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VECTOR ERGODIC THEOREM IN L(X) logL(X)

K. EL BERDAN

Abstract. Let X be a reflexive Banach space and Ω be a finite measure space.

We prove the almost everywhere convergence of the vector multiparameter averages
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for all f ∈ Lp(X), 1 < p < ∞, and where {(αj
n)} are bounded Besicovitch sequences

(j = 1, . . . , d) with T1, . . . , Td are linear operators acting on L1(X) and satisfying
certain conditions.

For d = 2, we obtain more general result. Indeed, in this case, we prove the con-

vergence a.e. for f ∈ L(X) log L(X). The general case (d > 2) requires integrability
of the supremum of the norm of these averages. As applications, we give new proof
of Zygmund-Fava’s Theorem.

1. Introduction

Let (Ω, β, µ) be a σ-finite measure space, X be a Banach space with norm
‖.‖. Let L1(Ω, X) = L1(X) be the usual Banach space of all X-valued strongly
measurable functions f on Ω. By T1, . . . , Td we denote a family of linear operators
(maybe not commuting) on L1(X). We suppose that T1, . . . , Td are contractions
(or power bounded) in L∞(X) and Td is a contraction in L1(X) and the other
operators verifying that: For all countable sets ∆, for all families (fα)α∈∆

(∗)
∫

sup
α∈∆

‖Tjfα‖ dµ ≤
∫

sup
α∈∆

‖fα‖ dµ

for j = 1, . . . , d − 1. Under this hypothesis, we prove the almost everywhere
convergence of the multiparameter weighted averages

B(n1, . . . , nd, T1, . . . , Td)f =
1

n1 . . . nd

∑
0≤k1,...kd<nj

α1
k1
. . . αd

kd
T k1

1 . . . T kd

d f

as nj → ∞, for j = 1, . . . , d, where
{(
αj

n

)}
are bounded Besicovitch sequences,

for all f ∈ Lp(X), 1 < p <∞.
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Recall that a sequence a(k) is called Besicovitch sequence if for ε > 0, there is
a trigonometric polynomial ψε such that

lim sup
n

1
n

n−1∑
k=0

|a(k)− ψε(k)| < ε

For d = 2, we prove the convergence a.e. of these averages for f ∈ L(X) logL(X)
which is more general than f ∈ L1(X). The general case (d > 2) can be obtained
by assuming that supnj

‖B(n1, . . . , nd, T1, . . . , Td)f‖ ∈ L1.
Using linear modulus, J. Olsen [7] proved the almost everywhere convergence

of the averages

B(n1, . . . , nd, T1, . . . , Td)f =
1

n1 . . . nd

∑
0≤k1,...kd<nj

α1
k1
. . . αd

kd
T k1

1 . . . T kd

d f

for all f ∈ Lp(R), 1 < p < ∞ and
(
αj

n

)
are bounded Besicovitch sequences

(j = 1, . . . , d). The difficulty in obtaining the result in the vector case is the
absence of the analog to linear modulus. In [4] it was shown that the existence
of a vector operator on L1(X) does not admit a linear modulus which means that
for the vector case the results cannot be obtained by Olsen’s method.

Naturally, one asks if there is another argument does not require the use of linear
modulus. For this reason, we introduce the above hypothesis (∗) on the operators
T1, . . . , Td−1. Our result will generalize Chacon’s Theorem [1] to multiparameter
operators satisfying the condition (∗).

Remark 1. Any operator satisfying the condition (∗) is a contraction in L1(X).

2. Main Result

Before stating our main results, the following two Theorems are needed for
which the proofs can be found in [1] and [5] respectively.

Theorem 2 (Chacon [1]). Let X be a reflexive Banach space, T be a linear
contraction in both L1(Ω, X) and in L∞(Ω, X). If f ∈ L1(Ω, X), then

aµ

{
sup

∥∥∥∥∥ 1
n

n∑
i=0

T if

∥∥∥∥∥ > a

}
≤

∫
{f∗>a}

‖f‖X dµ

and the averages 1
n

∑n
i=0 T

if converge a.e.

The next theorem is in fact, an extension of Theorem 2 for the weighted aver-
ages.
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Theorem 3. Let X be a reflexive Banach space, T be a linear contraction
in both L1(Ω, X) and in L∞(Ω, X). If f ∈ L1(Ω, X), and αn is a bounded real
sequence, then

aµ

{
sup

∥∥∥∥∥ 1
n

n∑
i=0

αiT
if

∥∥∥∥∥ > a

}
≤

∫
{f∗>a}

‖f‖X dµ

and if αn is Besicovitch sequence the averages 1
n

∑n
i=0 αiT

if converge a.e.

Now, we are ready to state our main results.

Theorem 4. Let T1, . . . , Td be linear operators (maybe not commuting) on
L1(X) power bounded in L∞(X). Td is a contraction in L1(X) and the other
operators T1, . . . , Td−1 satisfying the condition (∗). Let

(
αj

n

)
be bounded Besicov-

itch sequences for j = 1, . . . , d. Then:
(i) For f ∈ Lp(X), 1 < p <∞, and α = supk=1,...,d supj

∣∣αk
j

∣∣ we have

∥∥∥∥∥sup
nj

‖B(n1, . . . , nd, T1, . . . , Td)f‖

∥∥∥∥∥
p

≤ α

(
p

p− 1

)d

‖f‖p

and limnj
B(n1, . . . , nd, T1, . . . , Td)f exists a.e.

(ii) For f ∈ L(X) logL(X), limn1,n2 BN2(T1, T2)f exists a.e.

Example 5. Operators verifying the condition (∗):
1) Any positive linear contraction in L1(R).
2) Any vector operator defined on L1(X) which is dominated by a positive

contraction in L1(R). (Note that the measure preserving transformation (m.p.t)
Tf = foθ ∈ L1(X) verifies ‖Tf‖ = ‖foθ‖ = ‖f‖ oθ = τ (‖f‖) where τ is m.p.t.
defined on L1(R). It follows that every m.p.t. satisfies the condition (∗)).

3) The surjective isometries on L1(Ω, X) (of course, they are not given by m.p.t.)
also are dominated by a positive contraction on L1(R) (see [4]).

The next proposition proves that the class of real operators acting in L1(R) and
satisfying the condition (∗) is the same as the class of the contractions in L1(R).

Proposition 6. Let T be a linear operator on L1(R) the following assertions
are equivalent.

(i) T verifies the condition (∗).
(ii) T is a contraction in L1(R).

Proof. If T satisfies (∗), then it suffices to take fn = f to prove that T is
contraction in L1(X). Conversely, let τ be the linear modulus of T (see [8]), τ is a
linear positive operator on L1(R) and verifies that for all f ∈ L1(R); |Tf | ≤ τ (|f |).
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Moreover, if T is L1(X)-contraction then, τ is a L1(R)-contraction, we write∫
sup
α∈∆

|Tfα| dµ ≤
∫

sup
α∈∆

τ (|fα|) dµ

≤
∫
τ

(
sup
α∈∆

(|fα|)
)
dµ (τ ≥ 0)

≤
∫ (

sup
α∈∆

(|fα|)
)
dµ (‖τ‖1 ≤ 1)

which ends the proof of the proposition. �

Proof of Theorem 4. We prove this theorem in two steps.
First, we prove the case when the weight of average are one. The second case

is the general weighted averages.
1. The case αj

n = 1, for every n ∈ N . First, we study the case d = 2 : Let T1

and T2 be two linear operators on L1(X) such that T1 is a contraction in L∞(X)
and verifying: For all fn ∈ Lp(X), 1 < p <∞

(∗∗)
∫

sup
n
‖T1fn‖ dµ ≤

∫
sup

n
‖fn‖ dµ

and and T2 is a contraction in L1(X) and a contraction (or power bounded) in
L∞(X).

Consider the Banach space X1 = l∞(X) = {(xn);xn ∈ X and supn ‖xn‖ <∞}.
Define the norm ‖x‖X1

= supn ‖xn‖, let U the operator on L1(X1) defined by
Uf = (T1fn) for every f = (fn) ∈ L1(X1). By (∗∗) we have Uf ∈ L1(X1), and

‖Uf‖L1(X1)
=

∫
‖Uf(ω)‖X1

dµ(ω) =
∫

sup
n
‖T1fn(ω)‖ dµ(ω)

≤
∫

sup
n
‖fn(ω)‖ dµ(ω) (by (∗∗))

=
∫
‖f(ω)‖X1

dµ(ω) = ‖f‖L1(X1)

which proves that U is a contraction in L1(X1). On the other hand, we have

‖Uf(ω)‖X1
= sup

n
‖T1fn(ω)‖ ≤ sup

ω
sup

n
‖T1fn(ω)‖

= sup
n
‖T1fn‖∞ ≤ sup

n
‖fn‖∞ (‖T1‖∞ ≤ 1)

= sup
ω

sup
n
‖fn(ω)‖ = sup

ω
‖fn‖X1

= ‖f‖L∞(X1)

it follows that ‖Uf‖L∞(X1)
≤ ‖f‖L∞(X1)

, so U is a contraction in L∞(X1). Now,
form the Cesaro average

1
m

m∑
j=0

U jF =
1
m

m∑
j=0

U j

 1
n

n∑
j=0

T j
2 f

 =

 1
mn

m∑
j=0

n∑
j=0

T j
1T

j
2 f


n
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where F =
(

1
n

∑n
j=0 T

j
2 f

)
. Although X1 is not reflexive (the reflexivity is not

needed to prove the weak estimate in Chacon’s theorem), it follows from Theorem 2
that for f ∈ Lp(X), 1 < p <∞, we have F ∈ Lp(X1) and∥∥∥∥∥∥sup

m
sup

n

∥∥∥∥∥∥ 1
mn

m∑
j=0

n∑
j=0

T j
1T

j
2 f

∥∥∥∥∥∥
X

∥∥∥∥∥∥
Lp

=

∥∥∥∥∥∥sup
m

∥∥∥∥∥ 1
m

m∑
i=0

U jF

∥∥∥∥∥
X1

∥∥∥∥∥∥
Lp

≤ p

p− 1
‖F‖Lp(X1)

=
p

p− 1

∥∥∥∥∥∥sup
n

∥∥∥∥∥∥ 1
n

n∑
j=0

T j
2 f

∥∥∥∥∥∥
X

∥∥∥∥∥∥
Lp

≤
(

p

p− 1

)2

‖f‖Lp .

By a standard way we can prove that the averages 1
mn

∑m
j=0

∑n
j=0 T

j
1T

j
2 f converge

in a dense subset of Lp. The Banach principle ends the proof of part (i) for the
case d = 2.

The case d > 2 can be done by induction on d. For, suppose that the theorem
is true for d−1 operators and prove it for d operators. Consider the Banach space

Xd−1 =
{

(x(n2,...,nd)); x(n2,...,nd) ∈ X and sup
n2

. . . sup
nd

∥∥x(n2,...,nd)

∥∥ <∞
}

normed with ‖x‖Xd−1
= supn2

. . . supnd

∥∥x(n2,...,nd)

∥∥. Now, define Uf =
(T1f(n2,...,nd)). Then by (∗), U acts on L1(Xd−1). Next, by the induction hy-
pothesis, we have

sup
n2

. . . sup
nd

‖A (n2, . . . , nd, T2, . . . , Td) f‖ ∈ Lp(X)

therefore

F =
(
f(n2,...,nd)

)
= (A (n2, . . . , nd, T2, . . . , Td) f) ∈ Lp(Xd−1) ⊂ L1(Xd−1).

Now, apply on F the Cesaro average of U then we get

A (n1, U) f(n2,...,nd) = A (n1, T1) [A (n2, . . . , nd, T2, . . . , Td) f ]

= A (n1, . . . , nd, T1, . . . , Td) f

the rest of the proof is virtually identical to that of the case d = 2. This completes
the proof part (i).
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Now, we turn to the proof of (ii). It was shown in Lemma 6.2 [8, p. 52] that

if f ∈ L(X) logL(X) then f∗T2
= supn

∥∥∥ 1
n

∑n
j=0 T

j
2 f

∥∥∥ ∈ L1 which means that

F =
(

1
n

∑n
j=0 T

j
2 f

)
n
∈ L1(Xd−1). Applying the weak estimate on the operators

U and T2 (which are contraction in L1(Xd−1) and L∞(Xd−1) (resp. in L1(X) and
in L∞(X)), we obtain

aµ

{
sup
m

sup
n
‖A(m,n, T1, T2)f‖ > a

}
= aµ

sup
m

sup
n

∥∥∥∥∥∥ 1
mn

m∑
j=0

n∑
j=0

T j
1T

j
2 f

∥∥∥∥∥∥ > a


= aµ

sup
m

∥∥∥∥∥ 1
m

m∑
i=0

U jF

∥∥∥∥∥
X1

> a


≤

∫
{F∗U >a}

‖F‖X1
dµ

=
∫
{F∗U >a}

sup
n

∥∥∥∥∥∥ 1
n

n∑
j=0

T j
2 f

∥∥∥∥∥∥ dµ
=

∫
{F∗U >a}

sup
n
‖A(n, T2)‖ dµ <∞

Finally, the Banach principle yields the required results.
2. General case. (αj

n 6= 1,for every n ∈ N)
The proof of the general case can be done by a similar way but with minor

changes, namely the Cesàro average A(n, f) = 1
n

∑n−1
j=0 T

jf is replaced by the

weighted averages B(n, f) = 1
n

∑n−1
j=0 αjT

jf and then Theorem 3 completes the
proof.

By assuming the integrabilite of the supremum of B(ni, . . . , nd, Ti, . . . , Td)f
for i = 1, . . . , d, we obtain the a.e. convergence of the averages B(n1, . . . , nd,
T1, . . . , Td)f .

Theorem 7. If f∗i,d = supni
. . . supnd

‖B(ni, . . . , nd, Ti, . . . , Td)f‖ ∈ L1, i =
1, . . . , d, then for f ∈ L(X) logd L(X) we have

1. aµ
{
f∗i,d > a

}
≤

∫
{f∗i,d>a} f

∗
i+1,d dµ,

2. f∗i+1,d ∈ L(X) logd−1 L(X) and f∗1,d ∈ L(X) logL(X),
3. limn1,...,nd

B(n1, . . . , nd, T1, . . . , Td)f exists a.e.

Proof. To prove 1. we apply Chacon’s inequality to the corresponding U

aµ
{
f∗i,d > a

}
= aµ

{
sup
ni

. . . sup
nd

‖B(ni, . . . , nd, Ti, . . . , Td)f‖ > a

}
= aµ

{
sup
ni

∥∥B(ni, U)f(ni+1,...,nd)

∥∥
Xd−i

> a

}
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≤
∫

{
f(ni+1,...,nd)>a

} ∥∥f(ni+1,...,nd)

∥∥
Xd−i

dµ (by Theorem 3)

=
∫

{
f(ni+1,...,nd)>a

} ∥∥∥(B(ni+1, . . . , nd, Ti, . . . , Td)f)(ni+1,...,nd)

∥∥∥
Xd−i

dµ

=
∫

{
f(ni+1,...,nd)>a

} sup
ni+1

. . . sup
nd

‖(B(ni+1, . . . , nd, Ti, . . . , Td)f)‖Xd−i
dµ

=
∫

{
f(ni+1,...,nd)>a

} f∗i+1,d dµ.

Since the functions f∗i,d and f∗i+1,d are in a weak maximal type relation then by
[8, p. 54], we have for i = 1, . . . , d

f∗i+1,d ∈ L(X) logd L(X) ⇒ f∗i,d ∈ L(X) logd−1 L(X).

For f ∈ L(X) logd L(X), we have by induction on i:

f∗d,d = sup
nd

‖B(ni, Td)f‖ ∈ L(X) logd L(X)

⇒ f∗d−1,d ∈ L(X) logd−1 L(X)

⇒ f∗d−2,d ∈ L(X) logd−2 L(X)

⇒ . . .

⇒ f∗1,d = sup
n1

. . . sup
nd

‖B(n1, . . . , nd, T1, . . . , Td)f‖ ∈ L(X) logL(X).

The limit of multiparameter averages can be obtained by combining 2. and
Banach principle, which ends the proof. �

Remark 8. The condition (∗∗) can be replaced by another weaker one:

(∗ ∗ ∗)
∫

sup
n
‖T1A(n, T2)f‖ dµ ≤

∫
sup

n
‖A(n, T2)f‖ dµ.

Under this condition, we assume the commutation of operators. The proof of
Theorem 4 remains true if we replace the space L1(Xd−1) by the subspace

H(X) =
{
(A(n, T2)f)n ; n ∈ N and f ∈ L1(X)

}
and the operator U will be defined by

U (A(n, T2)f) = [T1A(n, T2)f ]n (= A(n, T2)T1f) .

Since T1T2 = T2T1 then U take values in H(X). By Chacon’s inequality (which
remains true for a subspace of L1(Xd−1)) we have the required result.

Remark 9. Note that the condition (∗ ∗ ∗) does not necessarily mean that the
operator T is a contraction in L1(X).
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3. Applications

In this section we apply Theorem 4 to obtain the following versions of Zygmund-
Fava’s theorem [8, p. 196]:

Real version.

Theorem 10. Let T1, . . . , Td be linear L1 − L∞ contractions in L1 of a σ-
finite measure space. Then limn1,...,nd

B(n1, . . . , nd, T1, . . . , Td)f exists a.e. for
f ∈ L logd−1 L.

Proof. In order to prove this theorem, it suffices to notice that positive contrac-
tions verify the condition (∗). �

Vector version. Similarly, we obtain the following:

Theorem 11. Let X be reflexive Banach space, Ω a σ-finite measure space
and θ1, . . . , θd measure preserving transformations on Ω, if Tjf = foθj then
limn1,...,nd

B(n1, . . . , nd, T1, . . . , Td)f exists a.e. for f ∈ L(X) logd−1 L(X).

Remark 12. It’s worth mentioning here that in the new proof of Theorem of
Zygmund-Fava (which is real), we have applied Chacon’s theorem (vectorial) on
the (non-relexive) Banach space Xd = l∞ or Xd = l∞(X).
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