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ON THE CONCAVE SOLUTIONS

OF THE BLASIUS EQUATION

Z. BELHACHMI, B. BRIGHI and K. TAOUS

Abstract. The Blasius equation is an autonomous, third order, nonlinear differ-
ential equation, which results from an appropriate substitution in boundary layer

equations. We study in details the concave solutions of initial value problems involv-

ing this equation, and apply our results to solve a related boundary value problem

1. Introduction

In the fluid mechanics theory, the Blasius equation

(1.1) f ′′′ +
1
2
ff ′′ = 0

appears in some boundary layer problems by looking for solutions having a “sim-
ilarity” form.

By studying the motion of an incompressible viscous fluid near a semi-infinite
flat plate, we can drop some terms in the Navier-Stokes equations and derive the
Prandtl boundary layer equations. If we assume, moreover, that the tangential
velocity at the outer limit of the boundary layer is constant, similarity solutions can
be obtained by solving the equation (1.1) on [0,∞), with the boundary conditions

(1.2) f(0) = f ′(0) = 0 and f ′(∞) = 1.

H. Blasius [3] was the first to show that this problem provided a special solution to
the Prandtl boundary layer equations. In fact, the Blasius equation is a particular
case of that of Falkner-Skan [7]

f ′′′ +
m+ 1

2
ff ′′ +m(1− f ′2) = 0

describing the same phenomena, when the velocity at infinity has some dependance
on m. See [10], [11] and [14].
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The problem of steady free convection about a vertical flat plate embedded
in a saturated porous medium leads to a similar boundary value problem. If we
assume that convection takes place in a thin layer around the wall, a method
similar to those proposed by Prandtl can be used to simplify the equations of
Darcy describing the convective flow, and similarity solutions can be obtained. If
moreover the temperature on the wall is constant, the problem to be solved is the
equation (1.1) with the boundary conditions

(1.3) f(0) = 0, f ′(0) = 1 and f ′(∞) = 0.

If the prescribed wall temperature is some power function, the same approach
leads to the equation

f ′′′ +
α+ 1

2
ff ′′ − αf ′2 = 0

and (1.1) corresponds to the case α = 0. See [1], [2], [4] and [6].
The boundary value problem (1.1)–(1.2) dates back about one century and has

been abundantly studied. One of the most important paper on this subject is
the one of H. Weyl [15], where existence and uniqueness are proved using in-
tegral operators. Elementary proofs using differential inequalities are given by
W. A. Coppel [5], and P. Hartmann [8]. See also K. K. Tam [13]. This problem
was first solved numerically (and undoubtedly by hand) by H. Blasius [3].

The problem (1.1)–(1.3), considered more recently by physicians, has been es-
sentially investigated from numerical point of view (see [4]) and, to our knowledge,
the only papers about the question of existence are the ones of G. V. Ščerbina [12]
and W. A. Coppel [5].

From the boundary conditions, it follows that the solution has to be convex in
the first problem and concave in the second one. This difference is essential as we
will see in the following.

Let us now consider the following initial value problem

(Pa,b,c)



f ′′′ + 1
2ff

′′ = 0 on [0, T ),

f(0) = a,

f ′(0) = b,

f ′′(0) = c,

where a, b, c ∈ R and [0, T ) is the right maximal interval of existence of the solution.
If f is a solution of (Pa,b,c) then either f ′′(t) ≡ 0 or f ′′(t) > 0 or f ′′(t) < 0 for all
t ∈ [0, T ). Therefore, if c = 0, we have T = ∞ and f(t) = a + bt, if c > 0 then
f is strictly convex, and if c < 0 then f is strictly concave. The situation is quite
different for the concave solutions and the convex solutions. Indeed, we have

(1.4) ∀t ∈ [0, T ), f ′′(t) = ce−
1
2

∫ t
0 f(s) ds,
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and if c > 0, we deduce from the convexity of f that we have f(t) ≥ a + bt and
thus we can write

∀t ∈ [0, T ), 0 < f ′′(t) ≤ ce−
1
2at−

1
4 bt

2
.

It follows that T = ∞. For c < 0, the relation (1.4) does not allow to obtain
anything about T . In fact, for c < 0, we can have T <∞ ; for example, for τ > 0,
the function

(1.5) gτ : t 7−→ 6
t− τ

is the solution of the problem (Pa,b,c) with a = − 6
τ , b = − 6

τ2 , c = − 12
τ3 and its

right maximal interval of existence is [0, τ).
Let us now introduce the following general boundary value problem involving

the Blasius equation

(1.6)


f ′′′ + 1

2ff
′′ = 0 on [0,∞),

f(0) = a, f ′(0) = b,

f ′(∞) = λ.

This problem with b ∈ [0, 1) and λ = 1 is considered by P. Hartmann [8]; in this
case the solution is convex. For b ≥ 0 and λ < b, the solution has to be concave.

In what follows, we will study in details the initial value problem (Pa,b,c) with
a, b ∈ R fixed and c describing (−∞, 0].

Obviously, if f is a solution of the Blasius equation, then t 7−→ κf(κt) is also
a solution, for any positive constant κ. Therefore, the problem (Pa,b,c) can be
reduced to a two-parameter problem in the cases a = −1, a = 0 and a = 1. We
volontary choose to not use this scaling, because we look at (Pa,b,c) as a one-
parameter problem (say c) and essentially, our results do not depend on a and b.

We will show that there exists a c∗ ≤ 0 such that for c ∈ [c∗, 0] the solution
fc exists over the whole interval [0,∞) and for c < c∗ the solution tends to −∞
as t tends to some Tc < ∞. Moreover we will study the asymptotic behaviour
as t → ∞ of the solutions, and prove that the correspondance c 7−→ f ′c(∞) is an
increasing one-to-one mapping of [c∗, 0] onto [0, b]. The method we use is based on a
Comparison-Principle, only valid in the concave case, and on elementary estimates,
which allow to see how the solutions of the initial value problems (Pa,b,c) move as
c goes from −∞ to 0. In this manner we obtain, in particular, that the boundary
value problem (1.6) with a ∈ R, b ∈ R and λ ∈ (−∞, b] has one and only one
solution if b ≥ 0 and λ ∈ [0, b], and no solution if λ < 0.

In [5], W. A. Coppel gives qualitative properties of the concave solutions of the
Blasius equation. Some of our results are in [5], but the finalities are different, and
in particular the boundary value problem (1.6) is not solved in the general case.
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In the part devoted to the Blasius equation, the author proves that for any given
constants ν > 0 and γ, the equation (1.1) has one and only one solution defined
on [0,∞) such that

f(t) → ν, f ′′(t) ∼ γe−νt as t→∞.

The problem (1.6) with a = 0, b ≥ 0 and λ ≥ 0 is considered by G. V. Ščerbina
[12, Theorem 3]. But the proof given in this paper, for the concave case (i.e.
λ ∈ [0, b)) is quite hard to follows, and not complete, since it is assumed, a priori,
that the solution of the initial value problem is always nonnegative, say exists
on the whole interval [0,∞). This is not true for every c, as we will see in the
following. The fact that there exist some c < 0 such that the solution is global has
to be proved. On the other hand, the question of uniqueness is not investigated,
and the author even seems to consider that nonuniqueness could arise.

2. Comparison Principle and Blow-Up Results

Among the concave solutions of the Blasius equation, we will distinguish two
kind of behaviour; if f is a solution on [0, T ) of the problem (Pa,b,c) with c ≤ 0,
we will say

f is of type (I) ⇐⇒ f is non decreasing

f is of type (II) ⇐⇒ f is decreasing from some t1 ∈ [0, T ).

For a type (I) solution, we have f ≥ a and (1.4) implies that

∀t ∈ [0, T ), |f ′′(t)| ≤ |c|e− 1
2at

and T = ∞. For any type (II) solution, except the affine one, we are going to
prove that T < ∞. To this end, let us show that we can compare two concave
solutions of the Blasius equation.

Proposition 2.1. (Comparison Principle) Let t0 ∈ R and for i = 1, 2 let
fi be the solution on [t0, Ti) of the initial value problem

f ′′′i + 1
2fif

′′
i = 0 on [t0, Ti),

fi(t0) = ai,

f ′i(t0) = bi,

f ′′i (t0) = ci,

.

where ai, bi ∈ R and ci ≤ 0. If a1 ≥ a2, b1 ≥ b2, c1 ≥ c2, then T1 ≥ T2 and if one
of these inequalities is strict, we have

f1 > f2, f
′
1 > f ′2 and f ′′1 > f ′′2 on (0, T2)

except for c1 = c2 = 0, where only the two first inequalities hold.
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Proof. If c1 = c2 = 0, then fi(t) = ai + bi(t − t0) and we have f1 > f2 and
f ′1 > f ′2 on (t0,∞).

Let us now assume that (c1, c2) 6= (0, 0). Let us set h = f1 − f2 and prove that
there exists η > 0 such that

(2.1) h′′ > 0 on (t0, t0 + η).

If c1 > c2, then h′′(t0) > 0 and it is clear. If c1 = c2 and a1 > a2 then we have
h′′(t0) = 0 and

h′′′(t0) = −1
2
f1(t0)f ′′1 (t0) +

1
2
f2(t0)f ′′2 (t0) = −1

2
c1(a1 − a2) > 0,

therefore (2.1) holds. If c1 = c2, a1 = a2 and b1 > b2 then h′′(t0) = h′′′(t0) = 0
and

h(4)(t0) = −1
2
f ′1(t0)f

′′
1 (t0) +

1
2
f ′2(t0)f

′′
2 (t0)−

1
2
f1(t0)f ′′′1 (t0) +

1
2
f2(t0)f ′′′2 (t0)

= −1
2
c1(b1 − b2) > 0,

and thus we get (2.1) in this case again.
Suppose now h′′ vanishes on (t0, T1)∩(t0, T2) and let t1 > t0 such that h′′(t1) = 0

and h′′ > 0 on (t0, t1). Necessarily, we have

(2.2) h′′′(t1) ≤ 0.

On the other hand,

h′′′(t1) = −1
2
f1(t1)f ′′1 (t1) +

1
2
f2(t1)f ′′2 (t1) = −1

2
f ′′1 (t1)h(t1),

and, since ∀t ∈ (t0, t1),

h′(t) = b1 − b2 +
∫ t

t0

h′′(s) ds > 0 and h(t1) = a1 − a2 +
∫ t1

t0

h′(s) ds > 0,

we get h′′′(t1) > 0 and a contradiction to (2.2). Finally, h′′ > 0 on (t0, T1)∩(t0, T2)
and also h′ > 0, h > 0. The inequality T1 ≥ T2 follows from the concavity of f1
and the fact that f1(t) ≥ f2(t) for all t for which f1(t) and f2(t) exist. �

Remark 2.1. The previous Comparison Principle could be deduced, at least
partially, from a theorem due to E. Kamke [9], but the simplicity of the proof in
the particular case of the Blasius equation incited us to give it. See also [5], and
quasi-monotonicity concept widely developed by W. Walter [14].
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Proposition 2.2. Let f be a solution on [0, T ) of the problem (Pa,b,c) with
c < 0. If f is of type (II), then T <∞.

Proof. Since f is concave and of type (II), there exists s ∈ [0, T ) such that

α1 = f(s) < 0, β1 = f ′(s) < 0 and γ1 = f ′′(s) < 0.

Let us choose τ such that

τ > s+ max
{

6
−α1

,

√
6
−β1

, 3

√
12
−γ1

}
and consider the function gτ defined by (1.5). By setting

α0 = gτ (s), β0 = g′τ (s) and γ0 = g′′τ (s),

we have α0 > α1, β0 > β1 and γ0 > γ1, and applying Proposition 2.1, we get
T ≤ τ . �

Remark 2.2. In [14], the problem (P0,0,−2) is considered and it is shown, by
introducing appropriate super- and subfunctions, how to get bounds for the point
T where the solution becomes infinite. The method consists of writing the solution
as

(2.3) f(t) =
∞∑
k=0

ak
3k
t3k+2

with
a0 = −1, a1 = − 1

20
, a2 = − 11

2240
, a3 = − 5

9856
, . . .

and constructing super- and subfunctions from finite segments of this power series
expansion for small t and functions as those defined in (1.5). By this way, the
following estimate is obtained:

3.098 < T < 3.151.

Note that, since the expansion (2.3) has only negative coefficients, T is equal to
the radius of convergence of this series.

3. Structure of the Set of the Concave

Solutions of the Blasius Equation

In this part, for a, b fixed, we will study the set

Sa,b =
{
fc : [0, Tc) −→ R; c ∈ (−∞, 0]

}
,

where we denote by fc the solution of (Pa,b,c) and by [0, Tc) its right maximal
interval of existence.

First, let us give the following very useful continuity result:
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Proposition 3.1. The function ψ : (t, c) 7−→ (fc(t), f ′c(t), f
′′
c (t)) defined on the

set
U = {(t, c) ∈ [0,∞)× (−∞, 0]; t < Tc},

is continuous, and the function c 7−→ Tc, taking its values in (0,∞], is lower
semicontinuous on (−∞, 0].

Proof. Of course, this can be obtained from general continuity results (see, for
example, [8], Ch. V, p. 94, Theorem 2.1), but we would like to give an elementary
proof using the Comparison Principle and Gronwall’s inequality.

Let (t, c) ∈ U . There exist γ1 < γ2 ≤ 0 and η > 0 such that

(t, c) ∈ [0, t+ η]× [γ1, γ2] ⊂ U.

Let us now consider a sequence (cn) in [γ1, γ2]. It follows from Proposition 2.1
that

(3.1) fγ1 ≤ fcn ≤ fγ2 .

By setting hn = |fcn
−fc| and using again Proposition 2.1, we see that hn is equal

either to fcn −fc or to fc−fcn . Moreover, hn, h′n and h′′n are positive on (0, t+η].
Therefore, for all s ∈ [0, t+ η], we have

h′′′n (s) = −1
2
fcn

(s)h′′n(s)−
1
2
f ′′c (s)hn(s)

≤ 1
2

(
sup

ξ∈[0,t+η]

|fcn(ξ)|

)
h′′n(s) +

1
2

(
sup

ξ∈[0,t+η]

|f ′′c (ξ)|

)
hn(s)

≤ C1h
′′
n(s) + C2h

′
n(s)

by using (3.1) and the convexity of hn together with hn(0) = 0, to get hn(s) ≤
sh′n(s), and where

C1 =
1
2

(
sup

ξ∈[0,t+η]

(|fγ1(ξ)|+ |fγ2(ξ)|)

)
and C2 =

1
2
(t+ η)

(
sup

ξ∈[0,t+η]

|f ′′c (ξ)|

)
.

By integrating, we get, for all s ∈ [0, t+ η],

0 ≤ h′′n(s) ≤ |cn − c|+ C1h
′
n(s) + C2hn(s)

≤ |cn − c|+ Ch′n(s)

with C = C1 + (t+ η)C2. After using Gronwall’s inequality and twice integrating,
we obtain

∀s ∈ [0, t+ η], 0 ≤ h′n(s) ≤
1
C
|cn− c|eC(t+η) and 0 ≤ hn(s) ≤

1
C2
|cn− c|eC(t+η).
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The continuity of ψ = (ψ0, ψ1, ψ2) then follows immediately, since for i = 0, 1, 2
and for every sequence (tn, cn) in [0, t + η] × [γ1, γ2] which converges to (t, c), we
have as n→∞,

|ψi(tn, cn)− ψi(t, c)| = |f (i)
cn

(tn)− f (i)
c (t)| ≤ h(i)

n (tn) + |f (i)
c (tn)− f (i)

c (t)| −→ 0.

We shall prove the second assertion by contradiction. Let c ≤ 0 and assume
that there exists T ∈ (0, Tc) and a sequence (cn) which converges to c, such that
Tcn

< T . In accordance with Proposition 2.1, we must have cn < c. Let us set
hn = fc − fcn

. The functions hn, h′n and h′′n are positive on (0, Tcn
) and following

the same way as above, we get

(3.2) ∀t ∈ [0, Tcn), 0 ≤ h′n(t) ≤
1
C

(c− cn)eCT .

Since f ′cn
(t) tends to −∞ as t → Tcn

, there exists a point tn ∈ (0, Tcn
) satisfying

f ′cn
(tn) = f ′c(T )− 1. Then,

h′n(tn) = f ′c(tn)− f ′cn
(tn) = f ′c(tn)− f ′c(T ) + 1 ≥ 1,

and we get a contradiction with (3.2). �

As we saw in the introduction, f0 is affine and defined on [0,∞) by f0(t) = a+bt,
and for c < 0, the function fc is strictly concave on [0, Tc).

If b ≤ 0, then for any c < 0, the solution fc is decreasing on [0, Tc) and Tc <∞.
For b > 0, it is a priori not clear to see if Sa,b \ {f0} contains either only type

(I) solutions, or only type (II) solutions, or both of them. The answer is given in
the following theorem :

Theorem 3.1. Let a ∈ R and b > 0. Then there exist c∗ < 0 such that for
c ∈ [c∗, 0], the solution fc is of type (I), and for c ∈ (−∞, c∗), the solution fc is
of type (II).

Proof. Taking into account the Comparison Principle, we can set

c∗ = inf{c ≤ 0 ; fc is of type (I)}.

and the proof will result from the following lemmas.

Lemma 3.1. The infimum c∗ is finite.

Proof. Let c < 0 and assume that f = fc is of type (I). Then we have 0 < f ′ ≤ b.
Integrating the equation (1.1) on [0, t], we obtain

(3.3) f ′′(t)− c+
1
2
f(t)f ′(t)− 1

2
ab =

1
2

∫ t

0

f ′(s)2 ds,
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in this way we get

∀t > 0, f ′′(t) +
1
2
f(t)f ′(t) < c+

1
2
ab+

1
2
b2t,

and integrating again,

∀t > 0, 0 < f ′(t) +
1
4
f(t)2 <

1
4
a2 + b+

(
c+

1
2
ab

)
t+

1
4
b2t2.

The inequality is fulfilled either if c ≥ −1
2ab, or if c < − 1

2ab and

(
c+

1
2
ab

)2

− b2
(

1
4
a2 + b

)
< 0,

from which, we easily get

c > −1
2
ab− 1

2
b
√
a2 + 4b.

In conclusion,

(3.4) c ≤ −1
2
ab− 1

2
b
√
a2 + 4b =⇒ f is of type (II),

and thus c∗ is finite. �

Lemma 3.2. Let f∗ be the solution of (Pa,b,c∗). Then f∗ is of type (I).

Proof. Let us assume that f∗ is of type (II) and denote by t0 the point in (0, T∗)
such that

(3.5) f ′∗(t0) = −1.

Let us consider a decreasing sequence (cn) which converges to c∗ and denote by
fn the solution of (Pa,b,cn

). Since cn > c∗, the function fn is of type (I) and

(3.6) ∀t ∈ [0,∞), f ′n(t) > 0.

On the other hand, it follows from Proposition 3.1 that

lim
n→∞

f ′n(t0) = f ′∗(t0),

which contradicts (3.5) and (3.6). �
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Lemma 3.3. Let f ∈ Sa,b. If f is of type (II), then

∀t ∈ [0, T ), f(t) <
√
a2 + 4b.

Proof. Let f ∈ Sa,b. Multiplying the Blasius equation by t, and integrating by
parts, we get the following identity

(3.7) tf ′′(t)− f ′(t) + b+
1
2
tf(t)f ′(t) =

1
4
f(t)2 − 1

4
a2 +

1
2

∫ t

0

sf ′(s)2 ds.

Now, if f is of type (II) and if we denote by t1 the point in (0, T ) such that
f ′(t1) = 0, we deduce from (3.7) that

1
4
f(t1)2 < b+

1
4
a2 + t1f

′′(t1) < b+
1
4
a2,

from which
|f(t1)| <

√
a2 + 4b.

This completes the proof, since f achieves its maximum at the point t1. �

Lemma 3.4. Let (cn) be an increasing sequence which converges to c∗. Denote
by fn the solution of (Pa,b,cn

) and by [0, Tn) its right maximal interval of existence.
Then

lim
n→∞

Tn = ∞.

Proof. It follows directly from the lower semicontinuity of the mapping
c 7−→ Tc. �

Lemma 3.5. The infimum c∗ is negative.

Proof. Let us assume that c∗ = 0. Then f∗(t) = f0(t) = a+bt, for all t ∈ [0,∞).
Let (cn) be an increasing sequence which converges to 0 and denote by fn the
solution of (Pa,b,cn

) defined on [0, Tn). Choose T such that

a+ bT −
√
a2 + 4b > 1.

Thanks to Lemma 3.4, we see that there exists an integer N such that Tn > T for
n ≥ N . Then, from Lemma 3.3 we get

∀t ∈ [0, T ], fn(t) ≤
√
a2 + 4b.

Therefore, it follows from the choice of T that

(3.8) f0(T )− fn(T ) ≥ a+ bT −
√
a2 + 4b > 1.
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But, we deduce from Proposition 3.1 that

lim
n→∞

fn(T ) = f0(T ),

which is contradicting (3.8). �

Remark 3.1. Since f∗ is of type (I), then (3.4) gives a strict lower bound for
c∗. To improve this bound, we follow an idea given in [5] and use the fact that
f ′∗(∞) = f ′′∗ (∞) = 0 (see Lemma 4.2 and Remark 4.1 in the next section). First,
let us note that the function ϕ = f ′2∗ − 2f∗f ′′∗ has as its derivative f2

∗f
′′
∗ and

consequently is decreasing. So, if we set g = f ′∗, we have

∀t > 0, 4g′′(t) = ϕ(t)− g(t)2 < ϕ(0)− g(t)2.

Multiplying by g′(t) < 0 and integrating between 0 and ∞, we get

c2∗ + abc∗ −
b3

3
< 0

and thus, since c∗ < 0, this give the following inequality:

c∗ > −
b

2

(
a+

√
a2 +

4b
3

)
.

To get an upper bound seems to be not very clear in the general case. In fact,
the proof of the previous lemma does not give any estimate for c∗. However, for
a ≥ 0, it is possible to obtain an upper bound. To this end, we remark that, if f is
a type (II) solution of (Pa,b,c), and if we denote by t0 the point where f vanishes,
then f ′ is convex on [0, t0]. Therefore, considering t1 ∈ (0, t0) such that f ′(t1) = 0,
we deduce from (3.3) that

−c > ab

2
+

1
2

∫ t1

0

f ′(s)2 ds >
ab

2
+

1
2

∫ − b
c

0

(cs+ b)2 ds =
ab

2
− b3

6c

from which, by studying the sign of the polynomial 6X2 + 3abX − b3, we get

c < − b
4

(
a+

√
a2 +

8b
3

)
.

So, we have

c ≥ − b
4

(
a+

√
a2 +

8b
3

)
=⇒ f is of type (I).
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Finally, when a ≥ 0,

− b
2

(
a+

√
a2 +

4b
3

)
< c∗ ≤ −

b

4

(
a+

√
a2 +

8b
3

)
.

This estimate, only valid for a ≥ 0, would be worth improving. In the case a = 0
and b = 1, this becomes c∗ ∈

(
− 1√

3
,− 1√

6

]
and is in agreement with the value

choosen for c∗ by P. Cheng and W. J. Minkowycz [4], to compute numerically the
function f∗. In fact, to solve numerically the boundary problem (1.6) with λ = 0,
the authors use the Runge-Kutta method for the Cauchy problem (P0,1,c∗) with
c∗ = −0.4440.

4. Asymptotic Behaviour of the Type (I) Solutions

In this part, the asymptotic behaviour, as t→∞, of type (I) solutions of (Pa,b,c)
will be discussed and as an application, we will get existence and uniqueness results
for the boundary problem (1.6).

Let a ∈ R and b > 0. According to the previous section, there exists a negative
real number c∗ = c∗(a, b) such that, for c ∈ [c∗, 0], the function fc, solution of
(Pa,b,c), is of type (I). Moreover, 0 < f ′c ≤ b and since f ′′c < 0, there exists

λ = lim
t→∞

f ′c(t)

and λ ∈ [0, b]. We then can define the following function

ϕa,b : [c∗, 0] −→ [0, b] such that ϕa,b(c) = f ′c(∞).

From the Comparison Principle, we deduce that ϕa,b is increasing. Indeed, if
c1 > c2, then

ϕa,b(c1)− ϕa,b(c2) = f ′c1(∞)− f ′c2(∞) =
∫ ∞

0

(f ′′c1(s)− f ′′c2(s)) ds > 0.

In what follows, we are going to show that ϕa,b is an one-to-one mapping of [c∗, 0]
onto [0, b]. First, let us prove some lemmas.

Lemma 4.1. Let f be a type (I) solution of (Pa,b,c) with c < 0. If we set
λ = f ′(∞), then there exists µ ∈ (a,

√
a2 + 4b− 4λ) such that

(4.1) lim
t→∞

(f(t)− λt) = µ.

Moreover, for all t > 0 we have

(4.2) λt+ a < f(t) < λt+
√
a2 + 4b− 4λ.
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Proof. Since f ′ is decreasing, we have f ′ − λ > 0 and thus, the function

t 7−→ f(t)− λt− a

is increasing and positive on (0,∞). Therefore, there exists µ ∈ (a,∞] such that

lim
t→∞

(f(t)− λt) = µ.

Assume that µ = ∞. Then

∀t ≥ 0,
f ′′′(t)
−f ′′(t)

=
1
2
f(t) ≥ 1

2
(f(t)− λt)

implying that

lim
t→∞

f ′′′(t)
−f ′′(t)

= ∞.

Therefore, there exists t0 > 0 such that, for all t ≥ t0, one has f ′′′(t) ≥ −f ′′(t),
which gives, by integrating between s ≥ t0 and ∞,

∀s ≥ t0, −f ′′(s) ≥ −λ+ f ′(s).

Next, integrating between t0 and t > t0, we get

∀t ≥ t0, −f ′(t) + f ′(t0) ≥ f(t)− λt− f(t0) + λt0

which is a contradiction, since the left side is bounded, whereas the right side tends
to infinity. Therefore, µ <∞ and we have

∀t > 0, λt+ a < f(t) < λt+ µ.

To get (4.2), let us introduce the auxiliary nonnegative function

u(t) = f ′(t) +
1
4
(f(t)− λt)2.

From (4.1), we see that u is bounded. Moreover, we have

u′′(t) = −1
2
λtf ′′(t) +

1
2
(f ′(t)− λ)2 > 0

and u is convex. Therefore u is decreasing and thus

a2

4
+ b = u(0) > u(∞) = λ+

1
4
µ2.

This completes the proof. �
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Lemma 4.2. If λ∗ = f ′∗(∞), then λ∗ = 0.

Proof. Let us assume that λ∗ > 0 and consider an increasing sequence (cn)
which converges to c∗. Denote by fn the solution of (Pa,b,cn

) and by [0, Tn) its
right maximal interval of existence. We know, thanks to Lemma 3.4, that

lim
n→∞

Tn = ∞.

Choose now T such that

(4.3) a+ λ∗T −
√
a2 + 4b > 1.

Then, there exists an integer N such that for n ≥ N , we have Tn > T and

(4.4) lim
n→∞

fn(T ) = f∗(T )

in accordance with Proposition 3.1. But, it follows from (4.2), Lemma 3.3 and
(4.3) that

f∗(T )− fn(T ) > λ∗T + a−
√
a2 + 4b > 1,

which contradicts (4.4). Consequently λ∗ = 0. �

Remark 4.1. If we set µ∗ = f∗(∞), then µ∗ > 0. Otherwise, if µ∗ ≤ 0, both
functions f∗ and f ′′′∗ would be negative. Then, f ′∗ should be concave, decreasing
and positive, which is impossible. Moreover, one can show that

f ′′∗ (t) = O(e−µ∗t), f ′∗(t) = O(e−µ∗t) and f∗(t)− µ∗ = O(e−µ∗t)

for t→∞. See [5].
The function c 7−→ µ with µ defined by (4.1), seems to be decreasing from

[c∗, 0] onto [a, µ∗] and look at that could be an interesting task.

We are now able to give the main result of this section.

Theorem 4.1. The function ϕa,b defined by ϕa,b(c) = f ′c(∞) is an increasing
one-to-one mapping of [c∗, 0] onto [0, b].

Proof. Taking into account Lemma 4.2, the fact that ϕa,b(0) = b and the
monotony of ϕa,b, we just have to show the continuity. So, let us consider c ∈ [c∗, 0]
and let (cn) be a sequence in [c∗, 0], which converges to c. Set λ = ϕa,b(c) and
λn = ϕa,b(cn). To complete the proof, it remains to show that any convergent
subsequence (λψ(n)) of (λn) converges to λ. Consider such a subsequence, set

λ̃ = lim
n→∞

λψ(n),
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and assume that λ > λ̃. Let N ∈ N be such that,

(4.5) n ≥ N =⇒ λψ(n) <
λ+ λ̃

2
< λ.

Choose now T such that

(4.6)
λ− λ̃

2
T + a−

√
a2 + 4b > 1.

If we denote by f , fn the solutions of (Pa,b,c) and (Pa,b,cn
), and if we set hn =

f − fψ(n), then

(4.7) lim
n→∞

hn(T ) = 0.

But, it follows from (4.2), (4.5) and (4.6) that

hn(T ) = f(T )− fψ(n)(T )

> λT + a− λψ(n)T −
√
a2 + 4b− 4λψ(n)

> λT + a− λ+ λ̃

2
T −

√
a2 + 4b

=
λ− λ̃

2
T + a−

√
a2 + 4b > 1,

which contradicts (4.7). By assuming λ < λ̃, the same way leads to a contradiction
too. Consequently, λ = λ̃. �

Corollary 4.1. Let a ∈ R, b ∈ R and λ ∈ (−∞, b]. The boundary value
problem

(4.8)


f ′′′ + 1

2ff
′′ = 0 on [0,∞),

f(0) = a f ′(0) = b,

f ′(∞) = λ,

has one and only one solution when b ≥ 0 and λ ∈ [0, b], and no solution if λ < 0.

Proof. The first assertion follows from Theorem 4.1, and the second one from
Proposition 2.2. �

Remark 4.2. As we saw in the introduction, the boundary value problem (4.8),
with λ > b, involves necessarily convex solutions. See [8], for the case b ∈ [0, 1)
and λ = 1.
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Cedex 01, France
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