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DEGREES, NEIGHBOURHOODS,

AND CLOSURE OPERATIONS

L. STACHO

Abstract. Closure theorems in graph theory are of the following type: Let G be

a graph, P a graph theoretic property, and let u and v be two non-adjacent vertices

of G. If condition c(u, v) holds, then G has property P if and only if G+ uv has P.
We discuss several such results of the above type where the condition c(u, v)

refers to neighbourhood properties of u and v.

1. Introduction

Bondy and Chvátal [2] extended the classical hamiltonian condition of Ore [8]
as follows: Given a graph G = (VG, EG) of order n and u, v ∈ VG. If uv /∈ EG and
d(u)+d(v) ≥ n, then G is hamiltonian if and only if G+uv is hamiltonian. In this
connection one can define a graph Cn(G), called the n-closure of G, as the result
of successively joining pairs of non-adjacent vertices with degree sum at least n
until no such pair remains. Therefore, G is hamiltonian if Cn(G) is hamiltonian.
Moreover, Bondy and Chvátal [2] generalized this idea to several graph-theoretic
properties.

Inspired by these results many other closure concepts were developed, see for
example [1], [3], [5], [6], [7], [12]. Some closure concepts involve information
on “local” structure [3], [6], whereas the others involve information on “global”
parameters of G. We refer the reader to a survey [4] for other closure concepts.

In this note we derive new closure theorems for some graph-theoretic properties
related to cycles, which generalize the corresponding results of Bondy and Chvátal
[2]. Our results are based on the following graph invariants which turned out to
be “congenial” in conjunction with sufficient conditions for the existence of certain
cycles in graphs, see e.g. [9], [10], [11].

In a graph G the set of neighbours of a vertex u ∈ VG will be denoted by N(u),
and the graph induced by the vertices in S, where S ⊆ VG, will be denoted by
G[S]. Let u and v be two non-adjacent vertices of a graph G. We define ψG(u, v)
to be the number of components of G[N(u)] containing no neighbour of v. Let
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αG(u, v) be the number of vertices in G that are adjacent to both u and v, and
let βG(u, v) be the number of vertices 6= v that are at distance two from u and are
non-adjacent to v. Finally, we define

χG(u, v) = ψG(u, v) + pos(αG(u, v)− βG(u, v)− 1),

where pos(x) = max{x, 0}. If no confusion arises, the subscript G will be usually
omitted.

To see the significance of ψ and χ let us observe that in any graph of girth at
least 5, ψ(u, v) ≥ δ−1 for any pair of non-adjacent vertices u and v, where δ is the
minimum degree of the graph. On the other hand if there are two non-adjacent
vertices u and v with “many” neighbours in common, then, usually, ψ(u, v) is
“small”, but α(u, v) − β(u, v) can be “large”. Thus χ may be well applicable to
both sparse and dense graphs, and is well suited for the closure operations.

Let us note that each of the conditions in the next section can be checked in
polynomial time. Thus as in [2], our results lead to algorithms which construct
the closure based on the conditions in polynomial time. Moreover, if this closure
is complete, then for example any hamiltonian cycle in Kn can be transformed
into a hamiltonian cycle in the original graph in polynomial time.

2. Results

The following lemma from [10] plays an important role in our proofs.

Lemma 1. Let G be a non-hamiltonian graph with a hamiltonian path v1v2 . . .

vn, where v1vn /∈ EG. Then

(1) d(v1) + d(vn) < n−max{χ(v1, vn), χ(vn, v1)}.

Theorem 1. Let u and v be two non-adjacent vertices of G such that d(u) +
d(v) ≥ n−max{χ(u, v), χ(v, u)}. Then G is hamiltonian if and only if G+ uv is
hamiltonian.

Proof. If G is hamiltonian, then obviously so is G+uv. Now, assume G+uv is
hamiltonian, but G is not. Thus G contains a hamiltonian path v1v2 . . . vn, where
v1 = u and vn = v. A contradiction follows from (1). �

Theorem 2. Let φ(u, v) = max{ψ(u, v), ψ(v, u)}. Let u and v be two non-
adjacent vertices of G such that d(u) + d(v) ≥ 2n− s− φ(u, v), where 5 ≤ s ≤ n.
Then G contains Cs if and only if G+ uv contains Cs.

Proof. If G contains Cs, then obviously G+ uv does. Assume now that G+ uv

contains a cycle Cs but G does not. Thus G contains a path P = v1v2 . . . vs, where
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v1 = u and vs = v. Let H be the graph induced by the vertices of P . Then H+uv

is hamiltonian but H is not. We may assume max{ψ(u, v), ψ(v, u)} = ψ(u, v).
The other case is analogous. Let ω(u, v) = pos(ψG(u, v) − ψH(u, v)). Obviously,
ω(u, v) does not exceed the number of components of G[N(u)] containing at least
one vertex outside H and no neighbour of v. Thus, by (1) we have

dG(u) + dG(v) = dH(u) + dH(v) + dG−H(u) + dG−H(v)

< s− ψH(u, v) + 2(n− s)− ω(u, v) ≤ 2n− s− φ(u, v),

a contradiction. �

Theorem 3. Let φ(u, v) = min{ψ(u, v) + pos(α(u, v)−β(u, v)− 2), ψ(v, u) +
pos(α(v, u)−β(v, u)−2)}. Let u and v be two non-adjacent vertices of a connected
graph G such that d(u) + d(v) ≥ n− 1− φ(u, v). Then G contains a hamiltonian
path if and only if G+ uv contains a hamiltonian path.

Proof. If G contains a hamiltonian path, then G + uv does so. Assume now,
that G+uv contains a hamiltonian path but G does not. Hence G+uv contains a
path P = v1v2 . . . vivi+1 . . . vn, where u = vi and v = vi+1 for some 1 ≤ i < n. Let
H be the graph induced by the vertices of P with one extra vertex x and edges
xv1, xu, xv, and xvn. Obviously, H + uv is hamiltonian but H is not.

Since G is connected, at least one of the edges v1u and vvn is not in G, or
i = 1 or n − 1. Indeed, if both v1u, vvn ∈ EG, then since there must exist an
edge vkvl, 1 ≤ k ≤ i and i+ 1 ≤ l ≤ n, the path vk−1vk−2 . . . v1uvi−1vi−2 . . . vkvl
vl−1vl−2 . . . vvnvn−1 . . . vl+1 is a hamiltonian path in G, a contradiction. Thus we
assume v1u is not an edge of G or i = 1.

Since u is not adjacent to v and vn, we have ψH(u, v) = ψG(u, v), αH(u, v) =
αG(u, v) + 1, and βH(u, v) ≤ βG(u, v) + 2. Therefore, by (1) we have

dG(u) + 1 + dG(v) + 1 = dH(u) + dH(v)

< n+ 1− ψH(u, v)− pos(αH(u, v)− βH(u, v)− 1)

≤ n+ 1− ψG(u, v)− pos(αG(u, v)− βG(u, v)− 2)

≤ n+ 1− φ(u, v),

a contradiction. �

Since every graph with a hamiltonian path is connected, the connectivity con-
dition in Theorem 3 cannot be weakened in general.

A graph G is said to be s-edge hamiltonian if for each set E of s edges of
G that form pairwise disjoint paths in G there exists a hamiltonian cycle in G

containing E.
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Theorem 4. Let φ(u, v) = max{ψ(u, v), ψ(v, u)}. Let u and v be two non-
adjacent vertices of G such that d(u) + d(v) ≥ n + s − φ(u, v). Then G is s-edge
hamiltonian if and only if G+ uv is s-edge hamiltonian.

Proof. If G is s-edge hamiltonian, then so is G+ uv. Conversely, suppose that
G+uv is s-edge hamiltonian butG is not. Then there is a set of s edges E that form
pairwise disjoint paths in G, and G+uv has a hamiltonian cycle containing all the
edges of E but G does not. Consider the graph H obtained from G by subdividing
each edge in E into two. Then H + uv is hamiltonian but H is not. Moreover,
ψH(x, y) ≥ ψG(x, y) for any non-adjacent vertices x and y of G. Therefore, by (1)
we have

dG(u) + dG(v) < n+ s−max{ψH(u, v), ψH(v, u)} ≤ n+ s− φ(u, v),

a contradiction. �

A graph G is defined to be hamilton-connected if for each pair of vertices x
and y from G there is a hamiltonian path in G joining x and y.

Theorem 5. Let φ(u, v) = max{ψ(u, v) + pos(α(u, v)− β(u, v)− 2), ψ(v, u) +
pos(α(v, u)−β(v, u)−2)}. Let u and v be two non-adjacent vertices of a connected
graph G such that d(u) + d(v) ≥ n+ 1− φ(u, v). Then G is hamilton-connected if
and only if G+ uv is hamilton-connected.

Proof. If G is hamilton-connected, then so is G + uv. Suppose that G + uv

is hamilton-connected but G is not. Thus there are two vertices x and y such
that [xy ∈ EG] (xy /∈ EG) and the graph G + uv contains [a hamiltonian cycle
containing the edge xy] (a hamiltonian path with end-vertices x and y) but G does
not.

Let H be the graph obtained from G by adding extra vertex w and edges xw
and yw. Then H + uv is hamiltonian but H is not. We may assume φ(u, v) =
ψ(u, v) + pos(α(u, v) − β(u, v) − 2). Since if u = x, then v 6= y and vice versa,
we have ψH(u, v) ≥ ψG(u, v), αH(u, v) = αG(u, v), and βH(u, v) ≤ βG(u, v) + 1.
Therefore, by (1)

dG(u) + dG(v) ≤ dH(u) + dH(v)

< n+ 1− ψH(u, v)− pos(αH(u, v)− βH(u, v)− 1)

≤ n+ 1− ψG(u, v)− pos(αG(u, v)− βG(u, v)− 2)

= n+ 1− φ(u, v),

a contradiction. �

3. Other Closure Operations

Here we compare our results with some existing ones. First let us note that
all the conditions in the previous section generalize the corresponding conditions
from [2]. For example the following is a corollary to Theorem 1.
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Corollary 1. ([2]) Let u and v be two non-adjacent vertices of G such that
d(u) + d(v) ≥ n. Then G is hamiltonian if and only if G+ uv is hamiltonian.

In [5] closure operations based on neighbourhoods were developed. Our Theo-
rem 3 has the corresponding result from [5] as a corollary.

Corollary 2. ([5]) Let u and v be two non-adjacent vertices of a connected
graph G such that |N(u) ∪N(v)| ≥ n− 2. Then G has a hamiltonian path if and
only if G+ uv has a hamiltonian path.

Proof. Since uv /∈ EG, we must have |N(u) ∪ N(v)| = n − 2. Now, either
|N(u) ∩ N(v)| ≥ 1, or ψ(u, v), ψ(v, u) ≥ 1. In both cases we have d(u) + d(v) ≥
n− 1−min{ψ(u, v), ψ(v, u)}. �

In the rest we show that our results are non-comparable with some other closure
operations by giving infinitely many examples. In fact, we provide the examples
only for Theorem 1, but for remaining theorems similar examples can be found
with some extra effort.

For each p ≥ 3 we define a graph Fp of order 2p2 +2p+1 as the graph consisting
of p + 1 copies of Kp+1 with vertex set {u1,i, u2,i, . . . , up+1,i}, i = 1, 2, . . . , p + 1,
and of p2 vertices v1, v2, . . . , vp2 . For each vertex uk,l, where k = 2, 3, . . . , p + 1,
and l = 1, 2, . . . , p+1, we add p2−p edges of the form uk,lvj , where j ∈ {1, . . . , p2}.
Now distinguish two vertices u = ui,j and v = uk,l, where 2 ≤ i, k ≤ p + 1, 1 ≤
j, l ≤ p+1, and j 6= l. Finally, add 2p edges (p edges for u and p edges for v) joining
u and v with the remaining vertices of the form vj (vertices previously not joined
to u and v, respectively). Thus we have defined Fp and we have distinguished two
vertices u and v in Fp. Let us note that if we add the edges of the for uk,lvj in
some reasonable manner, we can ensure that Fp is hamiltonian.

One can check that d(u) = d(v) = p2 + p, and α(u, v) − β(u, v) − 1 = p − 1.
Thus we can apply Theorem 1 and ensure that Fp is hamiltonian if and only if
Fp + uv is hamiltonian.

In [1], the following closure operation for hamiltonian cycles is introduced. Let
Tu,v = {x : u, v /∈ N(x)}, and let δu,v = minx∈Tu,v d(x). In [1] it is proved
that if G is 2-connected and u, v are two non-adjacent vertices of G such that
|Tu,v|+ 2 ≤ δu,v, then G is hamiltonian if and only if G+uv is hamiltonian. Since
|Tu,v| = p2 − 1 and δu,v = p in Fp, we cannot use the condition for vertices u and
v in Fp.

In [3] the authors prove several theorems similar to the following one: Let
x, y, u, and v be four vertices of a 2-connected graph G such that u and v are non-
adjacent, and x, y ∈ N(u). If N(x)∪N(y) ⊆ N(v)∪{u, v}, then G is hamiltonian
if and only if G+uv is hamiltonian. One can observe that in Fp and u, v as defined,
for any choice of x and y from N(u) there always exists at least one vertex from
N(x) or N(y) that is not in N(v). Hence the condition cannot be used for vertices
u and v in Fp.
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Finally, we show that the hamiltonicity result from [12] is also non-comparable
with ours. The condition from [12] is: Let u and v be two non-adjacent vertices
of G, R = VG \ (N(u) ∪N(v) ∪ {u, v}), Θ = n− d(u)− d(v), and R′ = {x : x ∈
R, d(x) ≥ |R| + max{2,Θ}}. If d(u) + d(v) ≥ n − |R′|, then G is hamiltonian if ,
and only if G + uv is hamiltonian. Since Θ = 1, |R| = p2 − 1, and |R′| = 0, we
cannot use this condition in Fp for u and v.
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