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DOMAINS WITH CONVEX HYPERBOLIC RADIUS

L. V. KOVALEV

Abstract. The hyperbolic radius of a domain on the Riemann sphere is equal to

the reciprocal of the density of the hyperbolic metric. In the present paper, it is
proved that the hyperbolic radius is a convex function if and only if the complement
of the domain is a convex set.

1. Introduction

A domain D on the Riemann sphere C = C∪{∞} is said to be hyperbolic if C \D
contains at least three points. For w ∈ D, the hyperbolic radius R(D,w) is defined
by R(D,w) = |f ′(0)|, where f is a covering map of the unit disk U = {z : |z| < 1}
onto D with f(0) = w. Hyperbolic radius is closely related to the maximal solution
of Liouville’s equation and metrics of constant negative curvature [1].

Minda and Wright [10] established that the hyperbolic radius R(D,w) of a
convex hyperbolic domain D ⊂ C is a concave function of w, thus strengthening
the theorem of Caffarelli and Friedman [2]. Later Kim and Minda [6] proved that
the concavity of R(D,w) is equivalent to the convexity of D. Here and in what
follows we do not assume that the domain of a convex or concave function is a
convex set.

The aim of the present paper is to describe domains with convex hyperbolic
radius in geometric terms. The method from [10] does not seem to work in this
case. By employing a different technique, we shall show that R(D,w) is convex in
D \ {∞} if and only if C \D is a convex set.

2. Preliminary Results

Let M denote the set of all univalent meromorphic functions in the unit disk U
with f(0) = 0, f ′(0) > 0. The class A is defined to be a collection of all members
of M that are analytic in U . Define Mc = {f ∈ M : C \ f(U) is convex}.
Let P denote the set of all analytic functions in U with positive real part and
f(0) = 1.
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For f ∈M and p ∈ U \ {0}, define

[f, p](z) =
2p̄z

1− p̄z
− 2p
z − p

−
(

1 +
zf ′′(z)
f ′(z)

)
.

For f ∈M \A, let f̂ = [f, f−1(∞)], where f−1 is the inverse of f .

Lemma 2.1. Function [f, p] is analytic in U if and only if either f ∈ M \A
and p = f−1(∞) or f ∈ A and |p| = 1.

Proof. The ‘only if’ part of the statement is trivial. In case of f ∈ A and |p| = 1,
function [f, p] is analytic in U by its definition. Let f ∈M \A, p = f−1(∞), and
c = lim

z→p
f(z)(z − p). Then asymptotic expansions

f ′(z) = − c

(z − p)2
+O(1), f ′′(z) =

2c
(z − p)3

+O(1) (z → p)

hold. Therefore,

[f, p](z) = − 2p
z − p

− 2cp(z − p)−3

−c(z − p)−2
+O(1) = O(1) (z → p),

which implies the analyticity of [f, p]. This proves the lemma. �

Lemma 2.2. (a) If f ∈Mc \A, then f̂ ∈ P.
(b) If f ∈Mc ∩A, then [f, p] ∈ P for some p ∈ ∂U.

Proof. (a) Let p = f−1(∞). Then p ∈ U \ {0}. For 0 < p < 1 statement (a)
was proved by Pfaltzgraff and Pinchuk [11], see also [8]. For arbitrary p ∈ U \{0},

let g(z) =
|p|
p
f(pz/|p|). It is easy to see that g ∈ Mc \ A, g(|p|) = ∞, and

f̂(z) = ĝ(pz/|p|). Thus f̂ ∈ P.
(b) For n > dist(0,C \ f(U)) let Dn = f(U) ∪ {z : |z| > n}. Then C \ Dn

is convex. There is a unique function fn ∈Mc \A that maps U onto Dn. Since
Dn+1 ⊂ Dn, the function f−1

n ◦ fn+1 maps U into itself. By Schwarz Lemma,
|f−1
n (fn+1(z))| ≤ |z| for all z ∈ U . Letting z = f−1

n+1(∞) yields |f−1
n (∞)| ≤

|f−1
n+1(∞)|. Taking a subsequence, we can assume that {f−1

n (∞)} converge to
some point p of U \ {0}. By Carathéodory kernel theorem [5, p.56] fn → f and
f̂n → [f, p] locally uniformly in U \ {p}. Since f̂n ∈ P, it follows that [f, p] ∈ P.
Lemma 2.1 implies |p| = 1.

The proof is complete. �

Remark 2.3. Functions f with f̂ ∈ P have been also considered by Miller [9]
and Royster [12].

3. Main Result

Define the cone

C(ζ, θ, β) = {ζ + ρeiϕ : ρ > 0, |ϕ− θ| < β/2}
with opening angle β at the point ζ ∈ C .
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Theorem 3.1. (a) Let D ⊂ C be a hyperbolic domain. If C \D is convex, then
for any w ∈ D \ {∞} and ϕ ∈ R

d2

dt2
R(D,w + teiϕ)

∣∣
t=0
≥ 0.(1)

Equality is attained in (1) if and only if one of the following conditions holds:
(i) D is a half-plane;
(ii) D = C(ζ, θ, β), where β > π and e−iϕ(w − ζ) ∈ R.
(b) Let D be a hyperbolic domain such that (1) holds for all w ∈ D \ {∞} and

ϕ ∈ R. Then C \D is convex.

Proof. (a) Without loss of generality we may assume that w = ϕ = 0 and
R(D, 0) = 1. Then (1) can be rewritten as

lim
ε↓0

ε−2(R(D, ε) +R(D,−ε)− 2) ≥ 0.(2)

There exists a unique f ∈Mc that maps U onto D. Denote its Taylor coefficients
at zero by ck (k = 1, 2, . . . ). Since |c1| = R(D, 0) = 1, it follows that c1 = 1. For
0 < ε < dist(0, ∂D), let z1 = f−1(ε) and z2 = f−1(−ε). Combining expansions
z1 + c2z

2
1 + o(ε2) = ε and z2 + c2z

2
2 + o(ε2) = −ε (ε ↓ 0) yields

z1 + z2 = −c2(z2
1 + z2

2) + o(ε2) (ε ↓ 0).(3)

Since |1 + w| = 1 + Rew + (Imw)2/2 + o(|w|2) (w → 0), we have

(4) |f ′(zi)| = 1 + Re(2c2zi + 3c3z2
i )

+ 2(Im(c2zi))2 + o(ε2) (ε ↓ 0, i = 1, 2).

Combining (4), (3), and relations z1 = ε+ o(ε), z2 = −ε+ o(ε) (ε ↓ 0) yields

|f ′(z1)|+ |f ′(z2)| = 2 + 2ε2 Re(3c3 − 2c22) + 4ε2(Im c2)2 + o(ε2) (ε ↓ 0),

R(D, ε) +R(D,−ε) = |f ′(z1)|(1− |z1|2) + |f ′(z2)|(1− |z2|2)

= 2 + 2ε2(Re(3c3 − 2c22) + 2(Im c2)2 − 1) + o(ε2) (ε ↓ 0).

Because

(5) lim
ε↓0

ε−2(R(D, ε) +R(D,−ε)− 2)

= 2(Re(3c3 − 2c22) + 2(Im c2)2 − 1) = 2(3 Re(c3 − c22) + |c2|2 − 1),

inequality (2) is equivalent to

3 Re(c3 − c22) + |c2|2 ≥ 1.(6)

By Lemma 2.2 there is p ∈ U \{0} such that [f, p] ∈ P. The Taylor series for [f, p]
at 0 has the form

[f, p](z) = 1 + 2(p̄+ 1/p− c2)z + 2(p̄2 + 1/p2 + 2c22 − 3c3)z2 + · · · .
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Let p̄ + 1/p = reiϕ, where ϕ ∈ R and r = |p̄ + 1/p| = |p| + 1/|p| ≥ 2. It follows
from Carathéodory’s lemma [4, p.41] that |reiϕ − c2| ≤ 1. Let c2 = reiϕ + ρeiψ,
where ψ ∈ R , 0 ≤ ρ ≤ 1. The identity

p̄2 +
1
p2

=
(
p̄+

1
p

)2

− 2
p̄

p
= r2e2iϕ − 2e2iϕ = (r2 − 2)e2iϕ

implies

[f, p](z) = 1− 2ρeiψz + 2((r2 − 2)e2iϕ + 2c22 − 3c3)z2 + · · ·
= 1 + a1z + a2z

2 + · · · .
(7)

It is easy to see that for α ∈ R

τα(ζ) =
(1 + eiα)ζ + 1− eiα

(1− eiα)ζ + 1 + eiα

is a conformal automorphism of the right half-plane which fixes 1. Hence the
function

τα([f, p](z)) = 1 + eiαa1z + eiα(a2 − (1− eiα)a2
1/2)z2 + · · ·(8)

belongs to P. It follows from Carathéodory’s lemma that

Re(a2 − (1− eiα)a2
1/2)) ≤ 2.

Passing to the supremum over all α ∈ R yields

Re(a2 − a2
1/2) + |a1|2/2 ≤ 2

which is equivalent to

(r2 − 2) cos 2ϕ+ Re(2c22 − 3c3)− ρ2 cos 2ψ + ρ2 ≤ 1.

Therefore,

3 Re(c3 − c22) + |c2|2 ≥
≥ |c2|2 − Re c22 + (r2 − 2) cos 2ϕ+ ρ2(1− cos 2ψ)− 1

= 2(Im c2)2 + (r2 − 2)(1− 2 sin2 ϕ) + 2ρ2 sin2 ψ − 1

= 2(r sinϕ+ ρ sinψ)2 − 2(r2 − 2) sin2 ϕ+ 2ρ2 sin2 ψ + r2 − 3

= 4(sinϕ+ ρ sinψ)2 + 4ρ(r − 2) sinϕ sinψ + r2 − 3

≥ −4(r − 2) + r2 − 3 = (r − 2)2 + 1 ≥ 1.

(9)

This proves (6), and (1) follows.
Suppose that equality is attained in (1). Then (9) also becomes an equality.

This implies r = 2 and |p| = 1. Since |p| = 1, it follows from Lemma 2.1 that
∞ /∈ D. By equality statement in Carathéodory’s lemma [4, p.41], there are α ∈ R
and µ ∈ [0, 1] such that

τα([f, p](z)) = µ
1 + eiα/2z

1− eiα/2z
+ (1− µ)

1− eiα/2z
1 + eiα/2z

.
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Hence,

[f, p](z) =
1 + 2(2µ− 1) cos(α/2)z + z2

1 + 2(2µ− 1)i sin(α/2)z − z2
=

1 + 2vz + z2

1 + 2iuz − z2
,(10)

where u = (2µ − 1) sin(α/2), v = (2µ − 1) cos(α/2). Combining (7) and (10)
yields ρeiψ = ui − v and u = ρ sinψ. Since (9) is supposed to be an equality,
we have sinϕ = −ρ sinψ = −u which implies p = e−iϕ ∈ {p1, p2}, where pn =
(−1)n

√
1− u2 + iu, n = 1, 2. Recalling the definition of [f, p] and using |p| = 1 we

obtain

(log f ′(z))′ =
f ′′(z)
f ′(z)

=
4

p− z
+ 2

z + v − iu
z2 − 2iuz − 1

.(11)

It is easy to see that z2 − 2iuz − 1 = (z − p1)(z − p2).
Case 1. |u| < 1. Let γ = v/

√
1− u2. Integrating (11) yields

log f ′(z) = −4
∫ z

0

dζ

ζ − p
+
∫ z

0

2ζ − 2iu
ζ2 − 2iuζ − 1

dζ + 2v
∫ z

0

dζ

(ζ − p1)(ζ − p2)

= −4 log(1− z/p) + log(1 + 2iuz − z2)− γ log
1− z/p1

1− z/p2
,

f ′(z) =
(

1− z/p1

1− z/p2

)−γ (1− z/p1)(1− z/p2)
(1− z/p)4

.

Recall that p is equal to either p1 or p2. If p = p1, then

f ′(z) =
(

1− z/p2

1− z/p1

)1+γ

(1− z/p1)−2,

f(z) =
1

(4 + 2γ)
√

1− u2

{
1−

(
1− z/p2

1− z/p1

)2+γ
}
.

This implies D = C
((

(4 + 2γ)
√

1− u2
)−1

, θ, (2 + γ)π
)

for some θ ∈ R .
If p = p2, then

f ′(z) =
(

1− z/p1

1− z/p2

)1−γ

(1− z/p2)−2,

f(z) =
1

(4− 2γ)
√

1− u2

{(
1− z/p1

1− z/p2

)2−γ

− 1

}
.

Thus D = C
((

(2γ − 4)
√

1− u2
)−1

, θ, (2− γ)π
)

for some θ ∈ R . Taking into
account that γ ∈ [−1, 1], we conclude that domain D is a cone with opening angle
not less than π at some point on the real axis. Therefore, D satisfies one of the
conditions (i), (ii).
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Case 2. |u| = 1. This implies p1 = p2 = p = iu and v = 0. Integrating (11)
yields

log f ′(z) = −2 log(1− z/p),

f ′(z) =
1

(1− z/p)2
,

f(z) =
z

1− z/p
.

In this case domain D satisfies (i).
It remains to verify that each of the conditions (i), (ii) implies equality in (1).

This follows directly from the identity

R
(
C(ζ, θ, β), ζ + ρei(θ+δ)

)
=

2βρ
π

cos
πδ

β
,

which holds for all ρ > 0 and |δ| < β/2. Claim (a) is proved.
(b) Let D be such a domain that (1) holds for all a ∈ D \ {∞} and ϕ ∈ R . If

C \D is not convex, then there exist such points a, b ∈ C \D that ta+(1− t)b ∈ D
for 0 < t < 1. The function R(D, ta + (1 − t)b) is convex on the interval (0, 1)
and vanishes in its ends. Therefore, R(D, ta + (1 − t)b) ≤ 0 for 0 < t < 1. This
contradicts the definition of hyperbolic radius.

The proof is complete. �

4. Concluding Remarks

The fact that R(D,w) is concave for convex D [10] leads to a non-covering theorem
for convex univalent functions [7]. From Theorem 3.1, a covering theorem for
convex meromorphic functions can be derived as follows. Consider function f ∈
Mc that has Taylor expansion f(z) = z + c2z

2 + . . . at the origin. One can easily
show [7, p. 146] that

R(D,w) = 1 + 2 Re(c2w) + o(|w|) (w → 0).

By Theorem 3.1, R(D,w) ≥ 1 + 2 Re(c2w) for all w ∈ f(U) \ {∞}. Because
R(D,w) vanishes on ∂f(U), we have the following result.

Corollary 4.1. If a function f in Mc has Taylor expansion f(z) = z+c2z2+. . .
at 0, then {

w ∈ C : Re(c2w) > −1
2

}
⊂ f(U).

Example of the function f(z) =
z

1− z
shows that the constant −1

2
in Corol-

lary 4.1 is the maximal possible.

Remark 4.2. Coefficient estimate (6) is the reverse of known Trimble’s in-
equality [13] which is valid in the different class of univalent functions.

Remark 4.3. Class Mc is related to class MC from the recent paper of Ya-
mashita [14], where some other sharp coefficient estimates were proposed.
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In view of [1] it is natural to ask whether Theorem 3.1 will remain true if one
replaces R(D,w) with the inner radius r(D,w) of D (see [5] or [3] for definition).
Since for simply connected domains these two radii coincide [1], statement (a) holds
in this case as well. However, statement (b) fails. The domain D = C \ (U ∪ {2})
gives a counterexample. Indeed,

r(D,w) = r(C \ U , w) = |w|2 − 1

for all w ∈ D \ {∞}. Hence, r(D,w) is convex in D \ {∞}, while C \D is not a
convex set.

Problem 4.4. Hyperbolic radius can also be defined for certain domains in Rn,
n > 2 [1]. Does Theorem 3.1 hold for such domains?
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