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THE BOREL STRUCTURE OF THE COLLECTIONS OF

SUB–SELF–SIMILAR SETS AND SUPER–SELF–SIMILAR SETS

M. MCCLURE and R. W. VALLIN

Abstract. We show that the sets of sub-self-similar sets and super-self-similar sets
are both dense, first category, Fσ subsets of K(Rd), the Hausdorff metric space of

non-empty compact, subsets of Rd. We also investigate the set of self-similar sets
as a subset of the sub-self-similar sets and the super-self-similar sets.

1. Introduction

In [Fal1], Falconer introduced the notion of sub-self-similarity as a generaliza-
tion of self-similarity and showed that sub-self-similar sets retain many of the nice
properties of self-similar sets. Later in [Fal2] we find the notion of a super-self-
similar set. The question arises as to how strong a generalization are these new
concepts. In this paper, we quantify this question using topological notions in
K(Rd), the Hausdorff metric space of non-empty compact subsets of Rd. In par-
ticular, we show that the sets of sub-self-similar sets and super-self-similar sets are
both dense, first category, Fσ subsets of K(Rd). The fact that these sets are dense
could be interpreted as meaning that we have an understanding of many compact
subsets of Rd. The fact that these sets are first category indicates that most com-
pact sets are not encompassed in these definitions. We also consider the set of
self-similar sets as a subset of the sub-self-similar sets and the super-self-similar
sets. In particular, we show that the sub-self-similar sets which are not self-similar
are dense in the set of sub-self-similar sets, and similarly for the super-self-similar
sets. This indicates that Falconer’s new concepts are a considerable generalization
over the self-similar sets.

2. Definitions

We work in a fixed Euclidean space Rd. Let K(Rd) be the set of non-empty,
compact subsets of Rd. The Hausdorff metric ρ on K(Rd) is defined by

ρ(A,B) = max{sup
x∈A

{dist(x,B)}, sup
y∈B

{dist(y, A)}}.
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A discussion of the Hausdorff metric may be found in [Ed] Section 2.4. Of partic-
ular interest is Theorem 2.4.4, which states that K(Rd) is complete. This allows
us to appeal to Baire category type arguments in K(Rd). Also of note is Ex-
ercise 2.4.2, which characterizes the limit of a sequence of sets in the Hausdorff
metric as follows: If An → A in the Hausdorff metric, then

A = {x : ∃{xn}∞n=1 with xn ∈ An and xn → x}.

A function T : Rd → Rd is a similarity with ratio r = r(T ) > 0 if

|T (x)− T (y)| = r|x− y| for all x, y ∈ Rd.

If r < 1, then T is called contractive. A fundamental result ([Ed], Thm. 4.1.3)
states that if Ti : Rd → Rd is a contractive similarity for each i ∈ {1, . . . , m}, then
there is a unique, nonempty, compact set E ⊆ Rd such that

E = ∪m
i=1Ti(E).

The set E is called self-similar.
Sub-self-similar sets are obtained by relaxing the equality to inclusion. Thus, the

compact set E is sub-self-similar if there are contractive similarities Ti : Rd → Rd

for i ∈ {1, . . . , m} such that
E ⊆ ∪m

i=1Ti(E).

Clearly any self-similar set is sub-self-similar. [Fal1] contains many other examples
of sub-self-similar sets and describes their basic properties. The following lemma
provides an example of a non-sub-self-similar set.

Lemma 1. Let E = {0, 1, 1
2 , 1

3 , 1
4 , . . . }. Then E is not a sub-self-similar set.

Proof. Assume that {Ti}m
i=1 are contractive similarities. We will show that

E 6⊆ ∪m
i=1Ti(E).

Suppose first that no Ti has 0 as a fixed point. Then there is a neighborhood
U of 0 such that Ti(0) /∈ U for every i ∈ {1, . . . , m}. Since 0 is the only cluster
point of E, it follows that U ∩ ∪m

i=1Ti(E) can contain only finitely many points.
But U ∩ E is infinite, so E 6⊆ ∪m

i=1Ti(E).
Now, by reordering the set {Ti}m

i=1 if necessary, choose n ≤ m such that {Ti}n
i=1

are those similarities with 0 as a fixed point. We will show that E \ ∪n
i=1Ti(E) is

infinite. Note that Ti(E) ∩ E = {0} unless r(Ti) is of the specific form pi

qi
where

qi, pi ∈ N and qi ≥ 2. Thus if p is a prime larger than qi for each i ∈ {1, . . . , n},
then ∪n

i=1Ti(E) will contain no number of the form 1
kp , where k ∈ N. Now the

remaining portion ∪m
i=n+1Ti(E) may contain only finitely many points of E for

the reasons outlined above. Thus we again have E 6⊆ ∪m
i=1Ti(E). �
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The above argument may clearly be embedded in Rd by associating R with
just one of the coordinates of Rd. Furthermore, if E is the set in the lemma, we
may obtain other non-sub-self-similar sets by scaling and translating E. Finally,
the union of such a set with any finite set will be non-sub-self-similar. Using this
fact together with the fact that the finite sets are dense in K(Rd), we obtain the
following important corollary.

Corollary 1. The set of non-sub-self-similar sets is dense in K(Rd).

The super-self-similar sets were introduced in [Fal2] by reversing the inclusion.
Thus, the compact set E is super-self-similar if there are contractive similarities
Ti : Rd → Rd for i ∈ {1, . . . , m} such that

E ⊇ ∪m
i=1Ti(E).

It again turns out that the super-self-similar sets retain some nice properties of
the self-similar sets, although some additional assumption may need to be added
(see [Fal2], Cor. 3.4). As with the sub-self-similar sets, we will need the fact that
the set of non-super-self-similar sets is dense in K(Rd).

Lemma 2. No finite set with more than one element is super-self-similar.

Proof. Let F be a finite set with more than one element and let {Ti}m
i=1 be

contractive similarities. We will show that F 6⊇ ∪m
i=1Ti(F ). Let x be the fixed

point of T1 and let y ∈ F satisfy |x−y| = dist(x, F \{x}). Then clearly T1(y) /∈ F

so F 6⊇ ∪m
i=1Ti(F ). �

As the finite sets are dense in K(Rd), we obtain the following corollary imme-
diately.

Corollary 2. The set of non-super-self-similar sets is dense in K(Rd).

Note that the finite sets are all sub-self-similar while the set E from Lemma 1
is super-self-similar for the set of transformations {T1(x) = 1

2x, T2(x) = 1
3x}.

As a notational convenience, we will denote the set of self-similar sets by ss,
the set of sub-self-similar sets by sss and the set of super-self-similar sets by Sss.

3. The Main Results

In this section, we prove our main results. Theorem 1 states that sss is a first
category, Fσ subset of K(Rd).

Theorem 1. The set of sub-self-similar sets may be expressed as the countable
union of closed, nowhere dense subsets of K(Rd).

Proof. For m,n ∈ N, define sssm,n to be the set of all those sub-self-similar sets
E such that there exists contractive similarities {Ti}m

i=1 with 1
n ≤ r(Ti) ≤ 1 − 1

n ,
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E ⊆ ∪m
i=1Ti(E), and |Ti(0)| ≤ n for every i ∈ {1, . . . , m}. Clearly, ∪∞m=1 ∪∞n=1

sssm,n is precisely the set of sub-self-similar sets.
We first prove that sssm,n is closed for every m,n ∈ N. Suppose that Ek → E in

the Hausdorff metric, where Ek ∈ sssm,n for every k ∈ N. To each Ek corresponds
{T k

i }m
i=1 such that 1/n ≤ r(T k

i ) ≤ 1 − 1/n, Ek ⊆ ∪m
i=1T

k
i (Ek), and |T k

i (0)| ≤ n.
Using the standard matrix, vector representation of an affine transformation, each
T k

i may be associated with a point, xk
i , in Rd2+d. The conditions on each T k

i ensure
that the set of all such points, K, is compact. By recursively choosing successively
finer subsequences, we may assume that each sequence {xk

i }∞k=1 is convergent to
say xi ∈ K. Each point xi in turn defines a contractive similarity Ti : Rd → Rd

satisfying 1
n ≤ r(Ti) ≤ 1 − 1

n and |Ti(0)| ≤ n for every i ∈ {1, . . . , m}. The
correspondence between affine transformations on Rd and points in Rd2+d, along
with the continuity of the algebraic operations, implies that T k

i → Ti pointwise
as k → ∞. We must now show that E ⊆ ∪m

i=1Ti(E). Let x ∈ E. Then for every
k ∈ N, there is an xk ∈ Ek such that the sequence {xk}∞k=1 converges to x. Since
Ek ⊆ ∪m

i=1T
k
i (Ek), there is an ik ∈ {1, . . . , m} such that xk ∈ T k

ik
(Ek). Since

there are only finitely many choices for ik, at least one must occur infinitely often.
Thus we have a subsequence {kj}∞j=1 and a fixed i ∈ {1, . . . , m} such that ikj = i

for every j. Along this subsequence we have

T
kj

ikj
(Ekj

) = T
kj

i (Ekj
) → Ti(E)

as j →∞, since T
kj

i → Ti pointwise and Ekj
→ E in the Hausdorff metric. Thus

x ∈ Ti(E) since xkj
→ x and xkj

∈ T
kj

i (Ekj
) for all j.

Finally, we prove that sssm,n is nowhere dense in K(Rd) for all m,n ∈ N. Since
sssm,n is closed, we must simply show that it contains no open set. But this is
immediate since its complement is dense in K(Rd) by Corollary 1. �

The next theorem states a similar result for Sss.

Theorem 2. The set of super-self-similar sets may be expressed as the count-
able union of closed, nowhere dense subsets of K(Rd).

Proof. The proof of this theorem is very similar to the proof of Theorem 1. For
m,n ∈ N, define Sssm,n to be the set of all those super-self-similar sets E such
that there exists contractive similarities {Ti}m

i=1 with 1
n ≤ r(Ti) ≤ 1 − 1

n , E ⊇
∪m

i=1Ti(E), and |Ti(0)| ≤ n for every i ∈ {1, . . . , m}. Using the exact construction
from Theorem 1, we obtain a sequence of sets Ek → E and a sequence of trans-
formations {T k

i }∞k=1, for each i ∈ {1, . . . , m} satisfying 1/n ≤ r(T k
i ) ≤ 1 − 1/n,

Ek ⊇ ∪m
i=1T

k
i (Ek), and |T k

i (0)| ≤ n. As before, there are transformations {Ti}m
i=1

which are the pointwise limits as k → ∞ of {T k
i }∞k=1, for each i ∈ {1, . . . , m}

and which satisfy 1
n ≤ r(Ti) ≤ 1 − 1

n and |Ti(0)| ≤ n. We must now show that
E ⊇ ∪m

i=1Ti(E). Suppose that x ∈ Ti(E) for some i ∈ {1, . . . , m}. Since Ek → E
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in the Hausdorff metric, Ti(Ek) → Ti(E) by the continuity of Ti. Thus for each k

we may choose xk ∈ Ek such that Ti(xk) → Ti(x). Thus xk → x by the continuity
of T−1

i and x ∈ E.
In order to show that Sssm,n is nowhere dense in K(Rd) it again suffices to

show that it contains no open set, since it is closed. But this follows immediately
from Corollary 2. �

The above theorems may be somewhat improved. By allowing more general
affine contractions, rather than strict similarities, we obtain the notions of sub-
self-affinity and super-self-affinity. The above proofs clearly apply to the larger
sets of sub-self-affine sets and super-self-affine sets.

We now turn our attention to the set of self-similar sets. It is well known that ss

is dense in K(Rd). This is essentially the content of the collage theorem (see [Ba]
section 3.10, Theorem 1). This implies that sss and Sss are dense in K(Rd) as
they both contain ss. In fact, ss = sss ∩ Sss. This implies that ss is a first
category, Fσ subset of K(Rd). Finally, we are interested in the size of ss compared
to sss and Sss. As sss and Sss are not Gδ subsets of K(Rd), it makes no sense
to consider the Baire category of their subsets (see [Ox], chapter 12). Thus we
content ourselves with the following theorem which states that ss is a small subset
of both sss and Sss.

Theorem 3. sss \ ss is dense in sss and Sss \ ss is dense in Sss.

Proof. The first part is quite simple since any finite set is sub-self-similar. The
finite sets are dense in K(Rd) and, therefore, dense in sss \ ss.

The second part is slightly more difficult. It suffices to find a class of super-self-
similar sets which are not self-similar, but are dense in K(Rd). Since ss is dense
in K(Rd), we show how to approximate any self-similar set with a super-self-
similar set which is not self-similar. Let E be self-similar for the transformations
{Ti}m

i=1. Choose R > 0 such that Ti(BR(0)) ⊆ BR(0) for each i ∈ {1, . . . , m}.
Let E1 = ∪m

i=1Ti(BR(0)) and for n > 1 let En = ∪m
i=1Ti(En−1). Then each En is

super-self-similar, but not self-similar and En → E in the Hausdorff metric. �
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