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ON Cj–CLOSENESS OF INVARIANT

FOLIATIONS UNDER NUMERICS

G. FARKAS

Abstract. In this paper we show that invariant center-unstable foliations are pre-
served in the Cj-topology under numerical approximations. Results on partial lin-

earization are also given.

1. Introduction

In recent years there has been a considerable effort to understand the behavior
of invariant objects of dynamical systems under discretization. The topic of the
present paper fits well in the list of these works. We refer only to [6] (results on
qualitative similarities between a flow and its discretization) [7] (results on various
invariant manifolds around equilibria under numerics), [8] (results on Cj-closeness
of global invariant manifolds), [9] (results on structural stability under numerics),
[11] (a recent monograph on qualitative properties of numerical approximations).
This list is not intended to be exhaustive or complete.

It is known that in the vicinity of a hyperbolic equilibrium point the discretiza-
tion mapping conjugates to the time-h-map of the flow (h is the step-size), see [7].
(Related results in the case of delay differential equations can be found in [5].) The
proof goes via putting the problem into the general framework of the Hartman-
Grobman theorem. If hyperbolicity is lost one would work with the generalized
Hartman-Grobman theorem, see [10], or with partial linearization, see [1]. Since
the linearization procedure around nonhyperbolic equilibria goes via construct-
ing invariant foliations, it is worth investigating these invariant foliations under
numerical approximations. This is the core of the present work.

The generalized Hartman-Grobman theorem tells us that the crucial part of the
dynamics is concentrated on the center-manifold. Indeed, the whole dynamics is
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topologically equivalent to the flow on the center-manifold times a linear saddle,
see [10]. Thus, if we have conjugacy between the discretization and the time-h-
map restricted to center-manifolds then we would obtain conjugacy between the
discretization and the time-h-map. Using center-manifold reduction near a fold
bifurcation point, it can be shown that this conjugacy exists, see [4]. In that case
the conjugacy isO(hp) close to the identity (p is the order of the method), thanks to
its construction on the center-manifolds and to the Cj-closeness of center-manifolds
under numerics, see [2].

The paper is organized as follows. Some general notations will be fixed in this
section. Then Section 2 contains a result on partial linearization with a small
parameter. Section 3 is devoted to the center-unstable foliations with a small
parameter. We apply these results to the discretization problem in Section 4.

Let j, m1, m2 ∈ N and define

Cj(Rm1 ,Rm2) :=
{
w : Rm1 → Rm2 :

w is j times continuously differentiable with bounded derivatives
}
.

Equipped with the usual Cj-norm

|‖w|‖j = max
{

sup{|w(i)(x)| : x ∈ Rm1} : i = 0, . . . , j
}

the space Cj(Rm1 ,Rm2) is a Banach space. We also need the following space

Xj(Rm1 ×Rm2 ,Rm1) :=
{
w : Rm1 ×Rm2 → Rm1 :

w is j times continuously differentiable in its second variable and bounded
}
.

Equipped with the norm

‖w‖j := max
{

sup{|w(i)
y (x, y)| : (x, y) ∈ Rm1 ×Rm2} : i = 0, . . . , j

}
,

Xj(Rm1 ×Rm2 ,Rm1) is a Banach space.

2. Partial Linearization

Letm1, m2 be two natural numbers and setm = m1+m2. With some h0 > 0 let
pi : [0, h0]×Rm → Rm1 and qi : [0, h0]×Rm → Rm2 (i = 1, 2) be given mappings.
For A ∈ Rm1×m1 and B ∈ Rm2×m2 we consider the following mappings

X = eAhx+ p1(h, x, y),(1)

Y = eBhy + q1(h, x, y),
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and

X = eAhx+ p2(h, x, y),(2)

Y = eBhy + q2(h, x, y),

where x,X ∈ Rm1 , y, Y ∈ Rm2 and h ∈ [0, h0].
We have the following assumptions.

(A1) sup{Reλ | λ ∈ σ(B)} < β < α < inf{Reλ | λ ∈ σ(A)}, and α > 0.

Remark. From assumption (A1) it follows that, by passing to an equivalent
norm,

|e−Ah| ≤ 1− hα, |eBh| ≤ 1 + hβ, |e−Ah||eBh| ≤ 1− h(α− β).

From now on we fix this norm.

(A2) The functions ξ = pi, qi, i = 1, 2 are bounded and satisfy the following
global Lipschitz property

|ξ(h, x, y)− ξ(h, x̄, ȳ)| ≤ ρh(|x− x̄|+ |y − ȳ|).

Moreover, ρ is so small such that

b0 = (1− hα)(1 + 2ρh) < 1

and
b1 = (1− hα)(1 + βh+ 4ρh) < 1

hold for every h ∈ (0, h0].

Remark. Note that there is a constant l > 0 independent of h such that
b0 < 1− lh and b1 < 1− lh.

(A3) With some constant K > 0 (independent of (x, y) and h) and with some
integer p ≥ 1

|p1(h, x, y)− p2(h, x, y)| ≤ Khp+1

and
|q1(h, x, y)− q2(h, x, y)| ≤ Khp+1

hold true for all h ∈ [0, h0].
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Theorem 1. Assume (A1)–(A3). Then for all h small enough there are func-
tions γi

h, δ
i
h : Rm → Rm1 , i = 1, 2, such that Hi

h(x, y) = (γi
h(x, y), y) and J i

h(x, y)=
(δi

h(x, y), y) are homeomorphisms, (Hi
h)−1 = J i

h and z = γi
h(x, y), Z = γi

h(X,Y ),
u = y, U = Y transform (1) and (2) into

Z = eAhz(3)

U = eBhu+ qi(h, δi
h(z, u), u),

respectively. Moreover, with some constant K1 > 0 (independent of (x, y) and h)

|δ1h(x, y)− δ2h(x, y)| ≤ K1h
p

hold for all h small enough.

Proof. Let BC be the Banach space of bounded continuous mappings from Rm

into Rm1 with the usual sup (‖ · ‖) norm. Define the following function space V
as

V :=
{
v : Rm → Rm1 : there is a v̄ ∈ BC,
v(x, y) = x+ v̄(x, y) for all (x, y) ∈ Rm

}
.

As in [1], we are looking for solutions in V of the following functional equations

(4) γi
h(eAhx+ pi(h, x, y), eBh + qi(h, x, y)) = eAhγi

h(x, y)

and

(5) δi
h(eAhx, eBhy + qi(h, δi

h(x, y), y)) = eAhδi
h(x, y) + pi(h, δi

h(x, y), y)

where i = 1, 2.
First we claim that (4) has a unique solution in V . By setting vi

h(x, y) =
γi

h(x, y)− x, vi
h ∈ BC and (4) has the form

(6) vi
h(x, y) = e−Ahvi

h(eAhx+ pi(h, x, y), eBhy + qi(h, x, y)) + e−Ahpi(h, x, y).

For v ∈ BC we define

F i
h(v)(x, y) =: e−Ahv(eAhx+ pi(h, x, y), eBhy + qi(h, x, y)) + e−Ahpi(h, x, y).

Then (6) is equivalent to the fixed point setting F i
h(vi

h)(x, y) = vi
h(x, y). It is

easy to see that F i
h : BC → BC is a contraction with Lipschitz constant LipF i

h ≤
1− hα < 1, and the claim follows.
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Next we claim that (5) has a solution in V . By setting wi
h(x, y) = δi

h(x, y)− x,
wi

h ∈ BC and (5) has the form

wi
h(x, y) = e−Ahwi

h(eAhx, eBhy + qi(h, x+ wi
h(x, y), y))(7)

− e−Ahpi(h, x+ wi
h(x, y), y).

We define the following function space

W :=
{
w ∈ BC : |w(x, y)− w(x, ȳ)| ≤ |y − ȳ| for all (x, y), (x, ȳ) ∈ Rm

}
.

Endowed with the metric inherited from the sup norm, the space W is a complete
metric space. For w ∈W define

Gi
h(w)(x, y) := e−Ahw(eAhx, eBhy + qi(h, x+ w(x, y), y))(8)

− e−Ahpi(h, x+ w(x, y), y).

Thus we have a fixed point setting Gi
h(wi

h)(x, y) = wi
h(x, y). In what follows we

show that Gi
h : W → W is a contraction with Lipschitz constant LipGi

h ≤ b0 < 1
which proves that (7) (and thus (5)) has at least one solution in V .

On one hand

|Gi
h(w)(x, y)−Gi

h(w)(x, ȳ)| ≤ |e−Ah|
(
|eBh||y − ȳ|

+ |qi(h, x+ w(x, y), y)− qi(h, x+ w(x, ȳ), ȳ)|

+ |pi(h, x+ w(x, y), y)− pi(h, x+ w(x, ȳ), ȳ))|
)

≤ (1− hα)((1 + hβ) + 4ρh)|y − ȳ| = b1|y − ȳ| ≤ |y − ȳ|

which proves that Gi
h : W →W . On the other hand

|Gi
h(w)(x, y)−Gi

h(w̄)(x, y)| ≤ |e−Ah|

×
(
|w(eAhx, eBhy + qi(h, x+ w(x, y), y))−w̄(eAhx, eBhy + qi(h, x+ w(x, y), y))|

+ |w̄(eAhx, eBhy + qi(h, x+ w(x, y), y))−w̄(eAhx, eBhy + qi(h, x+ w̄(x, y), y))|

+ ρh|w(x, y)− w̄(x, y)|
)

≤ |e−Ah|(‖w − w̄‖+ |qi(h, x+ w(x, y), y)− qi(h, x+ w̄(x, y), y)|+ ρh‖w − w̄‖)
≤ (1− hα)(1 + 2ρh)‖w − w̄‖ = b0‖w − w̄‖

which proves the desired contraction property.
Now let γi

h ∈ V be the unique solution of (4) and let δi
h ∈ V be an arbitrary

solution of (5). We claim that γi
h(δi

h(x, y), y) = x for all (x, y) ∈ Rm.
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Set ψi
h(x, y) := γi

h(δi
h(x, y), y). Then ψi

h ∈ V and since

γi
h(δi

h(eAhx, eBhy + qi(h, δi
h(x, y), y)), eBhy + qi(h, δi

h(x, y), y))

= γi
h(eAhδi

h(x, y) + pi(h, δi
h(x, y), y), eBhy + qi(h, δi

h(x, y), y))

= eAhγi
h(δi

h(x, y), y)

the function ψi
h is a solution of

ψi
h(eAhx, eBh + qi(h, δi

h(x, y), y)) = eAhψi
h(x, y).

Set φi
h(x, y) := ψi

h(x, y)− x. Then φi
h ∈ BC and

φi
h(x, y) = e−Ahφi

h(eAhx, eBhy + qi(h, δi
h(x, y), y)).

By taking supremum of the norm in the right-hand side we have

|φi
h(x, y)| ≤ |e−Ah|‖φi

h‖

and thus
‖φi

h‖ ≤ (1− hα)‖φi
h‖

which shows that φi
h = 0. Note that we have proved that (5) has a unique solution

in V as well.
Finally we claim that Range (δi

h(·, y0)) = Rm1 for all y0 ∈ Rm2 . But this is
a simple consequence of the homotopy property of the degree applied to δt(x, y0) =
x + twi

h(x, y0). By using δi
h(x, y) = δi

h(γi
h(δi

h(x, y), y), y) we obtain that
δi
h(γi

h(x, y), y) = x which proves (Hi
h)−1 = J i

h.
It remains to prove the closeness result. With w ∈ W consider the following

estimates

|G1
h(w)(x, y)−G2

h(w)(x, y)| ≤ |e−Ah|
(
|q1(h, x+ w(x, y), y)−q2(h, x+ w(x, y), y)|

+ |p1(h, x+ w(x, y), y)− p2(h, x+ w(x, y), y)|
)

≤ 2Khp+1.

Now we compare w1
h and w2

h as

‖w1
h − w2

h‖ = ‖G1
h(w1

h)−G2
h(w2

h)‖
≤ ‖G1

h(w1
h)−G1

h(w2
h)‖+ ‖G1

h(w2
h)−G2

h(w2
h)‖

≤ b0‖w1
h − w2

h‖+ 2Khp+1.

Thus
‖w1

h − w2
h‖ ≤ 2Khp+1/(1− b0) = (2K/l)hp

and we are done. �
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3. Invariant Foliations

Let n ∈ N and assume that pi(h, ·, ·) ∈ Cn+p+1(Rm,Rm1), qi(h, ·, ·) ∈
Cn+p+1(Rm,Rm2). Furthermore, we impose conditions:

(H1) (p+ n+ 1)β < α.
(H2) The functions ξ = pi, qi, i = 1, 2 are bounded and satisfy the following

global Lipschitz property

|ξ(h, x, y)− ξ(h, x̄, ȳ)| ≤ ρh(|x− x̄|+ |y − ȳ|).

Moreover, ρ is so small such that

bk := (1− hα)((1 + βh+ 2ρh)k + 2ρ) < 1

for all k = 0, 1, . . . , n+ p+ 1.
(H3) With some constant K > 0 (independent of z = (x, y) and h)

|(p1)(k)
z (h, x, y)− (p2)(k)

z (h, x, y)| ≤ Khp+1 k = 0, 1, . . . , n

|(p1)(n+k)
z (h, x, y)− (p2)(n+k)

z (h, x, y)| ≤ Khp+1−k k = 0, 1, . . . , p+ 1

and

|(q1)(k)
z (h, x, y)− (q2)(k)

z (h, x, y)| ≤ Khp+1 k = 0, 1, . . . , n

|(q1)(n+k)
z (h, x, y)− (q2)(n+k)

z (h, x, y)| ≤ Khp+1−k k = 0, 1, . . . , p+ 1.

(H4) With some constant K2 > 0 (independent of z = (x, y) and h)

|(ξ)(k)
z (h, x, y)| ≤ K2h k = 0, 1, . . . , n+ p

where ξ = pi, qi, i = 1, 2.

Remark. There is a constant l > 0 such that bk < 1−lh for all k = 0, 1, . . . , n+
p+ 1.

Since (H1)–(H3) implies (A1)–(A3) we can apply Theorem 1 in this situation.
As a result we obtain functions δi

h ∈W (i = 1, 2). With these functions we define
the invariant foliations as follows: Let c ∈ Rm1 and set Si

h(c) := {(x, y) ∈ Rm :
x = δi

h(c, y)}. We call the set Si
h(c) the leaf of the foliation corresponding to c. It

is easy to see that mappings (1) and (2) send one leaf onto another, thus the family
of sets (manifolds) {Si

h(c)}c∈Rm1 form invariant foliations. Only one leaf remains
fixed (the one corresponding to 0 ∈ Rm1) which is called the center-unstable
manifold.

In what follows we prove that the fibers of foliations are smooth (i.e. functions
δi
h(x, y) are smooth in y) and are close in the Xj-topology. Namely, we have
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Thoeorem 2. Assume (H1)–(H4). Then for all c ∈ Rm1 we have that

δi
h(c, ·) ∈ Cn+p+1(Rm2 ,Rm1)

and
‖δ1h(c, ·)− δ2h(c, ·)‖n+k ≤ K3h

p−k, k = 0, 1, . . . , p

with some constant K3 > 0 independent of c and h.

Proof. Set c(0) = 1, W c(0)
0 = W . Given a finite sequence of positive numbers

{c(j)}n+p
j=1 we inductively define, for j = 1, 2, . . . , n+ p,

W
c(j)
j =

{
w ∈W c(j−1)

j−1 : w is j times continuously differentiable in y,

|w(j)
y (x, y)− w(j)

y (x, ȳ)| ≤ c(j)|y − ȳ|
}
.

Note that if w ∈ W
c(j−1)
j−1 and w is j times continuously differentiable in y then

|w(j)
y (x, y)| ≤ c(j − 1). Further, an inductive application of Arzela-Ascoli theorem

shows that W c(n+p)
n+p ⊂W is a closed subset.

If w ∈W c(1)
1 then Gi

h(w) is continuously differentiable in y and

(Gi
h(w))′y = e−Ahw̃′y(eBh + (qi)′y + (qi)′xw

′
y)

− e−Ah((pi)′xw
′
y + (pi)′y),

where w̃ means w with argument (eAhx, eBhy + qi(h, x+ w(x, y), y)). Recall that
|w′y(x, y)| ≤ 1 for all (x, y) ∈ Rm. A simple calculation shows that (Gi

h(w))′y is
globally Lipschitzian in y with Lipschitz constant c(1)b2 + r1, where r1 is a poly-
nomial in the variables c(0), c(1) and the coefficient of each term is a nonconstant
polynomial of |(pi)′z|, |(pi)′′z |, |(qi)′z| and |(qi)′′z |. Now set c(1) = r1/(1− b2). Then
Gi

h(W c(1)
1 ) ⊂W

c(1)
1 . Since c(1) ≤ r1/(lh) and |(pi)′z|, |(pi)′′z |, |(qi)′z| and |(qi)′′z | are

of order h (see (H4)), we obtain that c(1) can be choosen independently of h (and
i = 1, 2).

We proceed by induction. If w ∈W c(j)
j (j = 2, . . . , n+p) then Gi

h(w) is j times
continuously differentiable in y and

(Gi
h(w))(j)y = e−Ahw̃(j)

y (eBh + (qi)′y + (qi)′xw
′
y)j + e−Ahw(j)

y (w̃′y(qi)′x − (pi)′x) +Rj ,

where Rj is a polynomial function in the variables w′y, . . . , w(j−1)
y , (pi)′x, . . . ,

(pi)(j)x , (pi)′′xy, . . . , (q
i)(j)y .

The global Lipschitz property of (Gi
h(w))(j) with respect to y easily follows

with Lipschitz constant c(j)bj+1 + rj , where rj is a polynomial in the variables
c(0), . . . , c(j − 1) and the coefficient of each term is a nonconstant polynomial of
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|(pi)′x|, . . . , |(pi)(j+1)
x |, |(pi)′′xy|, . . . , |(qi)(j+1)

y |. Now set c(j) = rj/(1− bj+1). Then

Gi
h(W c(j)

j ) ⊂ W
c(j)
j , j = 1, 2, . . . , n + p. Since c(j) ≤ rj/(lh) and (by (H4)) rj is

of order h for j = 0, 1, . . . , n + p − 1, we obtain that {c(j)}n+p−1
j=0 can be choosen

independently of h (and i = 1, 2).
From this construction we see that the fixed points of Gi

h are in W
c(n+p)
n+p . For

a proof of existence and continuity of the remaining (n + p + 1)th derivative we
refer to [1], [3], [12].

In order to compare the derivatives of δi
h we build up fixed points settings. To

this end we pass to an equivalent norm | · |j on Xj(Rm1 ×Rm2 ,Rm1).
First observe that

‖(Gi
h(w))(j)y − (Gi

h(w̄))(j)y ‖ ≤
j∑

k=0

Lk
j ‖w(k)

y − (w̄)(k)
y ‖

whenever w, w̄ ∈ W
c(j)
j , j = 0, 1, . . . , n + p. It is readily checked that L0

0 can be
choosen for b0. Moreover, Lj

j can be choosen for bj , j = 1, 2, . . . , n + p. Finally,
Lk

j (for j = 1, 2, . . . , n + p, k = 0, 1, . . . , j − 1) can be taken as a polynomial in
the variables c(0), . . . , c(j − 1) where the coefficient of each term is a nonconstant
polynomial of |(pi)′x|, . . . , |(pi)(j+1)

x |, |(pi)′′xy|, . . . , |(qi)(j+1)
y |.

For w ∈ Xj(Rm1 ×Rm2 ,Rm1) we set

|w|j :=
j∑

k=0

d(k)‖w(k)
y ‖, j = 0, 1, . . . , n+ p,

where d(0) = 1 and {d(k)}n+p
k=0 is a finite sequence of positive constants specified

later. It is easy to see that ‖ · ‖j and | · |j are equivalent norms on Xj(Rm1 ×
Rm2 ,Rm1). On one hand

|Gi
h(w)−Gi

h(w̄)|j =
j∑

k=0

d(k)‖(Gi
h(w))(k)

y − (Gi
h(w̄))(k)

y ‖

≤
j∑

k=0

j∑
l=k

d(l)Lk
l ‖w(k)

y − w̄(k)
y ‖

≤
j∑

k=0

(d(k)bk +
j∑

l=k+1

d(l)Lk
l )‖w(k)

y − w̄(k)
y ‖.

On the other hand

|w − w̄|j =
j∑

k=0

d(k)‖w(k)
y − w̄(k)

y ‖.



224 G. FARKAS

Comparing the coefficients of ‖w(k)
y − w̄

(k)
y ‖ and using (H2) we obtain that (with

a suitable choice of {d(k)}n+p
k=1)

d(k)bk +
j∑

l=k+1

d(l)Lk
l ≤ (1 + bk)d(k)/2

for all j = 0, 1, . . . , n+ p and k = 0, 1, . . . , j. Thus

|Gi
h(w)−Gi

h(w̄)|j ≤ max{(1 + bk)/2 : k = 0, 1, . . . , j}|w − w̄|j

for all w, w̄ ∈W c(j)
j , j = 0, 1, . . . , n+ p.

Now we claim that {d(k)}n+p−1
k=0 can be chosen independently of h. Recall

that d(0) = 1. As before, it is enough to prove that Lk
j is of order h for k =

0, 1, . . . , n+p−1, j = k+1, k+2, . . . , n+p−1. Since {c(j)}n+p−1
j=0 is independent of

h, Lk
j is a nonconstant polynomial in the variables |(pi)′x|, . . . , |(pi)(j+1)

x |, |(pi)′′xy|,
. . . , |(qi)(j+1)

y |, thus the desired result follows from (H4).
Finally, for w ∈W c(n+k)

n+k , consider the estimates

‖(G1
h(w))(j)y − (G2

h(w))(j)y ‖ ≤ K4

j∑
k=0

(
‖(p1)(k)

z (h, x, y)− (p2)(k)
z (h, x, y)‖

+ ‖(q1)(k)
z (h, x, y)− (q2)(k)

z (h, x, y)‖
)

with some constant K4 > 0 and j = 0, 1, . . . , n+p−1. Using the above estimates,
(H3) and the definition of | · |j we have that

|G1
h(w)−G2

h(w)|n+k ≤ K5h
p+1−k, k = 0, 1, . . . , p− 1.

Now we are in a position to prove the closeness of the invariant foliations. First,
the k = p case follows from the facts that c(n + p − 1) is independent of h and
δi
h ∈ Xn+p.

If k 6= p then

|w1
h − w2

h|n+k = |G1
h(w1

h)−G2
h(w2

h)|n+k

≤ |G1
h(w1

h)−G1
h(w2

h)|n+k + |G1
h(w2

h)−G2
h(w2

h)|n+k

≤ (1− (l/2)h)|w1
h − w2

h|n+k +K5h
p+1−k.

Thus
|w1

h − w2
h|n+k ≤ (2K5/l)hp−k

and we are done. �
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4. Applications

In this section we show that Theorems 1 and 2 can be applied to the problem
of discretization.

Let f : Rm → Rm be a globally Lipschitzian mapping and consider the differ-
ential equation

(9) ż = f(z).

By its h-discretized equation we mean equation

Z = ϕ(h, z), (z, Z ∈ Rm, h > 0)

where ϕ is a fixed one-step method with stepsize h. Assume that ϕ is of order
p ≥ 1, i.e. there exist constants h0 and K6 such that

(10) |Φ(h, z)− ϕ(h, z)| ≤ K6h
p+1 for all h ∈ (0, h0], z ∈ Rm

where Φ(h, ·) is the time-h-map of the induced solution flow of (9).
If we assume that f , ϕ ∈ Cn+p+1(Rm,Rm) then (for details see [7]) there is a

constant K7 > 0 such that

|Φ(j)
z (h, z)− ϕ(j)

z (h, z)| ≤ K7h
p+1, j = 0, . . . , n

|Φ(n+j)
z (h, z)− ϕ(n+j)

z (h, z)| ≤ K7h
p+1−j , j = 0, . . . , p+ 1

(11)

for all h ∈ (0, h0] and z ∈ Rm.
Consider a globally Lipschitzian C∞ cut-off function µ with µ(z) = 0 whenever

|z| ≥ 2 and µ(z) = 1 whenever |z| ≤ 1.
From now on we assume that f, ϕ ∈ C1(Rm,Rm), f(z) = Cz + g(z), where

C ∈ Rm×m and g(0) = 0, g′(0) = 0. Let g(z; ε) := µ(z/ε)g(z), z ∈ Rm, ε > 0.
Consider the differential equation

(12) ż = Cz + g(z; ε).

Denote the h-discretized equation of (12) by Z = ϕ(h, z; ε). Write the flow induced
by (12) as

(13) Φ(t, z; ε) = eCtz + s1(t, z; ε), t ∈ R, z ∈ Rm, ε > 0.

We consider a modified h-discretization equation of (12) as follows

(14) Z = eCh + s2(h, z; ε)

where

s2(h, z; ε) = µ(z)(ϕ(h, z; ε)− Φ(h, z; ε)) + s1(h, z; ε), h > 0, z ∈ Rm, ε > 0.
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Notice that (14) coincides with the one-step method for |z| ≤ ε and with the flow
(13) for |z| ≥ 2ε.

It is known, see Prop. 1.2 and 1.3 in [7], that there exist a bounded continuous
function Ω : (0,∞) → R+ with Ω(ε) → 0 as ε→ 0 such that (with i = 1, 2)

|si(h, ·; ε)| ≤ Ω(ε)εh

Lip (si(h, ·; ε)) ≤ Ω(ε)h
(15)

whenever h ∈ (0, h(ε)], ε > 0. For sake of simplicity, set s2(0, z; ε) = 0. (We
note that although the one-step method is defined only for positive h we can set
ϕ(0, z) = z by continuity thanks to (10).)

Assume that C admits a splitting C = diag (A,B) such that (A1) holds.
Now we want to apply Theorem 1 with mappings (13) and (14) (with

(pi(h, x, y), qi(h, x, y)) = si(h, (x, y); ε)). Property (A2) is direct consequence of
(15) (with ε small enough) while (A3) follows from (10). Thus our Theorem 1
applies to maps (13) and (14).

Secondly assume that f, ϕ ∈ Cn+p+1(Rm,Rm) and that C admits a splitting
C = diag (A,B) such that (H1) holds. Now we want to apply Theorem 2 with
mappings (13) and (14) (with (pi(h, x, y), qi(h, x, y)) = si(h, (x, y); ε)). Property
(H2) is a direct consequence of (15) (with ε small enough) while (H3) follows from
(11). Finally (H4) holds because of (11) and the fact that (s1)(j)z is continuously
differentiable in t and s1(0, z; ε) = 0. Thus our Theorem 2 applies to maps (13)
and (14).

Remark. It is known that invariant foliations (manifolds) constructed via the
time-h-map of a flow are independent of h and are the invariant foliations (mani-
folds) for the flow as well, see e.g. [10].

Remark. Concerning the Cj closeness of the leaf corresponding to 0 ∈ Rm1

we get Corollary 3.7. in [7].

Remark. By reversing time the results show the Cj closeness of center-stable
foliations as well.
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6. Fečkan M., The relation between a flow and its discretization, Math. Slovaca 42 (1992),
123–127.

7. Garay B. M., Discretization and some qualitative properties of ordinary differential equations

about equilibria, Acta Math. Univ. Comenianae LXII (1993), 249–275.
8. , On Cj-closeness between the solution flow and its numerical approximation, J.

Difference Eq. Appl. 2 (1996), 67–86.

9. , On structural stability of ordinary differential equations with respect to discretization
methods, Numer. Math. 72 (1996), 449–479.

10. Kirchgraber U. and Palmer K. J., Geometry in the Neighborhood of Invariant Manifolds of

Maps and Flows and Linearization, Pitman Research Notes in Mathematics Series, John
Wiley & Sons, New York, 1990.

11. Stuart A. M. and Humphries A. R., Dynamical Systems and Numerical Analysis, Cambridge

University Press, Cambridge, 1996.
12. Wiggins S., Normally Hyperbolic Invariant Manifolds in Dynamical Systems, Springer, New

York, 1994.

G. Farkas, Department of Mathematics, István Széchenyi University of Applied Sciences, H-9026
Győr, Hédervári u. 3, Hungary; e-mail : gyfarkas@taltos.math.szif.hu


	References

