Acta Math. Univ. Comenianae 93
Vol. LXXI, 1(2002)7 pp. 93-111

ANALYSIS OF A SEMIDISCRETE SCHEME FOR SOLVING
IMAGE SMOOTHING EQUATION OF MEAN CURVATURE
FLOW TYPE

A. HANDLOVICOVA AND K. MIKULA

ABSTRACT. Numerical approximation of a nonlinear diffusion equation of mean cur-
vature flow type is discussed. Convergence and error analysis of a regularized prob-
lem is presented.

1. INTRODUCTION

In this paper we analyze a semidiscrete numerical method for solving nonlinear
diffusion equation

Vu
A

in a domain Q ¢ RY accompanied with homogeneous Neumann boundary con-
ditions and an initial condition. Equation (1.1) is useful in image processing for
selective smoothing of images and shapes. Numerical experiments in processing
of 2D and 3D images are presented in [10]. Here, we present analysis of a special
semidiscrete scheme for solving (1.1).

Equation (1.1) is a degenerate parabolic equation and is related to the so-called
level set equation ((1.1) with g(s) = 1) which has been proposed by Osher &
Sethian [16],[21] for computation of moving fronts in interfacial dynamics. The
level set equation moves each level line (surface) of 2D (3D) image with the velocity
proportional to its normal mean curvature field. This causes intrinsic smoothing
of level sets. By means of the Perona-Malik function g (for which a typical choice
is, e.g., g(s) = 1/(1+ s?)) we control the motion of level sets which are also edges.
The smoothing of silhouettes on which the gradient of intensity is large can be
slowed down by using g. In analysis and also in computations (see [10]) we use
the following Evans-Spruck regularization,

(1.1) ur = g(|Vul)[VulV.(
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1 Vu
1.2 ——u; — g(|Vu|)V.(———) = 0 in I xQ,
(1.3) O,u = 0 onl x0Q,
(1.4) u(0,.) = wo in Q,

where 1 > ¢ > 0 is a (small) real number, fixed throughout the whole paper and
constants in estimates can depend on it. I = (0,7) is a time-scale interval and
Q c RY. Using the ideas of Deckelnick and Dziuk [5] and Frehse’s deformation
technique ([8]) we analyze (for N = 2) a finite element approximation of the
problem (1.2)-(1.4). In [5], the motion of two-dimensional nonparametric surface
by its mean curvature, governed by the equation

1 Vu

- V(e
I+ VUl («/1+\Vu\2

is considered, provided u = 0 on 92 and starting with smooth initial graph. We
adapt their convergence and error estimates results to our situation - equation
(1.2) with zero Neumann boundary conditions.

The semidiscrete scheme (Galerkin approximation) for solving (1.2)-(1.4) then
reads as follows

)=0 in I xQ,

Uh,tPh Vun. Vo
(1.5) / : + = 0, Yo, € Xp,tel,
o g(|Vur)v/e + |Vun?  Ja e+ [Vup|?
(16) uh(O,.) = Upo,

where up(t,.) € X}, is the approximation of u, X}, is suitable finite element space
with grid size parameter h (see (2.2)) and Ty is a modification to our case of the
so called minimal surface projection of continuous initial data ug (see (4.1)).

Our purpose is to prove the convergence of uy to u in some functional spaces.
After some notations and assumptions given in Section 2, we present the main
results- existence and error estimates- in Section 3. Section 4 is devoted to proofs
of theorems.

2. NOTATIONS AND ASSUMPTIONS

We shall denote the usual norm in Sobolev space H™(2) by ||.||m, the norm in

H™P(Q) by [|.|[m,p where m > 0,p > 1; for m = 0 we write |[.|| and [|.||z,
respectively. In our theoretical analysis we consider a bounded domain
(2.1) Q ¢ R? with 9Q € CS.

Let 75, be a partition of  into generalized isoparametric triangles T, i.e. T is a
triangle if 7' and 9 have at most one point in common, otherwise one of the faces
may be curved. The usual regularity condition is fulfilled [4, Chapter 2.1]. We
define the finite dimensional subspace X}, by

(2.2) Xy, := {vp, € C(Q)|vp, is linear on each T' € 75, }
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where the isoparametric modification is used in curved elements ([22],[23]). Under
these hypotheses, for functions v € H*¥?(€), 2 < p < oo, and the corresponding
interpolants I,v, Iy, : H*?(Q) — X}, the usual approximation and inverse prop-
erties hold (see [4, Theorems 3.2.6, 3.3.6]):

(2.3) (v = Inv)

lip < A3V ™||z,, 0<j <1,m=min(2,k)

and for vy, € X}, we have

Vorll, < ch Hunllz,,1<p<oo
(2:4) lonll < ch™Yjonl]
lonlloe < c|logh*?||up]:.

For the data of (1.2)-(1.4) we assume that
(2.5) g€ C*R),g(0) =1,0 < g(s) <1 ( we admit g(s) — 0, for s — c0),

with bounded derivatives up to 4-th order.
ug(x) € C°(Q) satisfying the compatibility conditions

(2.6) m\aﬂ =0, for |of < 3.

6z(f1...[“):v(;\t,N
3. MAIN RESULTS

As we have mentioned above for proving the existence of a solution of the contin-
uous problem in adequate function spaces and obtaining some error estimates for
discrete solution we use the ideas and results of Deckelnick and Dziuk [5]. Let us
state an existence and uniqueness of a solution result for problem (1.2) - (1.4).

Theorem 3.1. Let (2.1), (2.5) and (2.6) be satisfied. Then there exists a time
T > 0 such that (1.2)-(1.4) has a unique solution u € Loo(I; H®(Q))NLo(I; H®(Q2))
with uy € Loo(I; H3()) N Lo(I; H4(2)) and us € Loo(I; HY(Q)) N La(I; H2(Q2)).

For the Galerkin approximation uy, given by (1.5)-(1.6) and its relation to the
continuous solution u from Theorem 3.1 we have

Theorem 3.2. Let (2.1), (2.5) and (2.6) be satisfied. There exists hg > 0 such
that problem (1.5)-(1.6) has a unique solution up, € Loo(I, L2(Q)) N La(1, H*(Q))
for all 0 < h < hg. Furthermore, we have the following error estimates:

T
sup |lu — up|| < ch?|log hl?, (/ IV (u = up)|*)!/? < ch,
(0,T) 0

T
(Sup) [lue = un.cl| < chlloghl, (/ 1V (ur = un)|*)'/? < ch|log h|.
0,T 0

These statements will be consequences of results obtained by deformation tech-
nique introduced by Frehse [8] which has been used also in [5]. We consider



96 A. HANDLOVICOVA AND K. MIKULA
the following family of initial-boundary value problems depending on a parameter
o€ 0,1]:

Ve +o|Vuo|? Vu? .
o _ o . = I Q PU
uf —g(o|Vu |)(1ig)\/g+UV( E+|Vu”\2) 0 in I xQ, (P%)

o,u’ = 0 onl x0Q,
u?(0,.) = wo in .
The corresponding Galerkin approximation then reads as
/‘«1_0”E+0W%Mh+ VMRV G ppe Xptel, (P
o STV e T oV o Vot Vgl
up(0,.) = Uno,

where @y, o is defined as in (4.1).
We can prove the existence result for the continuous problem (P7)

Theorem 3.3. Let (2.1), (2.5) and (2.6) be satisfied. Then there exists a
unique solution u® € Loo(I; H®(Q)) N La(I; HO(Q)) with uf € Loo(I; H3(2)) N
Lo(I; HY(Q)), uf, € Loo(I; HY(Q)) N La(I; H*(Q)) to problem (P°), provided that
T > 0 is small enough.

In case o = 1, (P7) is our original problem (1.2)-(1.4), so if we prove the
Theorem 3.3, Theorem 3.1 is also proved. In case o =0, (P?) is deformed into
w V(Y ) Z 0 mIxQ
Ve + [Vul|?
(3.1) Ou = 0 onlxoN
u(0,.) = wup in .

This equation is still nonlinear but its elliptic part is in the divergence form.
Therefore we first investigate problem (3.1) and its Galerkin approximation wuy,
given by

vuh.VLph
3.2 /uh’tgoh—&— —— = 0, Vo, € Xy, tel,
3.2) Q o e+ |[Vup|?
uh(O,.) = a,w.

We obtain the following result which itself gives the error estimates for the finite
element approximation of widely used regularization of pure anisotropic diffusion
introduced by Osher & Rudin [15].

Theorem 3.4. Let (2.1), (2.6) be satisfied. Let u be a solution to (3.1) and let
up be a discrete solution given by (3.2). Then

sup ||Vun|lz., <c,
(0,7)

)

T
Sop [|lu = upl| < ch?|log h|?, (/ 1V (ur = un)|I*) < ch?|log h|*.
0,7 0
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Finally, for h <1 and v > 0,k; > 0 we define a set ©,, C [0,1] by
Oy, :={o €[0,1] | (P{) has a solution uj on I and

T
IW%MW<%hAHWﬂ—ﬁAW<ﬁWbMH

where «y is a uniform upper bound on ||[Vu?||r. for ¢ € [0,1]. We prove the
following result.

Theorem 3.5. For each h < hg (it may depend on the data of the problem and
k1) the set ©y, is nonempty, open and closed with respect to [0,1] and therefore
must coincide with [0, 1].

Since u! = u, Theorem 3.1 is a direct consequence of Theorem 3.3. Theorem

3.5 together with the fact that u}L = uy, will be used in the proof of Theorem 3.2.

4. PROOFS OF THEOREMS

Proposition 4.1. For every u € Loo(I; H?(Q)) N La(I; HS(Q)) with u; €
Loo(I; H3(Q)) N La(I; HA(Q)), uw € Loo(I; HY(Q)) N Lo(I; H?()) and for all
0 < h<hg, ho sufficiently small, there exists a unique function ayp, ux(t,.) € Xp
(for a.e. t € I), such that for every @ € X

(4.1) / o +/ V.V u Vu.Vy,
Q Q

_—— = gph+ - - "
Ve+ Vap > Ja Qe+ |[Vul?

and the error between u and @y can be estimated as follows

(4.2) sup ||u — ||+ h sup ||V(u—ap)|| < Ch?,
(0,T) 0,T)
(4.3) sup ||lu —apl|n, +hsup [|[V(u—ap)|ln, < Ch2| log h|,
0,T) 0,T)
(4.4) sup |Jug — Gp | < ChQ\ log h|27 Sup) [|V(ug —ane)|| < Ch,
T ;
T
(4.5) ([ 196~ ane)lP)72 < Chjlogh
0
T
(4.6) (/ \[wse — @neel[*)V/? < Chlloghl.
0

Remark: The definition of so-called surface projection @y, is different as in [5]
due to Neumann boundary condition (see also [20]).

Proof. From equation (4.1) we immediately have

/(u—a ) +/ V{u —tn) Von —/ ! S Vu.Ve
Q MR g Ve + |V |? a \Ve+ Va2 e+ |Vul? A
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We take ¢, = Ipu — up, € Xp, and after some rearrangement we obtain

/|U—ﬂh|2+ |V(u—ﬂh)|2
Q Q e+ |Vap|?

1 1
= — Vu.V(Iyu—u
/Q <\/€+ Van|2 e+ |Vu|2> (I 2

+/Q(u—ﬁh)(u—lhu)+/ﬂ V(u = @) V(u— Ipu) =L+ 1+ Is.

\VE+ ‘V”L_Lh|2

We estimate
V||V (Tnu — up)||V (u — ) |(IVu| + |V |)

I
Ll < a Ve +|Vul2\/e + [Vap|2 (e + [Vul2 + /e + [V |?)
< /|V Thu —u) ||V(U—Uh)|+7 |V (u—up)|?
- €+ |Vuh|2 o Ve + |Vig|?
|V (u—an)*
< 1+6 + CCs,||V(u — Inu
’Y( 1) m § || ( h )||
|la] < 52\|u—ﬁh||2+C52||u—1hu||2
L < \V( |V (u — Inu)|?
- Qe+ |Vuh|2 54—|Vuh|2
\V( un)|? 5
< + CCs,||V(u — Inu
e+ OV )
[Vul

where v = maxg \/ﬁ < 1. Then, for §;,i = 1,2,3 sufficiently small, we
obtain

o
fu—an2+ [ I oy g2,

0 VEr VP

Using (2.3) and the regularity of u we have

v _
o — a2+ [ YOI e < on,
o ve+ |V
Now, one can obtain (see also [11]) that
(4.7) IVtn|lz., <C

and so we derive the estimate for ||V (u — @p,)|| in (4.2).

The estimate for ||u — @|| in (4.2) and estimates in (4.3) can be proved in
similar way as in [18, Theorem 1] and it’s mentioned modification, (see also [9])
with respect to the definition of @, see also [20, Theorem 1], for linear case with
Neumann boundary condition. The proof is rather technical so we omit them here.
Next we will use the abbreviation

(4.8) ﬂm:—;§mgwemﬂ
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Let us differentiate (4.1) with respect to ¢t and get

(4.9) / (= @) + / F (V) V. Vin — / F (V) Viin . Von = 0.
Q Q Q

We take ¢, = Ipu; — up, and using the properties of F' and u we successively
obtain

Jus = anal P+ | F(Ta)I Va0
Q
= / (Ut - ’l]hﬂg)(ut — Ihut) +/ F’(Vﬂh)V(ut - ﬂh7t).V(ut — Ihut)
Q Q

+ / (F’(V’ah) — F/(VU))VUtV(IhUt — ’Ujh7t)
Q

< Oullur — ungl]® + Cs, lJue — Tnuel]* + Cl/ |V (us — @n )|V (up — Tnug)l
Q

+ Oyl || / IV (= )|V (Tns — )|
Q

< ulfue — nl|* + Coyllue — Inuel|* + 82|V (ur — o) |2

+ OV (we = Inue)||? + ClIVuel[p. (Y (w = an)|* + ClIV (Inuy — )|

+ 83|V (ur — wn o) |I” + Coyl [V (u — @) |[?)-
Finally, using the properties of u and strict positivity of F’, then for §;,7 = 1,2, 3,
sufficiently small, we obtain

e = ne|* + 1|V (we = ano)l1* < O(lur = Inue[F + 1|V (w — @) ),
and using (2.3), (4.2) and the properties of u we derive

llue = ne|* + |V (ue = ane)l|* < CLh?[Juel3 + CR?

uniformly for ¢ and the estimate for ||V (u; — @y ,)|| in (4.4) is completed. The rest
of (4.4) can be proved in the similar way as in [5]. Let v be the solution of the
linear equation

v—V.(F'(Vu)Vv) = us — tp ¢ in Q
with zero Neumann boundary condition. We have
||’U,t - ﬂh,tHQ = (’U, Ut — ﬂh,t) + (F/(V’LL)VU7 V(ut - ﬂh,t)-
Using (4.9), (2.3) and the well know estimates of v (see [12]) we derive

g — i t|2 < chlus — ane] 2 + / F (V) V(g — ).V (0 — Tw)
Q

+/(FI(V’I_L}I) - FI(VU))Vﬂh’t.VIh'U
Q

and after some rearrangement, for h < hg, hg sufficiently small, we obtain practi-
cally in the same way as in [5] with respect to zero Neumann boundary condition
and the estimates for v [12, Chapter 3]:

llue — e |* < Ch?||Vol| + ch?[log A ||V ||| Vo]
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+C([[ull2,colluel llvllx + [luell2l[v][2)][w — @]z, < ch?[logh|* luy — G|
where the properties of u, v, (4.3) and the estimate for ||V (u; — @ ¢)|| were used.
Summarizing these results we obtain the estimate (4.4).
Now we shall treat the second derivative with respect to t. After differentiation of
(4.9) we obtain

/ (u — ’l_Lh)ttQDh —+ / (F’(Vu)Vutt — F/(Vﬂh)Vﬂh’tt) Vgoh

Q Q

(410) = / (F"(Vﬂh)VﬂhytVﬂh’t — F"(Vu)VutVut) V(,Oh
Q

Inserting ¢y, = 4 into (4.10), in a similar way like above we get

T T
/ ||l_Lh,ttH2 +/ Hvah,ttH2
0 0

T
< 0/ (et * + [ Vuee]* + [ Van] L[V
0

o TIVUL IVuelZ) <€

due to the properties of u and @ and using (4.7) and (4.4).
Now we put ¢p, = Ipuy — tp e in (4.10). We get

wer — @n,eel|* + |V (e — tnge)||* < C/ (e — Un,pe) (Tnuey — wgr)
Q
+ C/ FI(VU)V(Utt — ah,tt)'v(-[hutt — utt)
Q
+ C/ |V(’LL — ’l]h)HV’l]h’ttHV(Ihutt — utt)|
Q

+ C/ (F”(Vﬁh)Vﬂh7t.Vﬂh,t — F”(Vu)Vut.Vut)V(Ihutt — ’ljhﬂgt).
Q

Using (4.3), (2.3), the properties of v and @) we get
ute = @n,ee|[* + [[Vuee = @nael[* < ch®|fue |3 + ch?[log hl|[Van, ||| |2
+Ch?|log h|?||Vin || + ch?|log h|?.

Integrating this inequality and using the boundedness of ||uy|2 and ||V u|| we
obtain estimates (4.5), (4.6). O

Proof. (Proof of Theorem 3.4.) From (3.1) and the definition of @, we have

VupV
(4.11) /utgoh—l—/ hYPR (u—ﬂh)goh, o € Xp, tel.
Q Q

Vet Va2 Ja
Taking the difference of (4.11) and (3.2) we obtain
V(l_l,h — uh)vgﬁh

(Uht —upt)on + | ————r
/Q o e+ |Vu|?
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= / (Uh,t — ue)on + Wup Vo, + / (uw—ap)en
0

Q

1 1
( _
/Q Ve+|Vup2 e+ |V ]?
Now, we choose ¢, = U — up to obtain

L a4 [ V)
2dt Ve + [Vaup?

< llan — WWW*WWHW*WWW*WH

11V (@ = un)|[ V]

+ —
/|\/6+|Vuh|2 \/6+|V* 2

V 2
+ - uh||2+oz/M

Ve + | Vup|?

with @ < 1, where (4.7) has been used. Using Gronwall’s lemma and results of
Proposition 4.1 we obtain

< [lan = un* + |lus

|V (@n — up)|?

Vet |Vup|? —

which together with (4.2) implies the second inequality of Theorem. We can also
conclude

T
sup |[(a — wn)| + < ChA|log hl4,
0 Q

(0,7)

IV (@n = un)llr., < CLh™ M|V (an — un)l| < Coh™2[|(an — up)l| < Cllogh|?
uniformly for a.e. ¢ € [0, T] and therefore

(4.12) sup ||Vup||z.. < C|logh|?.
(07T)

Now differentiating (4.11) and (3.2) with respect to ¢ and taking the difference of
the resulting equations we obtain

J R Py U AL
tt — Uh tt
Q o Vet |[Vupl|?
& on+ [ (= .
= Uptt — U —
o h,tt tt )Ph o \/5 n |Vuh|2 \/e n IVﬂh\Q

VupV
+/ (h—%VuhV(ah,t 7uh7t)

Vet [Vun2)3

7 Vu,V
T / (—( VinVeon g NunVen ) Vuh> Vi ¢
Q

Vet IVaP? " (Ve IVunP)?

+/ (ur — Un,t)Von.
Q

VWit Von
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We take ¢p, = tp,s — up,¢ and similarly as above and as in [5] we get

1d . V(s — )
§d_‘|uh,t_uh,t||2+ . /| (Un, tz)‘
t 2(€+sup(O,T) HVUhHLw) e+ |Vun|
1
_||utt_uhtt|| +||uht—’uht||2 —Hut—ah’t”z

+C(e + sup ||Vuh||LOC)h2
)

)

Integrating it with respect to ¢, estimating ||(@p¢ — un,¢)(0)]| as in [5] and using
(4.4)-(4.5) we obtain

|V Up,t — Up t)|2

£
[Tn,e — unl|? + l//
2(e +sup(o,7y [|Vunl|l7 ) Ve+ [V,

t
< CRlog hf* + [ flans — unl*
0
If we apply Gronwall’s lemma, we have

sup ||ap,e — u;17,5||2 < ch2| logh\g,
(0,7)

and using (4.12) we get

/ / |v Uht Uhp t)‘ Ch2|10gh|12

g+ |Vuh|2
from which we have
IV (@, — un(t))|* < Ch*|log h|'°

and
[Vun ()|l < C+Ch |V (1 —un(t))|| < C.

Now, using this result in similar way as in [5] we can obtain

T
/ |V (uy — Uhvt)||2 < Ch2| log h|2.
0

Proposition 4.1 gives the estimates for u” — @f, the next assertion will gives us
some useful relations between u” —uj, and 4} — uj, which we will use in the proof
of Theorem 3.5. O
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Proposition 4.2. Let uf be a solution of (P7) satisfying ||Vufl|lL., < 2v.
Denote e = u” —uj and e = uf —uj. Then

T
(4.13) sup |lef||* < erh?|log hl4exp(cl/ IVeZ %),
(0,7) 0

T T T
(10 [ VeI < ehlog <1+exp<c1 [ wep. [ ||Ve$|2>,
0 0 0

(415)  sup [[ef |2 < s (h2[loghl? + sup [|Ve“|[2 + (h2|log hf?
0,7)

B}

T T
+ sup HWH%QC)/ 1veg|? ) 63619(02/ 1ves|2),
(07T) 0 0

T T
(4.16) / IVef.4|? < ea((h?|log hl? + sup [|Ve?]?) / [veg |2
0 (0,T) 0

T T
B2 log [+ sup (|77 <1+ewp<c2 [ iwee [ |Ve;f||2> .
(0,T) 0 0

Proof. The proof is similar to the one in [5]. In order to simplify the presen-
tation we only look at the case o = 1 and we omit this upper index. We can
write

e=u—up=(u—1ap)+ (ap —up) =: €+ ep.
Now, from definition of (P?), for ¢ = 1, we have
Ui P VuVen

+
o Ve + |Vul2g(|Vul) o ve+ |Vul?

By definition of @, we get

=0, V(ph € Xy, tel.

ULy, + VurVn
Q Ve + |Vul?2g(|Vul|) e+ |Vip|?

:/(uiﬂh)soha VSOh EXhatGI
Q

(4.17)

Taking the difference of (4.17) and (P}) we obtain

€h.tPh / Viy, Vuy,
+ — — Von
o Ve + [VupPg([Vun|)  Ja \Ve+[Van? e+ [Vuy/?

_ 1 1
(4.18) Z/Q(U—uh)% —/ﬁm%( SVl e—|—|Vuh|2g(|Vuh|)>

_ EtPh
a Ve + [Vun2g(|Vun|)
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We use the function F' defined in the proof of Proposition 4.1. We also define
G:R? - R by
1

Glo) = Ve +IplPa(pl)

In the same way as in [5], using the mean value theorem, we have
Vauy, _ Vuy,
Ve+ Vap2 e+ [Vuy|?

and we can define the bilinear form
1
a(v,w) = / (/ F'(sVi, + (1 — S)Vuh)dva> Nuw.
o \Jo

Due to the properties of F', a is symmetric and from the fact that ||Van||r.. < 27,
[|[Vup||n., <2y we can prove
(4.19) a(v,v) > co(7)|| Vo]

Similarly as above, if we denote

1
= / F'(sVay + (1 — 8)Vuy)dsVey,
0

1
v = / G (sVu+ (1 — s)Vuy)ds,
0

we can write
1 1
— = b Ve.
e+ |[VulPg(|Vul) e+ [Vun[?g(|Vun|)
Introducing the smooth function b := G'(Vu), it is easy to see that
(4.20) b= 0" < er()IVel, b < ea(7)-

With these abbreviations (4.18) can be written as

€h,tPh h
+a"(en, on)
a Ve + [Vup|?g(|Vun|)
_ EtPn
(4.21) :/(u—uh)cph—/ubh.Vecph— .
o o o Ve + VunPg(|Vun))

Now setting ¢, = ej in (4.21) and using (4.19) we get
1d el
2dt Jo \/e + |Vun29(|Vur|)

+co||Veh||2

1 / 6,21
< - Vup . Vup,
2 Ja (Ve +[Vun|?)3g(|Vunl)
1 e2g(|Vu
(4.22) —= w9 - ’;Dt —/(ah—u)eh
2 Ja /e + |Vun|2g2(|Vus|) Q
(4.23) —/ uzenb.Ve — Steh
Q o Ve + [Vur2g(|Vun|)

=D +Ip+ I3+ 14 + Is.
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The term I; we estimate in similar way as in [5], but the inequality

(4.24) llellza < elllellm) 2 (llellz,)
is used for p € H*(2). We get

L] < C/ len*[Vuni| < Cllenl[7,[[Vun.q|]
Q

< CllenlllIVenl[([IVudll + [ Vedl]) < ]| Ven||* + Cs(IVuel|* + [ Veel ) [en] .

Using the properties of u and g, for the term I we also obtain

B <C [ e[ Vund
Q
and then we continue as above. Employing Proposition 4.1, we have

1
‘I3| S Ch2 + §||6h||2.
We rewrite I, into the form

I, = / ugepn (b — bh).Ve — / ugepb.Ve = Iy + Iyo.
Q Q

To estimate the term I; we can proceed similarly as in [5], and using continuous
embedding, (4.20) and Proposition 4.1 we have

11| < Ch*|log h)? + 6||Venl|? + Cs|len] .

145 we estimate using the properties of b, u and Preposition 1

lia] < ol [ JenVel
Q

< C(llenlllIVEll + llenll|Venl) < Ch? + Csllen||* + 8| Venl|*.
Finally, I5 yields
I5| < Cll&]|* + Cllen||* < ch*|log h[* + Cllen]|*.

Now, integrating (4.22) from 0 to ¢, taking into account the estimates of terms
I,...,I5, and the fact that e, (0) = 0 we get

t t
||eh|\2+/0 Venl? < ch4|logh|4+c/0 (1+[[Ved] )l enl .

Then Gronwall’s lemma gives

T
sup [len(®)* < Ch*{log hl‘eapc | (|9l
(0,7) 0
and the proofs of (4.13) and (4.14) are complete.
In order to prove (4.15) and (4.16) we differentiate (4.21) with respect to t.
Then we have
Ch,ttPh

Q e+ |[Vurl2g(|Vug|)

+a"(ens, on)
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_/eh on V’U/hVU}L’t + g(|Vuh|)t
- .
0 (Ve + [Vun?)3g(|Vun) €+ [Vun |22 (|Vun|)
—a?(€h7¢h)—/(ﬂh—U)twh—/uﬁtb'LVewh—/utb?Veaph
Q Q Q

h EttPh
— | wb"Verppn — -
/Q a Ve + [Vun|?g(|Vun|)

/ Eron VupVup, ¢ n g(|Vur|):
o (Ve +[Vun?)?g(|Vun|) €+ [Vun?g*(|Vus|)
Now we take ¢, = ey, and similarly as above we get

1d ei21,t

2dt Jo \/e + |[Vun2g(|Vur))

+col[Venq||*

1 e’ Vu
2 Vg Vup,; — = i1 9(IVun)e

1/ e
< ,
2 Ja (Ve + [Vun|?)?g(|Vunl) 2 Ja e+ |Vun|2g?(|Vun|)
(4.25) —a?(eh,eh,t)—/(ﬂh—u)tem—/utteh7tbh.Ve
Q Q

h h Etteht
— | wbiVeen,— / ub"Vey ep — :
/Q ! Q o Ve + [Vun29(|Vug))

B VurVup 9(|[Vur|)+ i
— | Eep, : + = I;
/nt t<<\/s+|wh2>3g<|wh|> =+ [Vun2g2(|Vun)) Z

1=

We estimate terms I; and I as above and obtain
1| + [ I2] < 6|[Vendl|* + Cs(|[Ver|[* + Dlfen,q|1*.

For the term I3 we realize
o [
||a/ F (sVap 4+ (1 — 5)Vug)ds|| < c(|Vug| + |VE| + [Vey|)
0

and again as in [5] we get
|I3] < 8|[Venl|* + Cslluel 3] Ven|* + Cs|IVEdl|” + Csl[Venl[7 || Ver|[*.
The term I, is easy to estimate because
[La] < C(l[an,e — wel® + [len,el*),
and
Is = —/ utt(bh —b).Veep, — / utb.Ve ep s = Is1 + Isz.
Using (4.20) and (4.§224) we get ’
[Is1] < 8|[Venl|* + CsllueellFlene|* + CslI Vel *[lueel |1,

(52| < co(9) el / len.tl|Vel < Cllend||* + C||VEl* + C| [ Ve
Q
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From the inequality
b] < C(IVur| + [Ver])
we obtain as in [5]
[I6] < Cl|Vell* + Cllucl[3llen.e||* + Cl|VellZ [ Vedl* + Cllen .
From the properties of b we get
(7] + [Is| < Clluel| Lo [[Velll[Venel| + l1Ewllen.d]]
< 0l[Venall® + Csllendl|* + CUIVEN + l|2e]*)-

Finally, in the last term we use the properties of g and as we get

[Io] < C | [Esllensl[Vunel +C [ |&len,e-
Q Q

2+ Csh*|log h|*|| Ve |2

Using the results of Proposition 4.1 we obtain
[Io] < Ch*log hl* + Cs(1 + [[ul3) len.ell* + 8| Ven.¢]

Now integrating (4.25) from 0 to ¢ and using the estimates for Iy,...Is with §
sufficiently small we obtain

t t
Heh,t||2+/0 [Venal? Sc||eh,t<o>\|2+c/0 (IEul 2 + Vel ?)
t
+c/0 (Lt a2+ o2+ [ Feel ) lenl
t
+0/ (lael2 + el 2 + 1)(R2 + sup [|Vel[2
0 (0,1)
T
L O(sup ||Ve|l3_ + h2|loghf?) / [Vedl|? + Ch log bl
0,T) 0
Because ( see also [5] )

|len1(0)[] < Ch,

we get

t
llen,l? +/ | Venl|* < Ch+ C(sup) [[Ve||? + C(h?| log h|?
0 0,7

| 2

T t
s 1Vellf ) [T +0 [ il e+ 9P e
) 0 0

Applying Gronwall’s lemma we prove (4.15) and similarly (4.16). O

Proof. (Proof of Theorem 3.5.) First, ©, is not empty, because 0 € O, by
Theorem 3.4. We prove that ©, is open. As in [5], let o € Oy, i.e (P) is solvable.
Using the implicit function theorem it can be shown that (P}') has a solution for
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all p in a neighborhood of o. Because the same is true for u” we obtain the strict
inequalities

T
IVallln. <29, / 19t — ult )II? < K202 log A,

provided p lies in a neighborhood of . Finally we prove that O, is closed. Let
{on}tnen C Op,0, — 0,n — c0. Because of continuous dependence of uf,u” on
o we immediately get

T
(4.26) Vg |11 < 29, / IV (uf — uf )| < K22 [log .

Furthermore, u{ is the unique solution of (P7). It remains to show the strict
inequalities in (4.26). For this purpose we use results of Proposition 4.2. We infer
from (4.14) and (4.26) that

T
(4.27) / [[Ver||* < erh*|log h|* (1 4 exp(c1kih?|log h|?)) kTh*|log h|?
0

< ch*|log h|*,

provided h < hg and hZ|logho| < ¢;'ky?. With the help of (4.26), (4.27) and
Proposition 4.1, since eZ(0) = 0 we have

T 1/2 - 1/2
IVeq|[* <2 [Ver|? ek < Ch*|log hl* (k1 + 1).
0 0

Then using (2.4) and Proposition 4.1 we also have
IVes||7 < C(1+ ki)h|log h*.
Combining these results with Proposition 4.1 we get
(4.28) [[Veo||? < Ch? + ckih®|log h|?
(4.29) [|VeTl|7_ < Ch*[log h|?|c(1 + k1)h|log h|> < C(1 + kq)h|log h|?
for h < hg. So we immediately obtain
Vgl < IVl + IVe [ <7+ oy/T+ kah™? log hf*/2 < 29,

for h < hy < hg and cy/1 + klh}/2| log h1|?/? < . Combining (4.16), (4.26), (4.28)
and (4.29) we have

T
/ 1Veq,|2
0

< c(h?*|log h|* 4 k1h®|log h|® + (h*|log h|?| + (1 + k1)h|log h|*)kZh?| log h|?)
< ch?|log h|>(1 + (1 + k1)3h|log h|?).

Now, we use (4.4) to obtain

T T T
/|\Ve:’||2s2 / \|Vez,t||2+/0 1V (u — ag.)|I?
0 0
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< ch?|log h|*(1 + (k1 + 1)h|log h|*).
Let us fix k; > 2c and choose hy < hy so small that (14 k1)3hs|logha|® < 1. Then

T
|1l < kan o
0

which is the second inequality we have had to prove. So o € O, and the set is
closed. (]

Proof. (Proof of Theorem 3.2.) The existence of a solution uy is a conse-
quence of Theorem 3.5, existence of this discrete solution and its properties we
can obtain also due the properties of Galerkin approximation of elliptic operator
(see also [18]). The fourth error estimate is fulfilled due to Theorem 3.5, since
O}, = [0,1]. To obtain the others we can use the results of Propositions 4.1 and
4.2. So

sup ||u —up|| < sup ||€]| + sup ||en]]| < Ch? —i—C’hz(ecfoT”Vet”2)1/2 < Ch?,
(0,T) (0,T) 0,T)

due to Theorem 3.5, and in a similar way we obtain the rest. O

Proof. (Proof of Theorem 3.3.) Here, we briefly describe only the main ideas
of the proof. First we denote
() = LU VLTV (5 et pf?) i), e
T e =)o "
where §;; denotes Kronecker’s symbol. We can write the differential equation of
problem (P?) in the form

up — af;(Vu)ug, ., = 0.

First, we linearize (P?) expanding af; around Vug and after that we change vari-
able v = u — ug to obtain

vp — a7 (Vuo)ve,z; — af;  (VU0)Uo 20, V), =

a‘gj (vuo)uo,lirj + a?j,pk (VUO)vzkvwiwj + r?j(vum VU)('U + uO)ziwj = FU(”),
where

1
31 (Vug, V) = /0 (1-s)ay (Vug + sV)dsvg, vy, -

§,Pk Dl
Setting af;(z) := af;(Vug) and b := —af; , (Vuo)uo sz, we have
V= AU, + 070, = F7(v) in I x €, (L%)
v = 0onl xoNQ,

v(0) = g in Q.
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It is clear that u is a solution of (P?) if and only if v = u — ug solves (L). Now
we analyze the following linear problem

Vp — QijUs; o, +bive, = fin 1 xQ,
(4.30) O,v = 0onl xR,
v(0) = o in Q.
For this problem we use the results of [12, Chapter 4]. We obtain that under
the assumptions on the data, the linear problem (4.30) has a unique solution
v € Loo(I; H>(Q)) N Lo(I; HS(Q)) with vy € Loo (I; H3(2)) N Lo(I; HA(Q)), vy €
Loo(I; HY(Q)) N Lo(I; H*()) and moreover

6 5 4
oIS < e([wol IS + 11£1157)

where norms are denoted as in [12]: v € W2 (Qr) is a function v € Ly(Qr) such
that v has generalized derivative of D} D3 for all r, s;2r 4+ s < 2] with the norm

21

21 r 1S
1017 =373 1D Dol yqn)-

7=0 2r4s=j

Now, similarly as in [5], we use the Banach fixed point theorem for existence
the solution of (L,). We will consider the Banach space X = C°(I; H}(Q)) N
Lo(I; H*(9)) with the norm

T
[0l1% = sup [[o(t)][7 +/ [lo(s)|I3ds.
(0,77 0
For 0 <T <1, M > 0 we define
Ry = {v e X|v(0) =0,0,0(¢, .)]oa =0,0 <t <T,
v € Loo(I; H*(Q)) N Lo(I; HS(Q)),v¢ € Loo(I; H3(Q)) N Lo (I; H*(R)),

i € Loo(I; HY()) N Lo (I3 HA(Q)), [J0]|S) < M2},

Let us introduce the map S : Ry — X which assigns to a function v € Ry
the unique solution v of the linear problem

V= Qg ;T 07V, = F7(u)in I x Q,
d,v = 0onl x99,
v(0) = 0in Q.

Now the aim is to prove that S has a fixed point, provided T is sufficiently small.
This proof is rather technical and long and is practically the same as in [5] so we
omit it here. First, it was shown, that for arbitrary w € Ry js its image S(u) is
in Ry too, so S(Rrv) C R(T,M). Then the proof that S is a contraction is
presented. This fixed point is a solution of (L?) so we have the solution of (P7)
as well. O
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