x5**:

x53ds = fv(lsl ot a32f3 xi (17424_a14f19 + f1f2f3) :

Proof of the Theorem . From the Proposition B we know that L(A/(P3,z1))
=10-n; + 6 - ¢, where t = afy is a product of 3 numbers: a = min {32, @42},
B = min {3, ay3},y = min {4, aog}.

Using the notation of Bresinsky (see Proposition EZJ) we have 5 relations:

Ry as®fi+ i fs—ai%g=0
Ry: x3®fi 4+ a7 fs —a5®g =0
Rs: a5 fo4+ 2% fa+23*g=0
Ry zgfo4 a2 fa+25%2g=0
Rs: x> fi+ai fo+a5 fa+ a5 fi =0
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(they can be obtained from the matrix equation I5(P).J7 = 0 where J =
(=f1,—f2,—9, f3, f1) and symbol I (P) is defined in Section []).
As in the above Example B we can derive from these relations new ones and
to find elements dy, ..., ds which have in different situations little modified form.
We prove our claim for a-1) ; the other cases are in principle the same. In the
following we need in some cases to differ between the numbers a7 and 3. Denote
the wanted elements d;, d;, d in case as; > o1, a31 = o1, resp. agy < Qo1.
Then in case a-1)

dy = d) = d = 25223 — eyt — g5t g2 (mod x),
dy = xgém 204 2x042 $a3$4 + xg(mz xgég-i-oms (
dy =ds + :520‘2 1 ( mod 1),

dy = dy — dy = 25225 ( mod 1),

ds = mg42—a321§0&3+a43 (
dé = d3 + C5,843233?13 agtaig 4 xgzxgs.mgm ( mod ml),

" — gl Qg2 13,04+ Q1g g 14
ds =dy —dg = 25225z + 25?252y (mod 1),

mod 1),

mod 1),

_ 2
d4 = xg42$g3+ Q3 $§3+a431}24 ( mod .131),

dy = dy + 23222 (mod 1),

dy = d) — dy = 2322542 (mod ),

ds = mia4+a24 _ 31.5&421.?43932444-(124 + 21'%&42‘%%&431‘224 ( mod -'171) ,
d/ =ds — x2a2+a42xg43 13 ( mod 1,1) ,

dY = ds — df = 232722578 (mod 1),

dg = 2x342$§¥3+a43$2¥14 _ x§3x2¥4+a14 ( mod 3'51) ,
dg = dg — xa2+°‘32xial4 ( mod 1),

d) = dg — dfy = 252152231 (mod ) .

Following the idea from the above example put Qg = (P3, xl), Qi = (Qi-1,d;) for
i=1,2,...,6, then

Qi—1:d; = (2572, 25, 27*) (mod x1) for all i.

Then we have L(A/ (PS,xl,dl,...,dG))

- (0n1—|—6 £) — 6.t with ¢ —
agoryzyy. It follows then that (PS, dy,... )

4. FINITE SYMBOLIC ALGEBRAS

Let us turn to the curve C (5,6,7,8) from the previous example. Put D =
(dl,...,dﬁ) and R=A [Pt,DtB}
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Let @: A[T1,T5,...,Ti1] — R be the natural epimorphism sending

TZHflt fOI‘Z'=172,3,4
Ts5 — gt and
T; — d;_st3 fori=6,...,11.

Then ¢ induce isomorphisms

O AT, ..., T /Kerp — R and
o k[Th,...,T11)/ (Kero, M) — R/MR.

We need to compute the analytic spread a(P®)) of P®) in order to use the following
lemma for deciding on finiteness of S (P) (see [7_Lhicorem 2.1 and Corollary 2.7]).

Lemma 4.4. For a P-primary ideal Q of an unmized local ring (A, M) the
following conditions are equivalent:

1. S(Q) is an A-algebra of finite type.

2. There is an integer k such that a(Q(k)Ap) < dim A, for all prime ideals
pDP.

Using computer program Macaulay we get that
Kergp* =1= (gl, e ,g40) = (TQ?’ — T1T2T3 + TET4, PN ,T6T7 + T121)

and dim R/MR = 3. Because P = (P3,dy,...,ds),
a(P®) = dim R (P<3>) /MR (P<3>) = dim R/MR =3 < 4 = dim Ay,

thus the symbolic Rees algebra S (P) is an A-algebra of finite type.

Note that the computations were on the edge of our computer possibilities;
e.g. we could not correctly compute the standard basis of Ker p* for the curve
C (5,7,8,9) though it is not too much “complicated” curve.

Acknowledgement. I would like to thank P. Schenzel for stimulating discus-
sions and his help during the preparation of this paper and my colleague P. Chal-
moviansky for the skilled transcription from CHI-writer to TEX file.
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