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PERIODIC SOLUTIONS IN SUPERLINEAR PARABOLIC
PROBLEMS

J. HÚSKA

Abstract. Consider the Dirichlet problem for the parabolic equation ut = ∆u +
m(t)g(x, u) in Ω × (0,∞) where Ω is a smoothly bounded, convex domain in Rn

and g has superlinear subcritical growth in u. If m is periodic, positive and m, g
satisfy some technical conditions then we prove the existence of a positive periodic

solution.

1. Introduction

Consider the following parabolic semilinear problem

(P)


ut = ∆u+m(t)g(x, u), x ∈ Ω, t ∈ (0, T ),

u = 0, x ∈ ∂Ω, t ∈ (0, T ),

u(·, 0) = u(·, T ), x ∈ Ω̄,

u > 0, x ∈ Ω, t ∈ (0, T )

where Ω is a smoothly bounded, convex domain in Rn, m is a positive, periodic
function and g(x, ·) is superlinear with subcritical growth. The goal of this paper
is to prove the existence of at least one solution of problem (P).

Let us briefly mention what is known about the existence of solutions of (P)
in the case when g(x, u) = g(u) is independent of x. In [2], M.J. Esteban derived
the existence of at least one solution of (P) under the following assumption on the
growth of g (and certain technical conditions on m, g)

lim sup
u→+∞

g(u)
uσ

= 0 for some σ <
3n+ 8
3n− 4

.

In the recent paper [5], P. Quittner improved this result considerably by obtaining
the existence with the optimal growth assumption on g, i.e. |g(u)| ≤ c(1 + |u|p),
1 < p < pS where

(1) pS =
n+ 2
n− 2

if n > 2, pS = +∞ for n ≤ 2.
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Here, we prove the existence of at least one solution of (P) in the general case
when g = g(x, u). In order to do so, we impose some technical conditions on m, g.
Our assumption on the growth of g(x, ·) is optimal.

Three essential steps are used to obtain the results. We first prove that solutions
of (P) are uniformly bounded in L4((0, T );H1

0 (Ω)). In this step we strongly rely on
ideas used by M.J. Esteban in [2]. In the second step we obtain a priori estimates
in L∞((0, T );H1

0 (Ω)). Using the results of P. Quittner in [4], these estimates can
be achieved under optimal growth condition on g in u variable. In the end we apply
essentially the same topological degree argument as in [2] to infer the existence of
at least one solution of (P). The proofs of the results stated in this paper are just
sketched; detailed proofs can be found in [6].

In this paper we denote by |·|q, |·|k,q the usual norms in Lq(Ω), W k,q(Ω), re-
spectively. We shall use the fact that |u|1,2 = (

∫
Ω
|∇u|2)

1
2 defines an equivalent

norm in H1
0 (Ω). Let g ∈ C1(Ω̄×R,R) satisfy the following inequalities

|g(x, u)| ≤ c2|u|p2 + a2(x), p2 < pS , a2 ∈ L(p2+1)/p2(Ω),(2)

g(x, u)sign(u) ≥ c1|u|p1 − a1(x), 1 < p1 ≤ p2, a1 ∈ L(p1+1)/p1(Ω),(3)

g(x, u)u ≥ µG(x, u)− a3(x), µ > 2, a3 ∈ L1(Ω),(4)

ug(x, u) ≤ θG(x, u) + a4(x), θ ∈ (µ, pS + 1), a4 ∈ L1(Ω),(5)

|g(x, u)− g(x, v)| ≤ c5(a5(x) + |u|r−1 + |v|r−1)|u− v|,(6)

r < pS , a5 ∈ Lξ(Ω), ξ >
n

2
, ξ ≥ 1

where µ, c1, c2, c5 are some positive constants, pS is from (1), ai, i = 1, . . . , 5 are
nonnegative functions and G(x, u) =

∫ u
0
g(x, v) dv. Function g satisfying (2)-(6)

can, roughly speaking, oscillate between the power nonlinearities |u|p1−1u and
|u|p2−1u as |u| → ∞. Let

(7) m ∈W 1,∞(0, T ), inf
t∈[0,T ]

m(t) = m0 > 0, m(0) = m(T ).

To formulate our assumptions on the behaviour of g(·, u) near the boundary ∂Ω,
we need to introduce some notation. Denote by n(x0) the unit outward normal
vector to ∂Ω at the point x0 ∈ ∂Ω. The hyperplane Tλ,n(x0) := {x ∈ Rn;x·n(x0) =
λ} where · denotes the inner product in Rn, does not intersect Ω̄ for λ � 1. Let
λ0(x0) be such that Tλ0(x0),n(x0) ∩ Ω̄ 6= ∅ and Tλ,n(x0) ∩ Ω̄ = ∅ for all λ > λ0(x0).
Define Σλ,n(x0) := ∪

γ>λ
Tγ,n(x0)∩Ω and denote by Σ′λ,n(x0) the reflection of Σλ,n(x0)

in Tλ,n(x0). Similarly, let xλ be the reflection of the point x ∈ Ω in Tλ,n(x0). Let
g, in addition to (2)-(6), satisfy the following conditions: there exists ε0 > 0 such
that for any x0 ∈ ∂Ω,

g(xλ, u) ≥ g(x, u), x ∈ Σλ,n(x0), λ ∈ [λ0(x0)− ε0, λ0(x0)), u ≥ 0,(8)

g(x0, 0) = 0,(9)
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and there exists a nonnegative function a6 ∈ L1(Ω) such that for any ε > 0 there
exists Cε > 0 with

n∑
i=1

xi

(∫ u

0

gxi(x, v) dv
)
≥ −Cεa6(x)− εG(x, u), x ∈ Ω, u ≥ 0.(10)

Moreover, let m satisfy

sup
0≤t≤T

(m′(t))−

m(t)
<

2n− (n− 2)θ
r2(Ω)

(11)

where n ≥ 2, θ is from (5), (m′(t))− = max{0,−m′(t)} and r(Ω) is the radius of
the smallest ball containing Ω. For n = 1 the condition (11) takes the form

sup
0≤t≤T

(m′(t))−

m(t)
<

2 + µ

r2(Ω)
(12)

where µ is from (4).

Remark 1.1. These technical assumptions on m can be skipped in the case
when p1 = p2 = p and p(n− 2) < n. This follows from [3].

2. Boundedness in L4((0, T );H1
0 (Ω))

We first prove a uniform bound of ‖u‖H1(QT ), (QT = Ω× (0, T )), and with the aid
of this estimate we derive the bound for u in L4((0, T );H1

0 (Ω)). From now on, we
shall always assume that m and g satisfy all assumptions mentioned above.

Lemma 2.1. There exists a fixed neighbourhood of ∂Ω× (0, T ) and a positive
constant C such that if u is a solution of (P) then |u|, |∇u| ≤ C on this neighbour-
hood.

Proof. For the proof, see [2, Lemma 10] or the detailed proof in [6]. �

Put QT = Ω× (0, T ) and ST = ∂Ω× (0, T ).

Lemma 2.2. For any solution u of (P) the following identity holds:

(13)
∫∫
QT

[
nG(x, u)− (n− 2)

2
g(x, u)u

]
m(t) dx dt

=
∫∫
QT

(
m′(t)G(x, u) + u2

t

) |x|2
2

dx dt

−
∫∫
QT

m(t)
n∑
i=1

xi

(∫ u

0

gxi(x, v) dv
)
dx dt

+
∫∫
ST

1
2
|∇u|2(x · ~n) dx dt .
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Proof. The proof follows by multiplying the equation in (P) by the term(∑n
i=1 xiuxi − ut

|x|2
2

)
and integrating by parts. �

Corollary 2.1. Let u be a solution of (P). Then u satisfies the following in-
equality:

1
2

∫∫
QT

(r2(Ω)− |x|2)m′(t)G(x, u) dx dt

+
∫∫
QT

m(t)
(
nG(x, u)− (n− 2)

2
ug(x, u)

)
dx dt(14)

+
∫∫
QT

m(t)
n∑
i=1

xi

(∫ u

0

gxi(x, v) dv
)
dx dt ≤ C

where C does not depend on u.

Proof. It is sufficient to use identity (13), Lemma 2.1 and proceed in the same
way as in the proof of Corollary 16 in [2]. �

Proposition 2.1. There exists C > 0 such that

(15) ‖u‖H1(QT ) ≤ C
for any solution u of (P).

Proof. We multiply the first equation in (P) by u and ut, integrate by parts
and add the resulting equalities to get

(16) ‖u‖2H1(QT ) =
∫∫
QT

m(t)g(x, u)u dx dt−
∫∫
QT

m′(t)G(x, u) dx dt.

Now (16), (10), Corollary 2.1 and the integrability of the functions ai, i = 1, 3, 4, 6
from (3), (4), (5), (10) imply that in order to be able to prove the uniform bound
in H1(QT ) it is sufficient to prove this inequality

(17) m(t)g(x, u)u−m′(t)G(x, u) ≤ C
[

(r2(Ω)− |x|2)
2

m′(t)G(x, u)

+ m(t)
(

(n− ε)G(x, u)− (n− 2)
2

ug(x, u)
)]

+ C̃(a1(x)1+ 1
p1 + a3(x) + a4(x))

where ε is some (small) positive number, C, C̃ are appropriate constants and t ∈
[0, T ], u ≥ 0, x ∈ Ω. Let x̄ ∈ Rn be the center of the ball with the radius r(Ω)
containing Ω. Choose this point as origin. Now, the inequality (17) is easily
verified since m satisfies (11) (or (12) if n = 1). Thus, the proof of Proposition
2.1 is complete. �

Proposition 2.2. There exists C > 0 such that
∫ T

0
|u(s)|41,2 ds ≤ C for any

solution u of (P).



PERIODIC SOLUTIONS IN SUPERLINEAR PARABOLIC PROBLEMS 23

Proof. For t ∈ [0, T ] set

(18) S(u(t)) =
1
2

∫
Ω

|∇u(t)|2 dx−
∫

Ω

m(t)G(x, u(t)) dx.

We first prove that S(u) is uniformly bounded in L∞(0, T ). From the equation in
(P) we find

(19)
∫∫
QT

|∇u|2 dx dt =
∫∫
QT

m(t)g(x, u)u dx dt.

Using (4), the Young inequality in (3) and (5), we arrive at

(20) |G(x, u)| ≤ 1
µ
ug(x, u) + C(a1(x)1+ 1

p1 + a1(x) + a3(x) + a4(x))

for all u ≥ 0, x ∈ Ω and some positive constant C. With the aid of (19), (20) and
(15) we conclude∫∫

QT

m(t)|G(x, u)| dx dt ≤ C(1 +
∫∫
QT

m(t)g(x, u)u dx dt)

≤ C(1 + ‖u‖2H1(QT )) ≤ C.

Therefore S(u(·)) ∈ L1(0, T ) and ‖S(u(·))‖L1(0,T ) ≤ C. For all t, s ∈ [0, T ] we
have

S(u(t))− S(u(s)) =
1
2

∫ t

s

∂

∂τ

(∫
Ω

|∇u(τ)|2 dx
)
dτ

−
∫

Ω

∫ t

s

m′(τ)G(x, u(τ)) dτ dx−
∫

Ω

∫ t

s

m(τ)g(x, u(τ))uτ (τ) dτ dx

and using (P) we find

S(u(t))− S(u(s)) = −
∫ t

s

∫
Ω

|uτ (τ)|2 dx dτ −
∫ t

s

∫
Ω

m′(τ)G(x, u(τ)) dx dτ.

Obviously ∫ t

s

∫
Ω

|uτ (τ)|2 dx dτ ≤ ‖u‖2H1(QT ) ≤ C.

Multiplying (3) by u (u ≥ 0) and using the Young inequality we get

(21) ug(x, u) + Ca1(x)1+ 1
p1 ≥ 0

for some positive constant C. Boundedness of ‖u‖H1(QT ) together with (20) and
(21) provide for this estimate∫ t

s

∫
Ω

|m′(τ)G(x, u(τ))| dx dτ ≤ |m|1,∞
∫ t

s

∫
Ω

|G(x, u(τ))| dx dτ
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≤ C
(

1 +
∫ t

s

∫
Ω

m(τ)u(τ)g(x, u(τ)) dx dτ
)
≤ C

1 +
∫∫
QT

|∇u|2 dx dt

 ≤ C.
Thus, |S(u(t)) − S(u(s))| ≤ C for all s, t ∈ [0, T ]. Combining this fact with the
uniform L1(0, T ) integrability of S(u(·)), we get sup

t∈[0,T ]

|S(u(t))| ≤ C.

Bound (15) implies the existence of such a t0 ∈ [0, T ] that |u(t0)|2 ≤ C and
‖ut‖L2(QT ) ≤ C. This gives us ‖u‖L∞((0,T );L2(Ω)) ≤ C. Finally, we multiply the
equation in (P) by u and integrate over Ω. We find

(22)
∫

Ω

u(t)ut(t) dx+
∫

Ω

|∇u(t)|2 dx =
∫

Ω

m(t)g(x, u(t))u(t) dx.

Assumption (4) and boundedness of S(u) yield

∫
Ω

m(t)g(x, u(t))u(t)
µ

dx ≥
∫

Ω

m(t)G(x, u(t)) dx− C ≥ 1
2

∫
Ω

|∇u(t)|2 dx− C

and using (22) and boundedness of u in L∞((0, T );L2(Ω)) we obtain

(23) |∇u(t)|22 ≤ C(1 + |u(t)ut(t)|2) ≤ C(1 + |ut(t)|2).

Estimates (23) and (15) guarantee
∫ T

0
|u(s)|41,2 ds ≤ C. �

3. Boundedness in L∞((0, T );H1
0 (Ω))

Theorem 3.1. Let p1, p2 satisfy

(24) p2 − p1 < κ2(p2)

where κ2 is defined in [4, (2.29)]. Let u be a solution of (P). Then

sup
t∈[0,T ]

|u(t)|1,2 ≤ C

where C does not depend on u.

Proof. For the proof, see [6]. �

Remark 3.1. As a consequence of the latter estimate we have that solutions
of (P) are uniformly bounded in L∞(QT ).

4. Existence

Suppose, in addition to all previous assumptions on m and g, that

m(t)g(x, u) + a(x)u ≥ 0 (x, t) ∈ Ω× (0, T ), u ≥ 0,(25)

lim sup
u→0+

(
sup
x∈Ω

g(x, u)
u

)
< λ1(m)(26)
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where λ1(m) is the unique positive eigenvalue of the problem

ut −∆u = λm(t)u, x ∈ Ω, t ∈ R,
u = 0, x ∈ ∂Ω, t ∈ R,

u(·, 0) = u(·, T ), x ∈ Ω̄,

having a positive eigenfunction (see [1]) and a is positive, α1-Hölder continuous
function for some α1 ∈ (0, 1), i.e. a ∈ C0,α1(Ω̄). The main result of this paper is
the following theorem.

Theorem 4.1. Let p1, p2 satisfy (24). Then there exists at least one solution
of (P).

Proof. Once we have obtained a priori estimates for solutions of (P), we proceed
in the similar way as in the proof of Theorem 4 in [2]. First we prove that there
exists ρ > 0 such that if u is a positive solution of

ut −∆u = λm(t)g(x, u), x ∈ Ω, t ∈ (0, T ),

u = 0, x ∈ ∂Ω, t ∈ (0, T ),

u(·, 0) = u(·, T ), x ∈ Ω̄, λ ∈ [0, 1],

then ‖u‖L∞(QT ) > ρ and ρ is independent of u and λ ∈ [0, 1]. This is done in [2]
in the case when g(x, u) = uα and the proof is the same in the general case of
g = g(x, u) with g satisfying (26).

Fix q > n + 1 for the rest of our proof. Let W 1,q
T (QT ) be the subspace of

T−periodic functions from W 1,q(QT ). Define Kλ : W 1,q
T (QT ) → W 1,q

T (QT ) by
Kλu = v where

vt −∆v + λa(x)v = λ(m(t)g(x, u) + a(x)u), x ∈ Ω, t ∈ (0, T ),

v = 0, x ∈ ∂Ω, t ∈ (0, T ),

v(·, 0) = v(·, T ), x ∈ Ω̄,

λ ∈ [0, 1] and a is from (25). Operator Kλ is well defined and completely continu-
ous. Let P : W 1,q

T (QT )→ {u ∈W 1,q
T (QT ); u ≥ 0} =: K+ denote the projection of

W 1,q
T (QT ) onto the positive cone K+. This projection is well defined and locally

uniformly continuous.
Let Cq denote the norm of the continuous embedding W 1,q(QT ) ↪→ C0(Q̄T ).

Put ρ′ = ρ/Cq where ρ is defined above. By d(·, ·, ·) we denote the Leray-Schauder
topological degree. In the same way as in [2] we observe that d(I−P ◦Kλ, Bρ′ , 0) ≡
const. for all λ ∈ [0, 1] where Bρ′ is a ball with center in 0 and radius ρ′ in
W 1,q
T (QT ). But K0 = 0. Hence, d(I − P ◦Kλ, Bρ′ , 0) = 1.
Let us now introduce a new family of operators from W 1,q

T (QT ) into itself. We
say that TLu = v if v is a solution of
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vt −∆v + a(x)v = m(t)(g(x, u) + Lu+ L) + a(x)u, x ∈ Ω, t ∈ (0, T ),

v = 0, x ∈ ∂Ω, t ∈ (0, T ),

v(·, 0) = v(·, T ) x ∈ Ω̄

where L ≥ 0 and function a is again from (25).
In exactly the same way as in [2] we observe that there exists ρ̃ > ρ′ and L̃� 1

such that d(I−P ◦Tl, Bρ̃, 0) ≡ const. for all l ∈ [0, L̃] and d(I−P ◦TL̃, Bρ̃, 0) = 0.
Finally, we use the degree excision property and find that d(I − P ◦ K1, Bρ̃ −
B̄ρ′ , 0) = −1. This completes the proof of Theorem 4.1. �

5. Example

Let 1 < p1 ≤ p2 < pS and let p1, p2 satisfy (24). Define the function β : R →
[p1, p2) by

β(u) = p1 +
u2

u2 + 1
(p2 − p1).

Set Ω := {x ∈ Rn;
∑n
i=1 x

2
i <

5
2π}. Let us by a− denote the real number that is

smaller than a but close to a. It is easy to verify that g : Ω̄× R→ R defined by

g(x, u) = (β(u) + 1)|u|β(u)−1u+ |u|β(u)+1β′(u) ln |u|+ cos(
n∑
i=1

x2
i )|u|p

−
2 −1u

satisfies all assumptions that we needed to prove the existence of at least one
solution of (P). The function m can be taken for example in this form: m(t) =
αt(t− T ) + 1 for α > 0 sufficiently small.
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