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DOMAINS WITH CONVEX HYPERBOLIC RADIUS

L. V. KOVALEV

ABSTRACT. The hyperbolic radius of a domain on the Riemann sphere is equal to
the reciprocal of the density of the hyperbolic metric. In the present paper, it is
proved that the hyperbolic radius is a convex function if and only if the complement
of the domain is a convex set.

1. INTRODUCTION

A domain D on the Riemann sphere C = C U{oo} is said to be hyperbolic if C \ D
contains at least three points. For w € D, the hyperbolic radius R(D, w) is defined
by R(D,w) = |f'(0)|, where f is a covering map of the unit disk U = {z : |2| < 1}
onto D with f(0) = w. Hyperbolic radius is closely related to the maximal solution
of Liouville’s equation and metrics of constant negative curvature [1].

Minda and Wright [10] established that the hyperbolic radius R(D,w) of a
convex hyperbolic domain D C C is a concave function of w, thus strengthening
the theorem of Caffarelli and Friedman [2]. Later Kim and Minda [6] proved that
the concavity of R(D,w) is equivalent to the convexity of D. Here and in what
follows we do not assume that the domain of a convex or concave function is a
convex set.

The aim of the present paper is to describe domains with convex hyperbolic
radius in geometric terms. The method from [10] does not seem to work in this
case. By employing a different technique, we shall show that R(D,w) is convex in
D\ {oo} if and only if C \ D is a convex set.

2. PRELIMINARY RESULTS

Let M denote the set of all univalent meromorphic functions in the unit disk U
with f(0) =0, f/(0) > 0. The class A is defined to be a collection of all members
of M that are analytic in U. Define M¢ = {f ¢ M : C \ f(U) is convex}.
Let P denote the set of all analytic functions in U with positive real part and
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For f € M and p € U \ {0}, define

2pz 2p zf"(z)
- - (1 .
) = 2= 2 (14 2
For f e M\ A, let f = [f, f~'(c0)], where f~! is the inverse of f.
Lemma 2.1. Function [f,p] is analytic in U if and only if either f € M\ A
and p = f~1(c0) or f € A and |p| = 1.

Proof. The ‘only if’ part of the statement is trivial. In case of f € A and |p| =1,
function [f, p] is analytic in U by its definition. Let f € M\ A, p = f~!(c0), and
¢ = lim f(z)(z — p). Then asymptotic expansions

z—p

! c " 2c
z2)=———-—+0(1 R z) = + O(1 z—p
P =~ O, () = o +0(1) (=)
hold. Therefore,
2p  2ep(z—p)°
f)e) = — 2 = 2R o) = 0(1) (=~ )
which implies the analyticity of [f,p]. This proves the lemma. O

Lemma 2.2. (a) If f € M\ A, then f € P.
(b) If f e M°N A, then [f,p] € P for some p € 9U.

Proof. (a) Let p = f~1(c0). Then p € U\ {0}. For 0 < p < 1 statement (a)
was proved by Pfaltzgraff and Pinchuk [11], see also [8]. For arbitrary p € U\ {0},
let g(z) = l%f(pz/|p|) It is easy to see that g € M\ A, g(|p|) = oo, and
#() = 9p=/Ip). Thus f € P.

(b) For n > dist(0,C \ f(U)) let D,, = f(U)U{z : |z| > n}. Then C\ D,
is convex. There is a unique function f, € M€\ A that maps U onto D,,. Since
D,+1 C D,, the function f, ! o f,y1 maps U into itself. By Schwarz Lemma,
|fo (fag1(2))] < |2] for all z € U. Letting z = f,};(c0) yields |f,'(c0)| <
| fiti(00)]. Taking a subsequence, we can assume that {f,;*(co)} converge to
some point p of U \ {0}. By Carathéodory kernel theorem [5, p.56] f, — f and
fn — [f,p] locally uniformly in U \ {p}. Since f, € P, it follows that [f,p] € P.
Lemma 2.1 implies |p| = 1.

The proof is complete. U

Remark 2.3. Functions f with f € P have been also considered by Miller [9]
and Royster [12].

3. MAIN RESULT

Define the cone
C’((,Q,b’) = {C+peicp P> 07|<)0_9| < 6/2}
with opening angle 8 at the point ¢ € C.
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Theorem 3.1. (a) Let D C C be a hyperbolic domain. If C\ D is convez, then
for any w € D\ {oo} and p € R

d2

(1) Iz R(D7w—|—tew)‘t:0 > 0.

Equality is attained in (1) if and only if one of the following conditions holds:

(i) D is a half-plane;
(ii) D= C((,0,8), where B> and e (w — () € R.

(b) Let D be a hyperbolic domain such that (1) holds for all w € D\ {oc0} and
p €R. Then C\ D is convex.

Proof. (a) Without loss of generality we may assume that w = ¢ = 0 and
R(D,0) = 1. Then (1) can be rewritten as

(2) 1%1 e 3(R(D,e) + R(D, —¢) — 2) > 0.

€
There exists a unique f € M€ that maps U onto D. Denote its Taylor coefficients
at zero by ¢ (k=1,2,...). Since |¢1| = R(D,0) = 1, it follows that ¢; = 1. For

0 < e < dist(0,0D), let 21 = f~1(¢) and 22 = f~1(—¢). Combining expansions
21 + 227 + 0(%) = € and 22 + 223 + 0(e?) = —¢ (¢ | 0) yields

(3) 21+ 20 = —co(23 4+ 23) +o(e?) (e ]0).
Since |1 +w| =1+ Rew + (Imw)?/2 + o(|w|?) (w — 0), we have
(4) [f'(2:)] = 1+ Re(2c2z; + 3c3z])
+2(Im(c22;))? +o0(e?) (10, i =1,2).
Combining (4), (3), and relations z; = € 4+ o(¢), 22 = —e + 0(¢) (¢ | 0) yields
If' (20| + |f'(22)| = 2 4 26 Re(3cs — 2¢2) + 4e*(Im ¢)? + o(e?) (e 1 0),

R(D,e) + R(D, —¢) = |f'(z1)|(1 = |21]*) + [/ (22)(1 = |22]*)
=2+ 2e%(Re(3cs — 2¢3) +2(Imep)? — 1) +o(e?) (£ 10).
Because
(5) lsng e 2(R(D,e) + R(D, —¢) — 2)
= 2(Re(3c3 — 2¢3) + 2(Imcz)® — 1) = 2(3Re(cs — ¢3) + |eo|* — 1),
inequality (2) is equivalent to
(6) 3Re(cz — c3) + |ea)® > 1.

By Lemma 2.2 there is p € U\ {0} such that [f,p] € P. The Taylor series for [f,p]
at 0 has the form

[f.pl(z) =1+2(p+ 1/p— c2)z +2(p° + 1/p° + 2¢5 — 3c3)2” + - -



210 L. V. KOVALEV

Let p+ 1/p = re’?, where ¢ € R and 7 = [p+ 1/p| = |p| + 1/|p| > 2. It follows
from Carathéodory’s lemma [4, p.41] that |re’® — cy| < 1. Let cg = 7€' + pei?,
where ¥ € R, 0 < p < 1. The identity

P+ 1% = (p+ %)2 — 21;? = 1%e? — 2e%¢ = (17 — 2)e?¥
implies

™ [£,p](2) =1 —2pe™ 2 4 2((r? — 2)e*? + 2¢2 — 3c3)2% + - -
=1l+4az+az®+---.

It is easy to see that for a € R

(1+e ) +1—e
(1—e )+ 1+ e

is a conformal automorphism of the right half-plane which fixes 1. Hence the
function

(8) To([fip)(2)) = 1+ a1z + e (a2 — (1 — €'*)a7/2)2" + - -
belongs to P. It follows from Carathéodory’s lemma that

Re(ay — (1 — €')a2/2)) < 2.

To (C) =

Passing to the supremum over all a € R yields
Re(ay —a?/2) + |a1)?/2 < 2

which is equivalent to

(r? — 2) cos 2¢ + Re(2¢3 — 3¢3) — p? cos 21h + p? < 1.
Therefore,
3Re(cs — c3) + |cal® >
> |ea|? — Rech + (r? —2) cos2¢ + p*(1 — cos 2¢) — 1
=2(Imcy)? + (r? — 2)(1 — 2sin? @) + 2p%sin® ¢ — 1
= 2(rsin @ + psine)? — 2(r? — 2)sin? p + 2p?sin® Y + 12 — 3
= 4(sinp + psinep)? + 4p(r — 2) sin psinyy + 72 — 3
> A4(r—2)+r*-3=(r—27%+1>1.

9)

This proves (6), and (1) follows.

Suppose that equality is attained in (1). Then (9) also becomes an equality.
This implies » = 2 and |p| = 1. Since |p| = 1, it follows from Lemma 2.1 that
oo ¢ D. By equality statement in Carathéodory’s lemma [4, p.41], there are « € R
and u € [0, 1] such that

14+ eia/QZ 1— eia/QZ

7a(lfp)(2) = s, + U= Wy,
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Hence,

1+22u—1)cos(a/2)z + 22 1+ 2vz+ 22
1) e = ~Deosla/2z4 2" 142427
1422 — 1isin(a/2)z — z 1+ 2iuz — 2

where u = (2u — 1)sin(«/2), v = (2u — 1) cos(«/2). Combining (7) and (10)
yields pe®¥ = uwi — v and u = psint. Since (9) is supposed to be an equality,
we have sinp = —psiny = —u which implies p = e~ € {p1,p2}, where p, =
(=1)"v1 — u?+iu, n = 1,2. Recalling the definition of [f, p] and using |[p| = 1 we
obtain

;M=) 4 z4v—iu

+ 2

(1) loe /N =Ftey =p—2 P2 a1

It is easy to see that 22 — 2iuz — 1 = (z — p1)(2 — p2).
Case 1. |u] < 1. Let v = v/v1 — u?. Integrating (11) yields

, [ 2 L
: _ d —
R el e LAl ey

1—z/m
1—2/p2

= —4log(l — z/p) + log(1 + 2iuz — 22) —vlog

vy (L=2/pi 7T (L= 2/p1)(1 — z/p2)
f (Z) - 4 .
1—2z/ps (1—=z/p)
Recall that p is equal to either p; or ps. If p = pq, then

re= ()

v (e
f(z)_(4+2v)m{l <1_Z/p1> }

This implies D = C (((4 +27)V1 — u2)71 ,0,(24 7)77) for some 6 € R.
If p = po, then

O e

B 1 1—2z/m 277_
f<z)<4—2v>m{(1—z/p2> 1}'

Thus D = C (((27 —4)v1-— u2)71 ,0,(2— 7)77) for some § € R. Taking into
account that v € [—1, 1], we conclude that domain D is a cone with opening angle

not less than 7 at some point on the real axis. Therefore, D satisfies one of the
conditions (i), (ii).

)
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Case 2. |u| = 1. This implies p; = ps = p = iu and v = 0. Integrating (11)
yields

log f'(z) = —2log(1 — z/p),

, _ 1
PO =
1) =17

In this case domain D satisfies (i).
It remains to verify that each of the conditions (i), (ii) implies equality in (1).
This follows directly from the identity
208p ™
= — _

R(O(60,0), ¢+ pel ) = = Feos

which holds for all p > 0 and |0] < 8/2. Claim (a) is proved.

(b) Let D be such a domain that (1) holds for all @ € D \ {0} and ¢ € R. If
C\ D is not convex, then there exist such points a,b € C\ D that ta+ (1 —t)b € D
for 0 < ¢t < 1. The function R(D,ta + (1 — t)b) is convex on the interval (0,1)
and vanishes in its ends. Therefore, R(D,ta + (1 —t)b) < 0 for 0 < ¢ < 1. This
contradicts the definition of hyperbolic radius.

The proof is complete. il

4. CONCLUDING REMARKS

The fact that R(D,w) is concave for convex D [10] leads to a non-covering theorem
for convex univalent functions [7]. From Theorem 3.1, a covering theorem for
convex meromorphic functions can be derived as follows. Consider function f €
MF that has Taylor expansion f(z) = z + 222 +... at the origin. One can easily
show [7, p. 146] that

R(D,w) =1+ 2Re(cow) + o(|w|) (w — 0).

By Theorem 3.1, R(D,w) > 1+ 2Re(cow) for all w € f(U) \ {co0}. Because
R(D,w) vanishes on 0f(U), we have the following result.

Corollary 4.1. If a function f in M€ has Taylor expansion f(z) = z+c22+. ..
at 0, then

{w € C : Re(cow) > —%} C f(U).

1
Example of the function f(z) = 1 “_ Shows that the constan ~5 in Corol-
—z

lary 4.1 is the maximal possible.

Remark 4.2. Coefficient estimate (6) is the reverse of known Trimble’s in-
equality [13] which is valid in the different class of univalent functions.

Remark 4.3. Class MF€ is related to class M C from the recent paper of Ya-
mashita [14], where some other sharp coefficient estimates were proposed.
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In view of [1] it is natural to ask whether Theorem 3.1 will remain true if one

replaces R(D, w) with the inner radius r(D,w) of D (see [5] or [3] for definition).
Since for simply connected domains these two radii coincide [1], statement (a) holds
in this case as well. However, statement (b) fails. The domain D = C \ (U U {2})
gives a counterexample. Indeed,

r(D,w) =r(C\U,w) = |w? -1

for all w € D\ {oo}. Hence, r(D,w) is convex in D \ {oo}, while C \ D is not a

convex set.

Problem 4.4. Hyperbolic radius can also be defined for certain domains in R™,

n > 2 [1]. Does Theorem 3.1 hold for such domains?

10.

11.

12.

13.

14.
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