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ON LARGE RANDOM ALMOST EUCLIDEAN BASES

R. VERSHYNIN

Abstract. A new class of random proportional embeddings of ln2 into certain Ba-

nach spaces is found. Let (ξi)
n
i=1 be i.i.d. mean zero Cramèr random variables. Sup-

pose (xi)
n
i=1 is a sequence in the unit ball of a Banach space with E‖

∑
i εixi‖ ≥ δn.

Then the system of dcne independent random vectors distributed as
∑

i ξixi is well
equivalent to the euclidean basis with high probability (c depends on ξ1 and δ).

A connection with combinatorial discrepancy theory is presented.

1. Sign Embeddings And Short Films

G. Schechtman proved that in ln1 a certain random choise of cn vectors is well
equivalent to the euclidean basis ([Sch1], see also [M-S, 7.15]). More precisely, by
εi we denote the Rademacher random variables, i.e. independent random variables
taking values −1 and 1 with probability 1/2, by ei the canonical vectors in Rn,
and by c1, c2, . . . absolute constants. A system (zi)k

i=1 of vectors in a Banach space
is said to be c-equivalent to the euclidean basis if there is a linear operator
T : span (zi) → lk2 sending each zi to ei, with ‖T‖‖T−1‖ ≤ c. Then Schechtman’s
theorem says the following. Every system of dc1ne independent random vectors in
ln1 distributed as

∑n
j=1εjej is c2-equivalent to the euclidean basis with probability

≥ 1− exp(−c3n).
This result is generalized here in two directions. Instead of the canonical vector

basis of ln1 , we work with arbitrary sequence (xj)n
j=1 of vectors in the unit ball

B(X) of a Banach space X satisfying

(1) E
∥∥∥ n∑

j=1

εjxj

∥∥∥ ≥ δn

for some δ > 0. This estimate is known as the random δ-sign embedding from
ln1 condition [F-J-S]. In [Sch1] it was considered in spaces with a good cotype;
our proof does not require cotype restrictions.

Moreover, instead of the Bernoullian distribution of each coordinate, we con-
sider arbitrary distribution of a mean zero r.v. ξ having moment generating func-
tion, that is Eeα|ξ| < ∞ for some α > 0. This is called the Cramèr condition,
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and is equivalent to the following: there are constants a, α > 0 so that

(2) P{|ξ| > t} ≤ ae−αt for all t

(see [P, Lemma III.5]).

Theorem 1.1. Let (ξj)n
j=1 be independent copies of a mean zero r.v. ξ satis-

fying (2); set α1 = E|ξ|. Suppose (xj)n
j=1 is a sequence in B(X) satisfying (1), and

set s =
√

a/α1αδ. There is a c = c(s) > 0 so that the system of dcne independent
random vectors distributed as

∑n
j=1ξjxj is (c1s)-equivalent to the euclidean basis

with probability ≥ 1− 2 exp(−c2s
−2n).

Remarks. 1. One can set c(s) = c2/s2 log(c1s). We see that Theorem 1.1 is
controlled by the only parameter s.

2. Actually, we prove that the operator T realizing the equivalence satisfies
‖T‖ ≤ c3(α1δn)−1, and ‖T−1‖ ≤ c4

√
aα−1n.

J. Elton [E] proved that (1) yields the existence of a subset A ⊂ {1, . . . , n},
|A| ≥ c(δ)n, such that the sequence (xj)j∈A is c′(δ)-equivalent to the canonical
vector basis of l

|A|
1 . If combined with Schechtman’s theorem, this gives another

form of proportional euclidean sections of X (however, with a worse dependence
on δ: c(δ) ∼ δ2/ log2(4/δ), c′(δ) ∼ δ−3).

For convenience, we restricted ourselves to identically distributed random vari-
ables ξ, but the main result can easily be modified to handle the case when ξ have
different distributions.

Theorem 1.1 admits an immediate application to random matrices. The next
corolary says that the unit cube in Rn under the action of a random k×n matrix
(with k proportional to n) is close to the euclidean ball Bk

2 . We denote the unit
euclidean ball in Rk by Bk

2 .

Corollary 1.2. Suppose ξ is a random variable satisfying (1), then there exist
c, µ, ν > 0 such that we have the following. Let A be the k×n matrix whose entries
are independent random variables distributed as ξ. If k ≤ cn then with probability
≥ 1− 2 exp(−cn)

µBk
2 ⊂ n−1A([−1, 1]n) ⊂ νBk

2 .

Proof. Pass to the dual setting and apply Theorem 1.1 together with Re-
mark 2. �

Now we discuss a relation between almost euclidean bases in ln1 and combina-
torial discrepancies. Given a two-coloring χ, say White and Black, of a finite set
Ω, the discrepancy disc (A,χ) of a set A ⊂ Ω is the number of White points in A

minus the number of Black points in A (cf. [A-S], [B-S]). A family χ = (χj)n
j=1 of

two-colorings on Ω is called a film of length n. We define the film discrepancy
fdisc (A,χ) of a set A ⊂ Ω as the average 1

n

∑n
j=1|disc (A,χj)|.
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The problem is to make a short homogeneous film, so that the film discrep-
ancies of any two sets A,B ⊂ Ω of equal size be nearly the same: fdisc (A,χ) ≈
fdisc (B,χ) (the relation x ≈ y means c1x ≤ y ≤ c2x for some absolute constants
c1, c2 > 0). Since nobody wants to watch a monochromatic film, we require it to be
balanced, that is the density of each shot be nontrivial: |disc (Ω, χj)| ≤ (1−c3)|Ω|
for all j and some absolute constant c3 > 0.

One might think that balanced homogeneous films must be fairly long compar-
ing with |Ω|, but this is unjustified.

Theorem 1.3. Given a finite set Ω, there is a balanced homogeneous film on
Ω of length c1|Ω|.

Proof. We begin with a geometrical interpretation of the problem, as in [Sp].
Let k = |Ω|. A coloring χ on Ω is regarded as a sequence (εi) ∈ {−1, 1}k, assigning
1 to White and −1 to Black. A set A ⊂ Ω is identified with its incidence vector
(ai) ∈ {0, 1}k. Then disc (A,χ) =

∑k
i=1εiai.

Now we clarify a relation to Schechtman’s result, that is Theorem 1.1 with
ξj = εj and (xj) = the canonical vectors in X = ln1 . Let n be the minimal integer
such that dcne ≥ k. In this case we get with probability ≥ 1− 2 exp(−c2n)

(3)
1
n

n∑
j=1

∣∣∣ k∑
i=1

aiεij

∣∣∣ ≈ ( k∑
i=1

|ai|2
)1/2

for all scalars (ai),

where εij are Rademacher random variables (see Remark 2 following Theorem 1.1).
Let χ be a random film of length n, so that χj = (εij)k

i=1. Then (3) yields that,
with probability ≥ 1− 2 exp(−c2n), every set A ⊂ Ω satisfies fdisc (A,χ) ≈

√
|A|.

Hence most films are homogeneous.
It suffices to show that most films are also balanced. Consider a random coloring

χ = (εi) on Ω. Using a subgaussian tail estimate for Rademacher sums (see [L] or
apply Theorem ), we have

P
{
|disc (Ω, χ)| ≤ 1

2
|Ω|

}
= P

{∣∣∣ k∑
i=1

εi

∣∣∣ ≤ k/2
}
≥ 1− 2 exp(−k/8).

Then the probability that |disc (Ω, χj)| ≤ 1
2 |Ω| for all j = 1, . . . , n is at least

1 − 2n exp(−k/8). Since n ≤ c1k, this probability tends to 1 as k → ∞. This
completes the proof. �

I do not know whether there are asymptotically shorter balanced homogeneous
films.

To prove the main result, we will apply a deviation inequality for sums of
independent Banach space valued random variables.
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Theorem 1.4. Let X1, . . . , Xn be independent Banach space valued random
variables with P{‖Xi‖ > t} ≤ ae−αit for all t and i. Let d ≥ maxi≤n α−1

i and
b ≥ a

∑n
i=1 α−2

i . Then setting Sn =
∑n

i=1 Xi we have

P
{∣∣‖Sn‖ −E‖Sn‖

∣∣ > t
}
≤

{
2 exp(−t2/32b) for 0 ≤ t ≤ 4b/d

2 exp(−t/8d) for t ≥ 4b/d.

This result can be derived by truncation from known deviation inequalities for
sums of bounded random variables (see e.g. [Le-Ta, Section 6.2]). However, it is
more convenient and more instructive to give a direct proof based on martingales,
as in [Yu, Sec. 3.3]. A rather short instructive proof is given in §2.
§3 consists of the proof of Theorem 1.1.
This work was supported by C.N.R. (Italy). I am grateful to P. Terenzi and to

V. Kadets for discussions.

2. Deviations of Sums

In this section we prove Theorem 1.4.
First we recall that problems about Banach space valued independent random

variables can often be reduced to a real valued martingale case, see [Le-Ta,
Ch. 6.3].

Let Ai be the σ-algebra generated by the random variables X1, . . . , Xi, i ≤ n,
and A0 be the trivial σ-algebra. The conditional expectation with respect to Ai is
denoted by EAi . Set, for each i, di = EAi‖Sn‖ −EAi−1‖Sn‖. Then (di)n

i=1 forms
a real valued martingale difference sequence, and

∑n
i=1 di = ‖Sn‖ −E‖Sn‖.

Lemma 2.1. For every i and every p ≥ 1

EAi−1 |di|p ≤ 2pE‖Xi‖p

almost surely.

Proof. Yurinskii’s inequality states that |di| ≤ ‖Xi‖+E‖Xi‖ almost surely (see
[Le-Ta, Lemma 6.16]). Then |di|p ≤ 2p−1

(
‖Xi‖p + (E‖Xi‖)p

)
. Hence

EAi−1 |di|p ≤ 2p−1
(
EAi−1‖Xi‖p + (E‖Xi‖)p

)
= 2p−1

(
E‖Xi‖p + (E‖Xi‖)p

)
≤ 2pE‖Xi‖p,

and we are done. �

Proof of Theorem 1.4. Apply Chebyshev’s inequality. For every λ ≥ 0

(4) P := P
{
‖Sn‖ −E‖Sn‖ > t

}
= P

{ n∑
i=1

di > t
}
≤ e−λtE exp

(
λ

n∑
i=1

di

)
.
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But

E exp(λ
n∑

i=1

di) = E
(
EAn−1 exp(λ

n∑
i=1

di)
)

= E
(
exp(λ

n−1∑
i=1

di)EAn−1 exp(λdn)
)

≤ ‖EAn−1 exp(λdn)‖∞E exp(λ
n−1∑
i=1

di) = · · ·(5)

=
n∏

i=1

‖EAi−1 exp(λdi)‖∞.

So we are to evaluate

EAi−1 exp(λdi) = 1 +
∞∑

p=2

λpEAi−1dp
i

p!
(since EAi−1di = 0)

≤ 1 +
∞∑

p=2

λp2pE‖Xi‖p

p!
(by Lemma 2.1).

Note that

(6) E‖Xi‖p =
∫ ∞

0

P{‖Xi‖ > t} dtp ≤
∫ ∞

0

ae−αit dtp = aα−p
i p!

Then for 0 ≤ λ ≤ αi/4

EAi−1 exp(λdi) ≤ 1+a(2λ/αi)2
∞∑

p=2

(2λ/αi)p−2 ≤ 1+a(2λ/αi)22 ≤ exp(8λ2aα−2
i ).

Combining this estimate, (5), and (4), we obtain for 0 ≤ λ ≤ 1/4d

P ≤ e−λt
n∏

i=1

exp(8λ2aα−2
i ) ≤ exp(−λt + 8λ2b).

The minimum here is attained for λ = t/16b. If t ≤ 4b/d, then the condition
λ ≤ 1/4d is satisfied, and P ≤ exp(−t2/32b). If t ≥ 4b/d, then we take λ := 1/4d,
and get P ≤ exp(−t/8d).

Similarly, one obtains the same estimates on P{‖Sn‖ −E‖Sn‖ < −t}. �

3. Random Euclidean Embeddings

In this section Theorem 1.1 is proved.
We will use a simple symmetrization lemma, see [Le-Ta, Lemma 6.3].
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Lemma 3.1. For every finite sequence (Xi) of Banach space valued mean
zero random variables

1
2
E

∥∥∥∑
i

εiXi

∥∥∥ ≤ E
∥∥∥∑

i

Xi

∥∥∥ ≤ 2E
∥∥∥∑

i

εiXi

∥∥∥.

Next, we need a known generalization of the Khinchine inequality.

Proposition 3.2. Let (ξi) be a sequence of real valued i.i.d. mean zero random
variables. Then for every finite sequence of numbers (ai)

1
2
Ap‖ξ1‖min(2,p)

(∑
i

|ai|2
)1/2

≤
∥∥∥∑

i

aiξi

∥∥∥
p
≤ 2Bp‖ξ1‖max(2,p)

(∑
i

|ai|2
)1/2

,

where Ap and Bp are the constants from the classical Khinchine inequality.

Actually, we will use the following particular case of the inequality, and give a
proof only for this case:

(7)
1

2
√

2
‖ξ1‖1

(∑
i

|ai|2
)1/2

≤
∥∥∥∑

i

aiξi

∥∥∥
1
≤ ‖ξ1‖2

(∑
i

|ai|2
)1/2

.

Proof (sketch). To prove the left-hand side observe that, by Lemma 3.1,
E|

∑
i aiξi| is nearly the same as E|

∑
i εiaiξi|. Now it is enough to apply par-

tial integration and use the classical Khinchine inequality (note that A1 = 1/
√

2
[Sz]). Since ‖

∑
i aiξi‖1 ≤ ‖

∑
i aiξi‖2, the right-hand side of (7) follows from the

orthogonality of (ξi) in L2(Ω), due to the independentness. �

Another simple consequence of the symmetrization is this.

Lemma 3.3. Let (ηi) be a finite sequence of real valued i.i.d. mean zero
random variables. Then, for any sequence (xi) in a Banach space,

E
∥∥∥∑

i

ηixi

∥∥∥ ≥ 1
2
‖η1‖1E

∥∥∥∑
i

εixi

∥∥∥.

Proof. By the symmetry, εi|ηi| has the same distribution as εiηi. Using partial
integration and the triangle inequality, we have

E
∥∥∥∑

i

εiηixi

∥∥∥ = E
∥∥∥∑

i

εi|ηi|xi

∥∥∥ ≥ E
∥∥∥∑

i

εi‖ηi‖1xi

∥∥∥.

Now it is enough to apply Lemma 3.1 with Xi = ηixi. �

Finally, recall a standard approximation lemma (see [M-S, 4.1]).
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Lemma 3.4. Let X be a Banach space, and F : X → R be a non-negative
convex homogeneous function. Suppose for some θ-net N of S(X) one has a ≤
F (x) ≤ b for every x ∈ N . Then

a− θ

1− θ
b ≤ F (x) ≤ 1

1− θ
b

for every x ∈ S(X).
In particular, if θ ≤ a/3b, then 1

2a ≤ F (x) ≤ 3
2b for every x ∈ S(X).

Proof of Theorem 1.1. Let (ξij) be independent copies of ξ. Let k ≤ cn. We
are to show that the random vectors yi = n−1

∑n
j=1ξijxj , i = 1, . . . , k, are well

equivalent to the euclidean basis.
Fix a = (ai)k

i=1 in the unit sphere S(lk2). Consider a sequence of independent
random variables

Xij = n−1aiξijxj , i = 1, . . . , k, j = 1, . . . , n,

and their sum S(a) =
∑k

i=1

∑n
j=1Xij . We will prove that, with high probability,

‖S(a)‖ is bounded from above and below for every a.
Theorem 1.4 applied to the sum of Xij helps here. Note that P{‖Xij‖ > t} =

P{n−1|ai||ξ| > t} ≤ a exp(−αn|ai|−1t), thus we take

d = α−1n−1 and b = a
k∑

i=1

n∑
j=1

α−2n−2|ai|2 = aα−2n−1.

Furthermore,

E‖S(a)‖ = n−1E
∥∥∥ n∑

j=1

( k∑
i=1

aiξij

)
xj

∥∥∥
≥ n−1 1

2

∥∥∥ k∑
i=1

aiξij

∥∥∥
1
E

∥∥∥ n∑
j=1

εjxj

∥∥∥ (by Lemma 3.3)

≥ 1
4
√

2
α1δ (by (7) and the condition on (xj)).

Conversely, let α2 = ‖ξ‖2. Note that α2 ≤
√

2
√

aα−1, as in (6). Then by the
triangle inequality and (7)

E‖S(a)‖ ≤ n−1
n∑

j=1

E
∣∣∣ k∑
i=1

aiξij

∣∣∣ ≤ α2 ≤
√

2
√

aα−1.
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Now set t := 1
8
√

2
α1δ ≤ 1

2E‖S(a)‖ and apply Theorem 1.4. Clearly, t ≤ 4b/d is
the case, because δ ≤ 1 and α1 ≤ aα−1 as in (6). Thus

P{d1 ≤ ‖S(a)‖ ≤ d2} ≥ 1− 2 exp(−d3n),

where d1 = 1
8
√

2
δα1, d2 = 3

2

√
2
√

aα−1, and d3 = c4(αα1δ/
√

a)2 = c4t
−2.

The preceding observations hold for fixed a. Now let a run over a θ-net N in
S(lk2), |N | ≤ exp(k log 3/θ), where θ = d1/3d2 (there is such a net, cf. [M-S, 2.6]).
Then

P{∀a ∈ N , d1 ≤ ‖S(a)‖ ≤ d2} ≥ 1− 2 exp(k log 3/θ − d3n).

We conclude by Lemma 3.4,

P{∀a ∈ S(lk2), d1/2 ≤ ‖S(a)‖ ≤ 3d2/2} ≥ 1− 2 exp(k log 3/θ − d3n).

If c was chosen small enough, then k log 3/θ ≤ 1
2d3n.

It remains to note that d2/d1 = c5s, and the required (c1s)-equivalence to the
euclidean basis follows. �
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