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SOME CONSTRUCTIONS RELATED TO REES MATRIX RINGS

M. PETRICH

Dedicated to the memory of L. M. Gluskin

Abstract. Simple rings with a one-sided minimal ideal may be represented as
Rees matrix rings, and conversely. The latter are defined as I ×Λ - matrices over a
division ring with only a finite number of nonzero entries with certain addition and
multiplication.

For Rees matrix rings we construct here their isomorphisms, their translational
hulls and isomorphisms of the translational hulls, all this in terms of certain type of
matrices of arbitrary size over division rings. We also study r-maximal Rees matrix
rings. This theory runs parallel to that of Rees matrix semigroups.

1. Introduction and summary

Simple rings with a one-sided minimal ideal admit a faithful representation as
Rees matrix rings, and conversely. The latter are constructed by means of two
nonempty sets I and Λ, a division ring ∆ and a function P : Λ× I → ∆ satisfying
certain conditions. The elements are I×Λ - matrices over ∆ with a finite number of
nonzero entries with multiplication using the function P , called a sandwich matrix
since the product is of the form X ∗ Y = XPY , and addition is by entries. This
ring is denoted by M(I,∆,Λ;P ); a precise definition will be given in Section 3.

The construction of Rees matrix rings is closely similar to the construction of
Rees matrix semigroups where a group with a zero adjoined stands instead of a
division ring and the only condition on the sandwich matrix P is that it contains
a nonzero entry in each row and each column. The elements are I × Λ - matrices
with at most one nonzero entry and their multiplication is the same as in the case
of rings. In both of these cases, we multiply matrices of arbitrary size by ignoring
the sums of an arbitrary number of zeros. Completely 0-simple semigroups admit a
faithful representation as Rees matrix semigroups and conversely. The former may
be characterized as simple semigroups having a 0-minimal left and a 0-minimal
right ideal, which is quite close to the definition of rings mentioned at the outset.

For Rees matrix semigroups, we studied in [12] the following subjects: isomor-
phisms, the translational hull and isomorphisms of the translational hulls, all this

Received October 10, 2000.

2000 Mathematics Subject Classification. Primary 20M25.
Key words and phrases. Rees matrix ring, isomorphism, translational hull, matrices, Rees

matrix semigroup, r-maximal, the multiplicative semigroup of a ring, row finite, column finite.



70 M. PETRICH

in matrix notation, as well as r-maximal completely 0-simple semigroups. The
purpose of this work is to study these concepts for Rees matrix rings. For a gen-
eral treatment of these subjects, we refer the reader to the monograph [11], where
the interplay of semigroups and rings discussed above is of central interest and
importance. In particular, the translational hull of a Rees matrix ring is its max-
imal essential extension, or viewed differently, the translational hull is a maximal
primitive ring with the socle which is a simple ring with a one-sided minimal ideal.

Khalezov [8] constructed all automorphisms of the multiplicative semigroup of
the ring of n × n - matrices over a division ring; except for the case n = 1, they
are ring automorphisms. This was generalized by Gluskin [2] to matrices over
Euclidean rings. In [3] Gluskin considered isomorphisms of certain other subrings
of the full matrix ring and in [4] to linear transformations on a vector space of
arbitrary dimension. This was later systematized in [11].

In Section 2 we summarize briefly the needed background on semigroups mainly
concerning Rees matrix semigroups and their isomorphisms. Section 3 consists of
a short compendium of notation and an outline of the needed background on
Rees matrix rings. For these rings, we construct isomorphisms in Section 4, the
translational hull in Section 5 and isomorphisms of the latter in Section 6. We
conclude by a study of r-maximal Rees matrix rings in Section 7.

2. Background on semigroups

First let I and Λ be nonempty sets, G be a group, Go be the group G with a
zero adjoined, P : Λ × I → Go be a function, considered as a matrix P = (pλi),
such that every row and every column contains a nonzero entry. On the set
S = (I ×G× Λ) ∪ {0} define a multiplication by

(i, g, λ) (j, h, µ) =

{
(i, gpλjh, µ) if pλi 6= 0
0 otherwise

.

Then the Rees factor semigroup S/J modulo the ideal J = I × 0× Λ denoted by
Mo(I,∆,Λ;P ) is called a Rees matrix semigroup.

A semigroup is completely 0-simple if it has no proper ideals and a 0-minimal left
and a 0-minimal right ideal. Then we have the following version of the celebrated
Rees theorem.

Theorem 2.1. A semigroup S is completely 0-simple if and only if S is iso-
morphic to a Rees matrix semigroup.

For a proof, consult [1, Theorem 3.5]. The above version is adjusted for a
comparison with rings. The element (i, g, λ) may be thought of as a I×Λ - matrix
over Go with the sole nonzero entry in the (i, λ) - position equal to g. Writing 0
for the zero I × Λ - matrix, we arrive at the following multiplication

X ∗ Y = XPY (X,Y ∈ S)

where the product on the right is that of usual matrices where we ignore arbitrary
sums of zeros; P is called a sandwich matrix.
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For any isomorphism ω : G→ G′ of groups, we set 0ω = 0 and use the notation
ω also for the resulting isomorphism Go → G′o. For any matrix (xiλ) over Go and
c ∈ Go, we write

(xiλ)ω = (xiλω), c(xiλ) = (cxiλ), (xiλ)c = (xiλc).

A X × Y - matrix A over Go is permutational if every row and every column of
A contains exactly one nonzero entry. Let

S =Mo(I,∆,Λ;P ), S′ =Mo(I ′,∆′,Λ′;P ′)

be Rees matrix semigroups in their matrix form, let
U be a permutational I × I ′ - matrix over G′o,
ω : G→ G′ be an isomorphism,
V be a permutational Λ× Λ′ - matrix over G′o

satisfying (Pω)U = V P ′, and define a mapping θ = θ(U,ω, V ) by

θ : X → U−1(Xω)V (X ∈ S).

(Note that for a permutational U , the matrix U−1 is well defined.)

Theorem 2.2. The mapping θ = θ(U,ω, V ) is an isomorphism of S onto S′.
Conversely, every isomorphism of S onto S′ can be so constructed.

For a proof, see [1, Corollary 3.12], and for a full discussion of the above results,
consult [1] and [12].

3. Background on rings

We summarize here very briefly the needed terminology and notation concerning
rings; for the rest, we refer the reader to the monograph [11]. We first recall the
most frequently used symbolism:

∆ - division ring,
V - left vector space over ∆,
U - right vector spaces over ∆,
(U, V ) - pair of dual vector spaces over ∆,
L(V ) - ring of linear transformations on V (written on the right),
F(V ) - ring of linear transformations on V of finite rank,
LU (V ) - ring of linear transformations on V with an adjoint in U ,
FU (V ) = LU (V ) ∩ F(V )

and for linear transformations on U , written on the left, we use the same notation
with a prime affixed,

M∆? - the multiplicative group of ∆? = ∆\{0}.
For a ring R,R+ is its additive group, MR its multiplicative semigroup and A(R)
its group of automorphisms. If R has an identity and a is contained in its group
of units, define a mapping εa by

εa : x→ a−1xa (x ∈ R)

and let
I(R) = {εa | a ∈ R is invertible}.
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The following is an excerpt from [11].

Definition 3.1. Let I and Λ be nonempty sets and P be a Λ× I - matrix over
a division ring ∆. Then P is left row independent if for any λ1, λ2, . . . , λn ∈ Λ

and δ1, δ2, . . . , δn ∈ ∆, the equation
n∑
j=1

δjpλji = 0 for all i ∈ I implies that

δ1 = δ2 = · · · = δn = 0. Also P is right column independent if for any

i1, i2, . . . , in ∈ I and δ1, δ2, . . . , δn ∈ ∆, the equation
n∑
j=1

pλijδj = 0 for all λ ∈ Λ
implies that δ1 = δ2 = · · · = δn = 0.

We denote by ιI the I × I identity matrix and by |I| the cardinality of I.
We are now able to construct the main device.

Notation 3.2. Let I and Λ be nonempty sets and P be a left row independent
and right column independent Λ×I - matrix over a division ring ∆, say P = (pλi).
Let R be the set of all I×Λ - matrices over ∆ with only a finite number of nonzero
entries with addition

(aiλ) + (biλ) = (aiλ + biλ)
and multiplication

(aiλ) ∗ (biλ) = (aiλ)P (biλ),
where the last product is the usual product of matrices with arbitrary sums of
zeros equal to zero.

The above definition of multiplication makes sense since (aiλ)P is a product of
a I × Λ - matrix by a Λ × I - matrix with a resulting I × I - matrix with only
a finite number of nonzero rows and (aiλ)P (biλ) is a product of a I × I - matrix
by a I × Λ - matrix resulting in a matrix with only a finite number of nonzero
entries. It follows that R is closed under both operations and routine calculation
shows that it forms a ring.

Definition 3.3. The ring R in Notation 3.2. is a Rees matrix ring, denoted
by M(I,∆,Λ;P ).

Notice that this construction, due to E. Hotzel, is very close to that of a Rees
matrix semigroup in Section 3. In fact, the following construction, given by Gluskin
for the finite dimensional case in [3] and the general case in [4], brings us back to
Rees matrix semigroups.

Let (U, V ) be a pair dual vector spaces over a division ring ∆ and denote by
(v, u) the values of the associated bilinear form. In each 1-dimensional subspace
of U fix a nonzero vector ui, i ∈ Io, and in each 1-dimensional subspace of V fix
a nonzero vector vλ, λ ∈ Λo. For any λ ∈ Λo and i ∈ Io, let pλi = (vλ, ui) and
Po = (pλi). This matrix has a nonzero entry in every row and every column, so
we may define a Rees matrix semigroup

M =Mo(Io,M∆?,Λo;Po).

Its elements can be interpreted as linear transformations by defining

v(i, γ, λ) = (v, ui)γvλ (v ∈ V )
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and the zero of M be the zero linear transformation. The resulting mapping M →
L(V ) is an isomorphism of M onto the semigroup of all linear transformations of
rank ≤ 1 with an adjoint in U , denoted by F2,U (V ). We can obtain a dual result
by defining

(i, γ, λ)u = uiγ(vλ, u) (u ∈ U).

The additive closure of F2,U (V ) equals FU (V ). Hence every element of FU (V )
can be written as

(1) b =
n∑
k=1

(ik, γk, λk).

This representation is not unique but nonzero elements of F2,U (V ) can be uniquely
written as (i, γ, λ) with γ ∈ ∆?.

As in the case of general Rees matrix semigroups, we may interpret the element
(i, γ, λ) as the Io × Λo - matrix over ∆ with the sole nonzero entry equal to γ in
the (i, λ) position to be denoted by [i, γ, λ]. The zero of M is interpreted as the
zero I × Λ - matrix.

We now fix a basis Z = {zλ}λ∈Λ of V and a basis W = {wi}i∈I of U . Given
(1), we may write

(2) uik =
∑
j

wjτjik , vλk =
∑
j

σλkµzµ (k = 1, 2, . . . , n).

With this notation, we introduce a mapping η by

(3) η : b→

(
n∑
k=1

τjikγkσλkµ

)
(b ∈ FU (V ))

where on the right we have a I×Λ - matrix with entries bjµ =
n∑
k=1

τjikγkσλkµ, and

the 0-transformation maps onto the 0-matrix. For every λ ∈ Λ and i ∈ I, we let
pλi = (vλ, ui) and set P = (pλi). From the proof of [11, Theorem II.2.8], (iv) ⇒
(vi)), we deduce the following result.

Theorem 3.4. The Rees matrix ring R =M(I,∆,Λ;P ) is defined and η is an
isomorphism of FU (V ) onto R.

This is the key part of the proof of the next theorem. On [11, p.16] it was
attributed to the author through an inconspicuous and unfortunate typographical
error. It and its proof, both due to E. Hotzel, were published in [11, Theorem
II.2.8]. A ring containing a minimal one-sided ideal is termed atomic.

Theorem 3.5. A ring R is simple and atomic if and only if R is isomorphic
to a Rees matrix ring.

For the following special case, we introduce the notation

∆I =M(I,∆, I; ιI).
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Hence ∆I consists of all I × I - matrices over ∆ with only a finite number
of nonzero entries with the usual addition and multiplication of matrices (again
ignoring arbitrary sums of zeros). Clearly, see [11, Corollary II.2.7],

∆I
∼= ΓJ ⇔ |I| = |J |, ∆ ∼= Γ.

Hence we may write ∆|I|, as in [11], instead of ∆I . Call ∆I , a symmetric Rees
matrix ring.

For details and proof of the above assertions as well as a general treatment of
this subject, we refer the reader to [11].

A ring R with identity 1 is said to be directly finite if for any a, b ∈ R, ab = 1
implies that ba = 1. Following Munn [10], we say that a ring R, not necessarily
having an identity, is quasi directly finite if for any a, b ∈ R, ab = a+ b implies
that ab = ba. In the case R has an identity element, simple argument shows
that the two definitions are equivalent. For a ring R with identity 1, in view of
[9, VI.3, Corollary 2.4] direct finiteness is equivalent to the absence of a bicyclic
subsemigroup of MR with identity 1. For information on direct finiteness, consult
[5, Chapter 5].

Proposition 3.6. Every simple atomic ring is quasi directly finite.

Proof. In view of the above results, we may consider R = FU (V ) for a dual pair
(U, V ) of vector spaces. By [11, Theorem I.3.20], R is a locally matrix ring. For
any a, b ∈ R, there thus exists a subring R′ of R such that a, b ∈ R′ and R′ ∼= ∆n

for some division ring ∆ and some n > 0. The last ring is directly finite by [5,
Proposition 5.2]. It follows that ab = a+ b implies that ab = ba, as required. �

Recall from [7] that a ring R has unique addition if for the given multiplica-
tion, the addition of R is the only one which makes it a ring.

We shall often encounter the hypothesis thatR =M(I,∆,Λ;P ) is not a division
ring. The following lemma contains a clasification of this assumption.

Lemma 3.7. Let R =M(I,∆,Λ;P ) ∼= FU (V ).
(i) dimU = |I| and dimV = |Λ|.
(ii) R has an identity if and only if |Λ| = n < ∞. In such a case |I| = n and

R is isomorphic to the ring of n× n - matrices over ∆.
(iii) R is a division ring if and only if |Λ| = 1.

Proof. (i) This follows from Theorem 3.4 and its preamble.
(ii) This is a consequence of part (i) and results contained in [11]
(iii) This follows directly from part (ii). �

4. Isomorphisms of Rees matrix rings

We shall express these in terms of matrices. Again we need some more concepts.

Definition 4.1. Let X and Y be nonempty sets and A be a X × Y - matrix
over a division ring ∆. The matrix A is row finite if every row of A has only a
finite number of nonzero entries. If this is the case, A is invertible if there exists
a row finite Y × X - matrix B over ∆ such that AB = ιX and BA = ιY . The
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uniqueness of B follows without difficulty, hence we may write A−1 = B. We have
the corresponding definitions for columns instead of rows. If A = (axy), ω is an
isomorphism of ∆ and c ∈ ∆, then

Aω = (axyω), cA = (caxy), Ac = (axyc).

The above concepts will now be used for the basic construction which yields
the desired isomorphisms. This is an analogue for rings of the construction of
θ(U,ω, V ) in Section 2 for Rees matrix semigroups.

Notation 4.2. Let
(4) R =M(I,∆,Λ;P ) and R′ =M′(I ′,∆′,Λ′;P ′) be Rees matrix rings,

U be an invertible column finite I × I ′ - matrix over ∆′,
ω : M∆→M∆′ be an isomorphism,
V be an invertible row finite Λ× Λ′ - matrix over ∆′

such that (Pω)U = V P ′. Define a mapping χ = χ(U,ω, V ) by

χ : X → U−1(Xω)V (X ∈ R).

Compare the next result with Theorem 2.2 for which the additional information
here is also valid.

Theorem 4.3. Let (4) be given where R is not a division ring. The mapping
χ(U,ω, V ) is an isomorphism R onto R′ with inverse χ(U−1ω−1, ω−1, V −1ω−1).
Moreover,

χ(U,ω, V ) = χ(U ′, ω′, V ′) ⇔ U ′ = cU, ω′ = ωεc−1 , V ′ = cV

for some c ∈ ∆′?. Conversely, every isomorphism of R onto R′ can be so con-
structed.

Proof. That χ = χ(U,ω, V ) is a homomorphism of MR into MR′ is straight-
forward to verify (see the proof of [11, Proposition II.7.6]). Also

(P ′ω−1)(U−1ω−1) = (P ′U−1)ω−1 = (V −1(Pω))ω−1 = (V −1ω−1)P

so that χ′ = χ(U−1ω−1, ω−1, V −1ω−1) is defined. It follows easily that χχ′ and χ′χ
are identity mappings on their respective domains. Hence χ′ = χ−1. Therefore χ
is an isomorphism of MR onto MR′. Since R is not a division ring, if MR ∼= MR′,
then also R′ is not a division ring and [11, Corollary II.7.5] implies that they are
rings with unique addition. Hence every isomorphism of MR onto MR′ is additive,
see [7], and hence χ is an isomorphism of R onto R′.

Suppose that χ(U,ω, V ) = χ(U ′, ω′, V ′). Then for all [i, g, λ] ∈ R, we have

U−1([i, g, λ]ω)V = U ′
−1

([i, g, λ]ω′)V ′.

From here on the argument is quite similar to that in the proof of the corresponding
part of [12, Theorem 3.4] and may be omitted. The converse implication follows
at once.

The converse part of the theorem was established in [11, Proposition II.7.6],
which incidentally yields that ω is additive. �

We now prove directly that ω figuring in Theorem 4.3 is additive.
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Corollary 4.4. Let the notation and hypotheses be as in Theorem 4.3. Then
the mapping ω is additive and is thus an isomorphism of ∆ onto ∆′.

Proof. By Theorem 4.3, χ = χ(U,ω, V ) is additive. Hence for any [i, g, λ],
[i, h, λ] ∈ R, we get

U−1[i, gω + hω, λ]V = U−1([i, gω, λ] + [i, hω, λ])V
= U−1[i, g, λ]ωV + U−1[i, h, λ]ωV = [i, g, λ]χ+ [i, h, λ]χ
= ([i, g, λ] + [i, h, λ])χ = [i, g + h, λ]χ = U−1[i, g + h, λ]ωV
= U−1[i, (g + h)ω, λ]V

and thus gω + hω = (g + h)ω, as required. �

We now consider briefly the automorphism group of a Rees matrix ring.

Proposition 4.5. Let R =M(I,∆,Λ;P ) and assume that R is not a division
ring. Let Γ be the set of all (U,ω, V ) where
U is an invertible column finite I × I - matrix over ∆,
ω is an automorphism of M∆,
V is an invertible row finite Λ× Λ - matrix over ∆

satisfying the condition (Pω)U = V P , with multiplication

(U,ω, V )(U ′, ω′, V ′) = ((Uω′)U ′, ωω′, (V ω′)V ′).

Then Γ is a group and, with R′ = R in Notation 4.2, the mapping

χ : (U,ω, V )→ χ(U,ω, V ) ((U,ω, V ) ∈ Γ)

is a homomorphism of Γ onto the automorphism group of R with kernel

K = {(cιI , εc−1 , cιΛ) | c ∈ ∆?}.

The mapping
κ : c→ (cιI , εc−1 , cιΛ) (c ∈ ∆?)

is an antihomomorphism of M∆? onto K whose kernel is the center of M∆?.

Proof. The argument is entirely multiplicative so that the proof of [12, Propo-
sition 3.11] carries over verbatim to this case. �

We conclude this section by considering a special type of isomorphism. Toward
this end, we first introduce the following symbolism.

Notation 4.6. Let R =M(I,∆,Λ;P ) and denote by R0 the set of all matrices
in R which have at most one nonzero entry.

Clearly R0 is closed under multiplication and

R0 = {[i, g, λ] ∈ R | i ∈ I, g ∈ ∆?, λ ∈ Λ} ∪ {0}

so that an easy verification shows that R0
∼=Mo(I,M∆?,Λ;P ) and R0 is a com-

pletely 0-simple semigroup. For the notation below consult Section 2.
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Lemma 4.7. Let R and R′ be as in (4), assume that R is not a division ring
and let θ = θ(U,ω, V ) be an isomorphism of R0 onto R′0. Then χ = χ(U,ω, V ) is
defined, it is an isomorphism of R onto R′ and is the unique extension of θ to a
homomorphism of R+ onto R′+.

Proof. First note that R not being a division ring implies the same for R′.
Since U is column monomial and V is row monomial, the condition of definability
of θ(V, ω, V ) and χ(U,ω, V ) is the same. Hence χ is an isomorphism of R onto R′.

Let τ be an extension of θ to a homomorphism of R+ onto R′+. Then(
n∑
k=1

[ik, gk, λk]

)
τ =

n∑
k=1

[ik, gk, λk]τ =
n∑
k=1

[ik, gk, λk]θ

=
n∑
k=1

[ik, gk, λk]χ =

(
n∑
k=1

[ik, gk, λk]

)
χ.

Since all elements of R are of this form, we conclude that τ = χ. �

Corollary 4.8. Let R =M(I,∆,Λ;P ) and

A0(R) = {χ ∈ A(R) | R0χ = R0}.

Then A0(R) is a subgroup of A(R) isomorphic to A(R0).

Proof. The first assertion is obvious while the second follows from Lemma 4.7.
�

Theorem 4.9. Let

χ = χ(U,ω, V ) : R =M(I,∆,Λ;P )→ R′ =M(I ′,∆′,Λ′;P ′)

be an isomorphism and assume that R is not a division ring. Then χ maps R0

onto R′0 if and only if both U and V are permutational.

Proof. Necessity. The hypothesis implies that θ = χ|R0 is an isomorphism of R0

onto R′0. By Theorem 2.2, we have that θ = θ(U ′, ω′, V ′) for suitable parameters.
By Lemma 4.7, χ(U ′, ω′, V ′) is the unique extension of θ to an isomorphism of R
onto R′. It follows that χ(U,ω, V ) = χ(U ′, ω′, V ′) which by Theorem 4.3 implies
the existence of c ∈ ∆′? such that U ′ = cU, ω′ = ωεc−1 , V ′ = cV . Hence U = c−1U ′

and V = c−1V ′ and since both U ′ and V ′ are permutational, so are both U and V .
Sufficiency. Let U = (uij′) and V = (vλµ′). By hypothesis, there exist bijections

ξ : I → I ′ and η : Λ→ Λ′, and functions u : I → ∆′?, v : Λ→ ∆′?, say i→ ui and
λ→ vλ such that

uij′ =

{
ui if j′ = iξ

0 otherwise
, vλµ′ =

{
vλ if µ′ = λη

0 otherwise
.

Then U−1 = (u′j′i) where

u′j′i =

{
u−1
i if j′ = iξ

0 otherwise
.
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Let [k, g, ν] = (xiλ) and U−1((xiλ)ω)V = (yj′µ′). Then

yj′µ′ =
∑
i

∑
λ

uj′i(xiλω)vλµ′ =

{
u−1
i (gω)vλ if j′ = iξ, i = k, λ = ν, µ′ = λη

0 otherwise

=

{
u−1
j′ξ−1(gω)vµ′η−1 if j′ = kξ, µ′ = νη

0 otherwise

=

{
u−1
k (gω)vν if j′ = kξ, µ′ = νη

0 otherwise

which proves that

U−1([k, g, ν]ω)V = [kξ, u−1
k (gω)vν , νη].

Hence R0χ ⊆ R′0.
By Theorem 4.3, we have χ−1 = χ(U−1ω−1, ω−1, V −1ω−1). Here both U−1ω−1

and V −1ω−1 are permutational. So we may apply the above analysis to χ−1

thereby obtaining the inclusion R′0χ
−1 ⊆ R0 whence R′0 ⊆ R0χ. Therefore

R0χ = R′0. �

It is of particular interest to identify those Rees matrix rings which are isomor-
phic to symmetric ones. This is the content of the next result.

Proposition 4.10. Let R = M(I,∆,Λ;P ). Then R ∼= ΓK for some division
ring Γ and set K if and only if |I| = |K| = |Λ|, ∆ ∼= Γ and P is the product
of an invertible row finite Λ×K - matrix over ∆ and an invertible column finite
I ×K - matrix over ∆.

Proof. Necessity. By [11, Corollary II.7.7], we have |I| = |K| = |Λ|. Further,
by Theorem 4.3, there exist:

an isomorphism ω : ∆→ Γ,
an invertible row finite Λ×K - matrix U over Γ,
an invertible column finite I ×K - matrix V over Γ

such that (Pω)U = V ιK whence P = (V ω−1)(U−1ω−1). The matrices V ω−1 and
U−1ω−1 satisfy the above specifications.

Sufficiency. Let P = V U be as in the statement of the proposition and set
V ′ = V ω,U ′ = U−1ω. Then

(Pω)U ′ = (V ω)(Uω)(U−1ω) = V ′ = V ′ιK

with the conditions needed to define χ = χ(U ′, ω, V ′) which is an isomorphism of
R onto ΓK according to Theorem 4.3. �

There are two special cases in which the conditions of Proposition 4.10. are
fulfilled.

Corollary 4.11. Let R = M(I,∆,Λ;P ) where P is permutational. Then
R ∼= ∆I .

Proof. The hypothesis on P immediately yields that |I| = |Λ| and P = PιI ,
the needed factorization of P in Proposition 4.10. �
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The next case can be handled directly.

Proposition 4.12. Let R = M(I,∆,Λ;P ) where both I and Λ are denumer-
able. Then R ∼= ∆I .

Proof. By Theorems 3.4 and 3.5, we have R ∼= FU (V ) for some dual pair
(U, V ) of vector spaces. By [11, Proposition II.2.18], vector spaces U and V have
biorthogonal bases which by Theorem 3.5 implies that R admits a symmetric Rees
matrix representation. The assertion now follows by [11, Corollary 11.7.7]. �

We have assumed in this section that the ring R, and thus also the ring R′, is not
a division ring. This was needed in order to use the result that in such a case the
rings R and R′ have unique addition. To include this exception, we may apply the
same construction with the extra proviso that the multiplicative isomorphism ω be
also additive. However, in the case when R is a division ring, the nonzero elements
of R form a group under multiplication so that in case MR ∼= MR′, we get that
also that R′ is a division ring. The construction of a Rees matrix ring in this case
trivializes to |I| = |Λ| = 1 so that, by possibly changing the coordinates, the sole
entry of P may be assumed to the identity of ∆, we are faced with isomorphisms
of division rings. But, in general, a division ring need not have a unique addition.
This seems to have been noticed first by Sushkevich [13]. An example is not far
to look for: Z5 = Z/(5) already gives such an instance, Indeed, ϕ = (2̄ 3̄) is an
automorphism of MZ5 which is not additive. The new addition on the set Z5 is
given by a⊕ b = (aϕ+ bϕ)ϕ−1, see [7].

5. The translational hull of a Rees matrix ring

We construct here a suitable isomorphic copy of the translational hull of a Rees
matrix ring in terms of matrices and explore the relationship of several related
rings. Starting with the necessary concepts, we prove a sequence of lemmas which
lead to the main result of this section.

Let R be a ring. A transformation ρ of R written on the right, additive and
satisfying (xy)ρ = x(yρ) for all x, y ∈ R is a right translation of R. A left trans-
lation of R is a transformation of R written on the left, additive and satisfying
λ(xy) = (λx)y for all x, y ∈ R.

Right translations of R added pointwise and composed on the right form a ring
P (R). Similarly left translations of R added pointwise and composed on the left
form a ring Λ(R). For λ ∈ Λ(R) and ρ ∈ P (R), we say that they are linked,
and that (λ, ρ) is a bitranslation of R if x(λy) = (xρ)y for all x, y ∈ R. The
set Ω(R) of all bitranslations of R under componentwise operations is a ring, the
translational hull of R.

For every a ∈ R, the mappings ρa and λa, defined by

xρa = xa, λax = ax (x ∈ R)
are the inner right and the inner left translations of R, respectively, and
πa = (λa, ρa) the inner bitranslation of R induced by a. The mapping

π : a→ πa (a ∈ R)
is the canonical homomorphism of R into Ω(R).
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We can now proceed with the specific material.

Notation 5.1. Throughout this section, we fix

R =M(I,∆,Λ;P ).

Let RF (∆,Λ) denote the set of all row finite Λ × Λ - matrices over ∆ with com-
ponentwise addition and the row by column multiplication of matrices. Similarly
let CF (I,∆) be the set of all column finite I × I - matrices over ∆ with the same
operations.

According to ([6], IX.4), RF (∆,Λ) is a ring; analogously for CF (I,∆).

Lemma 5.2.
(i) For b ∈ L(V ), define a matrix bψ = (bλµ), where zλb =

∑
µ
bλµzµ for every

λ ∈ Λ. Then ψ is an isomorphism of L(V ) onto RF (∆,Λ).
(ii) For a ∈ L′(U), define a matrix aϕ = (aji), where awi =

∑
j

wjaji for every

i ∈ I. Then ϕ is an isomorphism of L′(U) onto CF (I,∆).

Proof. For part (i), see([6], IX.4); part (ii) is dual. �

Lemma 5.3.
(i) For B ∈ RF (∆,Λ), define a function ρB by

XρB = XB (X ∈ R).

Then the mapping

ρ : B → ρB (B ∈ RF (∆,Λ))

is an isomorphism of RF (∆,Λ) onto P (R).
(ii) For A ∈ CF (I,∆), define a function λA by

λAX = AX (X ∈ R).

Then the mapping

λ : A→ λA (A ∈ CF (I,∆))

is an isomorphism of CF (I,∆) onto Λ(R).

Proof. (i) Let X,Y ∈ R and B ∈ RF (∆,Λ). Then XB =
(∑
λ

xiλbλµ

)
. There

is a finite number of nonzero elements xiλ and for each λ, there exists only a finite
number of nonzero elements bλµ. Hence there is only a finite number of nonzero
elements xiλbλµ. It follows that the matrix XB has only a finite number of nonzero
entries so that XB ∈ R. Therefore ρB maps R into itself. Also

(X + Y )ρB = (X + Y )B = XB + Y B = XρB + Y ρB ,

(X ∗ Y )ρB = (XPY )B = XP (Y B) = X ∗ (Y ρB),

and ρB is a right translation of R. Hence ρ maps RF (∆,Λ) into P (R).
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Now let X ∈ R and B,B′ ∈ RF (∆,Λ). Then

X(ρB + ρB
′
) = XρB +XρB

′
= XB +XB′ = X(B +B′) = XρB+B′ ,

X(ρBρB
′
) = (XρB)ρB

′
= (XB)B′ = (XBB′) = XρBB

′

so that ρB + ρB
′

= ρB+B′ and ρBρB
′

= ρBB
′

and ρ is a homomorphism.
Let B ∈ RF (∆,Λ), B = (bλµ). If bνθ 6= 0, then [i, 1, ν]B = (xjτ ) with xiθ =

bνθ 6= 0. Thus if B 6= 0, then XB 6= 0 for some X ∈ R. By contrapositive, we get
that ρB = 0 implies that B = 0. Therefore the kernel of the homomorphism ρ is
equal to zero and thus ρ is injective.

In order to prove that ρ is surjective, we let η ∈ P (R). Let [i, 1, µ] ∈ R. Since
P is right column independent, there exists λ ∈ Λ such that pλi 6= 0. Hence

[i, 1, µ]η = ([i, p−1
λi , λ] ∗ [i, 1, µ])η = [i, p−1

λi , λ] ∗ ([i, 1, µ]η)

= [i, p−1
λi , λ]P ([i, 1, µ]η) = (mkθ)

has all its nonzero entries in the i-th row. Similarly [j, 1, µ]η = (nkθ) has all its
nonzero entries in the j-th row. With pνj 6= 0, we get

[i, 1, µ] = [i, p−1
λj , ν] ∗ [j, 1, µ]

which implies that
[i, 1, µ]η = [i, p−1

νj , ν] ∗ ([j, 1, µ]η)
and thus

(mkθ) = [i, p−1
νj , ν]P (nkθ),

whence
miθ = p−1

νj pνjnjθ = njθ.

This proves that [i, 1, µ]η has all nonzero entries in the i-th row and these entries
are independent of i.

Further,

[i, g, µ]η = ([i, gp−1
λi , λ] ∗ ([i, 1, µ])η = [i, gp−1

λi , λ] ∗ ([i, 1, µ]η)

= [i, gp−1
λi , λ]P (mkθ) = (gmkθ).

In addition, every nonzero element of R is uniquely a sum of matrices of the form
[i, g, µ] and thus η is uniquely determined by its values on elements of the form
[i, 1, µ].

Now let B be the Λ× Λ - matrix over ∆ whose µ-th row is the i-th row of the
matrix [i, g, µ]η. Hence B is row finite so that B ∈ RF (∆,Λ). For any i ∈ I and
µ ∈ Λ, we get

[i, 1, µ]ρB = [i, 1, µ]B = [i, 1, µ]η
so that ρB = η which proves that ρ is surjective.

(ii) This is the dual of part (i). �

Lemma 5.4. The mappings

δ : X → PX, γ : X → XP (X ∈ R)

are embeddings of R into RF (∆,Λ) and CF (I,∆), respectively.
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Proof. Let X ∈ R. Then PX is defined since X is column finite. Also PX has
only a finite number of nonzero columns since this is true for X. Hence PX is row
finite and thus δ maps R into RF (∆,Λ).

Now let X,Y ∈ R. Then

(X + Y )δ = (X + Y )P = XP + Y P = Xδ + Y δ,

(X ∗ Y )δ = (XPY )P = XP (Y P ) = (Xδ)(Y δ),
so that δ is a homomorphism. Further,

ker δ = {X ∈ R | PX = 0},
which is an ideal of R. Since R is simple, either ker δ = 0 or ker δ = R. For any
[i, 1, λ] ∈ R, by column independence of P , there exist µ ∈ Λ such that pµi 6= 0.
Hence P [i, 1, λ] = (xστ ) where xµλ = pµi 6= 0 and thus ker δ = 0. So δ is an
embedding.

The case of γ is dual. �

Lemma 5.5.
(i) Letting i be the inclusion map, for i : FU (V ) → L(V ), we have iψ = ηδ

and for i : F ′U (V )→ L′(V ), we have iϕ = ηγ.
(ii) The mappings

r : X → ρX , l : X → λX (X ∈ R)

are embeddings of R into P (R) and Λ(R), respectively and δρ = r, γλ = l.

Proof. (i) With the notation (1) and (2) in Section 3, we obtain

biψ = bψ = (bλµ), zλb =
∑
µ

bλµzµ

and

zλb = zλ

n∑
k=1

(ik, γk, λk) =
n∑
k=1

(zλ, uik)γkvλk

=
n∑
k=1

zλ,∑
j

wjτjik

 γkvλk =
n∑
k=1

∑
j

(zλ, wj)τjikγkvλk

=
n∑
k=1

∑
j

pλjτjikγk
∑
µ

σλkµzµ =
∑
µ

 n∑
k=1

∑
j

pλjτjikγkσλkµ

 zµ

so that bλµ =
n∑
k=1

∑
j

pλjτjikγkσλkµ. Also

bηδ =

(
n∑
k=1

τjikγkσλkµ

)
δ = P

(
n∑
k=1

τjikγkσλkµ

)
=

∑
j

n∑
k=1

pλjτjikγkσλkµ


whence the desired equality.

The second assertion is dual.
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(ii) For any X ∈ R, we have

Xδρ = (PX)ρ = ρPX = ρX

since for any Y ∈ R,

Y ρPX = Y (PX) = Y ∗X = Y ρX .

By Lemmas 5.2(i) and 5.3(i), we have that r is an embedding.
The remaining assertions are dual. �

Lemma 5.6. Let a ∈ L′(U) and b ∈ L(V ). Then the following statements are
equivalent.

(i) a is the adjoint of b.
(ii) P (aϕ) = (bψ)P .
(iii) aϕλ and bψρ are linked translations.

Proof. Let A = aϕ = (aij) and B = bψ = (bλµ) and assume that XPAY =
XBPY for all X,Y ∈ R. For X = Y = [i, 1, λ] = (xmθ), we get∑

θ,l,n

xmθpθlalnxnσ =
∑
η,τ,s

xmηbητpτsxsσ

whence
∑
l

pλlali if m = i, σ = λ

0 otherwise
=


∑
τ
bλτpτi if m = i, σ = λ

0 otherwise

which evidently implies that PA = BP . Next

(v, au) = (vb, u) for all v ∈ V, u ∈ U
⇔ (vλ, aui) = (vλb, ui) for all λ ∈ Λ, i ∈ I

⇔

vλ,∑
j

wjaji

 =

(∑
µ

bλµzµ, ui

)
for all λ ∈ Λ, i ∈ I

⇔
∑
j

(vλ, wj)aji =
∑
µ

bλµ(zµ, ui) for all λ ∈ Λ, i ∈ I

⇔
∑
j

pλjaji =
∑
µ

bλµpµi for all λ ∈ Λ, i ∈ I

⇔ PA = BP

⇔ XPAY = XBPY for all X,Y ∈ R by the above
⇔ X ∗ (AY ) = (XB) ∗ Y for all X,Y ∈ R
⇔ X ∗ (λAY ) = (XρB) ∗ Y for all X,Y ∈ R
⇔ λA and ρBare linked

and the assertion follows. �

The following notation will be used frequently.
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Notation 5.7. Let

M(R) = {(A,B) ∈ CF (I,∆)×RF (∆,Λ) | PA = BP}
with componentwise operations.

Lemma 5.8. M(R) is closed under its operations and thus forms a ring. The
mapping

τ : X → (XP,PX) (X ∈ R)
is an embedding of R into M(R).

Proof. Straightforward verification, see Lemma 5.4. �

We are finally ready for the main result of this section.

Theorem 5.9.
(i) The mapping

α : b→ (aϕ, bψ) (b ∈ L(U), a is an adjoint of b)

is an isomorphism of LU (V ) onto M(R).
(ii) The mapping

µ : (A,B)→ (Aλ,Bρ) ((A,B) ∈M(R))

is an isomorphism of M(R) onto Ω(R).
(iii) The following diagram commutes

- -

?
- -

?

A
A
A
A
A
AAK

�
�
�
�
�
�
���

J
J
J
J
J
J
Ĵ

�
�
�
�
�
�
���

-













�

A
A
A
A
A
A
AK

LU (V ) M(R) Ω(R)

L(V ) RF (∆,Λ) P (R)

FU (V ) Ri

i

i

η

ψ ρ

µα

τ π

δ r

(λ, ρ)→ ρ

where i denotes the inclusion mappings.

Proof. (i) This follows directly from Lemmas 5.2 and 5.6.
(ii) This follows directly from Lemmas 5.3 and 5.6.
(iii) Commutativity of the extreme left and the extreme right triangles is obvi-

ous; that of the lower quadrangle follows from Lemma 5.5(i) and that of the lower
triangle by Lemma 5.5(ii).
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In order to prove commutativity of the upper quadrangle, we let b be as in (1)
with (2) and a be its adjoint in U . Letting

X = bη =

(
n∑
k=1

(ik, γk, λk)

)
η =

(
n∑
k=1

τjikγkσλkµ

)
= (xjµ)

we have bητ = (XP,PX) where

XP =

(∑
µ

xjµpµi

)
=

(∑
µ

n∑
k=1

τjikγkσλkµpµi

)
,(5)

PX =

∑
j

pλjxjµ

 =

∑
j

n∑
k=1

pλjτjikγkσλkµ

 .(6)

For any λ ∈ Λ, we get

zλb = zλ

(
n∑
k=1

(ik, γk, λk)

)
=

n∑
k=1

(zλ, uik)γkvλk

=
n∑
k=1

zλ,∑
j

wjτjik

 γk

(∑
µ

σλkµzµ

)

=
∑
µ

∑
j

n∑
k=1

(zλ, wj)τjikγkσλkµ

 zµ

=
∑
µ

∑
j

n∑
k=1

pλjτjikγkσλkµ

 zµ

and similarly for every i ∈ I,

awi =
∑
j

wj

(∑
µ

n∑
k=1

τjikγkσλkµpµi

)
.

Comparing the last two expressions with (5) and (6), we conclude that bητ =
(aϕ, bψ) = bα. Therefore ητ = α, as required.

For commutativity of the upper triangle, we let X ∈ R and apply Lemma 5.5(ii)
obtaining

Xτµ = (Xγ,Xδ)µ = (Xγλ,Xδρ) = (Xl,Xr) = Xπ

so that τµ = π, as required. �

The situation is particularly transparent for the case when R = ∆I . Indeed,
then

M(R) = {(A,B) ∈ CF (∆, I)×RF (∆, I) | A = B}
and we may identify M(R) with

M ′(R) = {A | A is a row and column finite I × I-matrix over ∆}
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with the usual addition and multiplication of matrices, cf. [6, IX.10, Exercise 2].
This ring contains ∆I , as a subring. For this case, we have the following result.

Proposition 5.10. Let R = ∆I . Then M(R) is directly finite if and only if I
is finite.

Proof. Suppose first that I is infinite. We may assume that N = {1, 2, 3, . . . }
is a subset of I and that the matrices in M ′(R) are of the formA B

C D


where A ∈M ′(∆N ). We shall use the notation ι∅ = ∅.

Let

A =


0 1 0 0 0 . . .
0 0 1 0 0 . . .
0 0 0 1 0 . . .
· · ·

 , B =


0 0 0 0 . . .
1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
· · ·

 ,
cf. [6, IX.10, Exercise 3]. Then

AB =


1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
· · ·

 , BA =


0 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
· · ·

 ,
so that AB = ιN 6= BA. Now letting

A′ =

A 0

0 ιI\N

 , B′ =

B 0

0 ιI\N

 ,
we get A′B′ = ιI 6= B′A′, and M(R′) is not directly finite.

Since M(R′) ∼= M(R), by contrapositive, we deduce that if M(R) is directly
finite, then I must be finite. The converse follows from [5, Proposition 5.2]. �

6. Isomorphisms of the translational hulls of Rees matrix rings

We shall need the following simple result.

Lemma 6.1. Let R and R′ be rings and χ be an isomorphism of R onto R′.
For (λ, ρ) ∈ Ω(R), define the functions λ and ρ by

λx = (λ(xχ−1))χ, xρ = ((xχ−1)ρ)χ (x ∈ R′).
Then the mapping

χ : (λ, ρ)→ (λ, ρ) ((λ, ρ) ∈ Ω(R))

is an isomorphism of Ω(R) onto Ω(R′) such that for all r ∈ R, πrχ = πrχ.

Proof. See [11, Lemma II.7.2]. �
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We are now ready for isomorphisms of rings M(R) and M(R′) for Rees matrix
rings R and R′. For R we write µ, τ and π and for R′ we write µ′, τ ′ and π′

respectively, for the mappings introduced in the preceding section.

Theorem 6.2. Let

χ = χ(U,ω, V ) : R =M(I,∆,Λ;P )→ R′ =M(I ′,∆′,Λ′;P ′)

be an isomorphism where R is not a division ring.
(i) The mapping χ̂ defined by

χ̂ : (A,B)→ (U, V )−1(Aω,Bω)(U, V ) ((A,B) ∈M(R))

is an isomorphism of M(R) onto M(R′).
(ii) χ̂−1 = χ̂−1.
(iii) The following diagram commutes

-

?
-

?

A
A
A
A
A
AAK

�
�
�
�
�
�
���

J
J
J
J
J
J
Ĵ

-













�

M(R) M(R′)

Ω(R) Ω(R′)

R R′µ

τ

π

χ

χ̄

χ̂

τ ′

π′

µ′

Proof. (i) The multiplicative part of the argument is the same as in the proof of
[12, Theorem 4.5(i)] and can be omitted here. By [11, Theorem II.1.25, Corollary
II.1.27, Corollary II.7.5] and Theorem 5.9(i), we conclude that the rings M(R)
and M(R′) have unique addition. Hence the (multiplicative) isomorphism of MR
onto MR′ is additive and thus an isomorphism of R onto R′.

(ii) The argument here is the same as in [12, Theorem 4.5(ii)].
(iii) This follows from Theorem 5.9(iii), [12, Theorem 4.5(iii)] and Lemma 6.1.

�

For a Rees matrix ring R, we write

M0(R) = Rτ,

see Lemma 5.8 for the mapping τ . In view of [11, Corollary II.1.27], Theorem
6.2 implies that M0(R) is the socle of M(R) and M(R) is a maximal essential
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extension of M0(R). As a kind of converse of Theorem 6.2, we have the following
result.

Theorem 6.3. Let R and R′ be Rees matrix rings where R is not a division
ring.

(i) Every isomorphism of M(R) onto M(R′) maps M0(R) onto M0(R′) and is
of the form as in Theorem 6.2(i).

(ii) Every isomorphism of MM0(R) onto MM0(R′) extends uniquely to a ho-
momorphism of M(R) into M(R′) and this extension is actually an isomorphism
of M(R) onto M(R′).

Proof. The argument in the proof of [12, Theorem 4.6] mutatis mutandis
carries over to this case. The precise argument is omitted. �

In the next three items we set R = M(I,∆,Λ;P ). The proofs of these state-
ments are essentially identical to those in [12] for Rees matrix semigroups. Recall
Definition 4.1.

Lemma 6.4. Let χ = χ(U, εc, V ) be an automorphism of R. Then χ̂ = ε(cU,cV ).

Proof. See [12, Lemma 4.7]. �

Proposition 6.5. Let χ = χ(U,ω, V ) be an automorphism of R. Then ω ∈
I(∆) if and only if χ̂ ∈ I(M(R)).

Proof. See [12, Proposition 4.8]. �

Proposition 6.6. Denote by Z(A) the center of any algebra A. Then

Z(M(R)) = {(cιI , cιΛ) | c ∈ Z(∆)} ∼= Z(∆).

Proof. See [12, Proposition 4.9]. �

7. r-maximal Rees matrix rings

Recall from Section 3 that a ring containing a minimal one-sided ideal is termed
atomic. We have defined in [11] a simple atomic ring R to be r-maximal if
R can not be embedded as a proper right ideal in a simple atomic ring. From
[12] we have an analogue of this concept for Rees matrix semigroups. Indeed, let
S =Mo(I,∆,Λ;P ). Then P is column tight if P has no identical columns. If so,
S is an r-maximal Rees matrix semigroup if the matrix P can not be augmented
to a column tight Λ× I ′ - matrix P ′ over Go with I ′ ⊃ I and P ′|Λ×I = P .

Recall that a subspace U of V ? is a t-subspace if for any v ∈ V , v 6= 0, there
exists f ∈ U such that vf 6= 0. The next result involves all these concepts.

Theorem 7.1. Let V be a left vector space over a division ring ∆ and U be a
t-subspace of V ?. Let Z be a basis of V and W be a basis of U . Also set

R =M(W,∆, Z;P ), P = (pzw), pzw = zw,

S =M(U\{0},∆, Z;Q), Q = (qzu), qzu = zu.

Then the following statements are equivalent.
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(i) U = V ?.
(ii) R is an r-maximal Rees matrix ring.
(iii) S is an r-maximal Rees matrix semigroup.

Proof. The equivalence of parts (i) and (ii) follows easily from [11, Theorems
II.2.8 and II.3.5].

(i) implies (iii). We shall apply [12, Theorem 6.4]. Hence let ϕ : Z → ∆ be
a function such that zϕ 6= 0 for some z ∈ Z. Then ϕ may be extended uniquely
to a linear function f from V to ∆, the latter considered as a vector space over
itself. Then f is a linear form on V and thus f ∈ V ?. By hypothesis, we get that
f ∈ U\{0} and for all z ∈ Z, we have pzf = zf = zϕ. Now Q being clearly column
tight, the cited result yields that S is an r-maximal Rees matrix semigroup.

(iii) implies (i). Let f ∈ V ?\{0}. Then ϕ = f |Z is a nonzero mapping from Z
to ∆. The cited result, in view of the hypothesis, yields the existence of u ∈ U\{0}
such that qzu = zϕ for all z ∈ Z. But then zu = zϕ for all z ∈ Z which by linearity
implies that u = f . Hence f ∈ U which implies that U = V ?. �

The next result treats general Rees matrix rings.

Proposition 7.2. Let R = M(I,∆,Λ;P ). Then R is r-maximal if and only
if for every mapping ϕ : Λ → ∆, there exist elements ik ∈ I and gk ∈ ∆, k =
1, 2, . . . , n, such that λϕ = pλi1g1 + pλi2g2 + · · ·+ pλingn for all λ ∈ Λ.

Proof. According to [11, Theorem II.2.8], we may represent R as FU (V ) and
in view of [11, Theorem II.3.5], R is r-maximal if and only if U = V ?. The last
condition is equivalent to:

for every f ∈ V ?, there exists u ∈ U such that vf = (v, u) for all v ∈ V . Now
using the basis Z of V , we can write equivalently

for every ψ : Z → ∆, there exists u ∈ U such that zλψ = (zλ, u) for all zλ ∈ Z
since such a ψ extends uniquely to a linear form on V . Since the basis elements
in Z are indexed by Λ, we may rewrite this condition in the form:

for every ϕ : Λ→ ∆, there exists u ∈ U such that λϕ = (zλ, u) for all λ ∈ Λ.
We can now use the basis W of U to write such a u as a linear combination of
basis vectors, say

for every ϕ : Λ → ∆, there exist wik ∈ W and gk ∈ ∆, k = 1, 2, . . . , n, such
that

λϕ =

(
zλ,

n∑
k=1

wikgk

)
=

n∑
k=1

(zλ, wik)gk =
n∑
k=1

pλikgk

as asserted. �

For isomorphisms of r-maximal Rees matrix rings, we have the following simple
result.

Proposition 7.3. Let

R =M(I,∆,Λ;P ) and R′ =M(I ′,∆′,Λ′;P ′)

be r-maximal Rees matrix rings. Then R ∼= R′ if and only if ∆ ∼= ∆′ and |Λ| = |Λ′|.



90 M. PETRICH

Proof. We have observed in Theorem 3.4 that there exists a pair of dual vector
spaces (U, V ) over the given division ring ∆ such that there exists an isomorphism η
of FU (V ) onto R. In view of [11, Theorem II.3.5] and its proof, η is an isomorphism
of F(V ) onto R if and only if R is r-maximal. The hypothesis then implies that

η : F(V )→ R, η′ : F(V ′)→ R′

in the obvious notation. Hence F(V ) ∼= F(V ′) if and only if R ∼= R′. It follows
from [11, Corollary I.5.15] that

F(V ) ∼= F(V ′) ⇔ ∆ ∼= ∆′, dimV = dimV ′.

But dimV = |Λ| and dimV ′ = |Λ′|. Now combining these statements, we get the
assertion. �

Proposition 7.3 indicates that an r-maximal Rees matrix ring M(I,∆,Λ;P )
depends only on ∆ and Λ so that these determine the remaining two parameters
I and P . Indeed, |I| = dimV ? according to the proof of Proposition 7.3 and P is
then defined by the bilinear form associated to the dual pair (V ?, V ).

The next result concerns general simple atomic rings. Recall that if a ring R
is a subring of the rings R′ and R′′, then an isomorphism of R′ onto R′′ which
leaves R elementwise fixed is an R-isomorphism and R′ and R′′ are said to be
R-isomorphic.

Theorem 7.4. Let R be a simple atomic ring.
(i) R is a right ideal of an r-maximal simple atomic ring.
(ii) If R is a right ideal of r-maximal simple atomic rings R′ and R′′, then R′

and R′′ are R-isomorphic.

Proof. (i) By [11, Theorem II.2.8], R is isomorphic to FU (V ) for some pair of
dual vector spaces (U, V ) over a division ring ∆. By [11, Theorem I.3.4], FU (V )
is a right ideal of F(V ). Finally, by [11, Theorem II.3.5], F(V ) is an r-maximal
simple atomic ring. Hence R is a isomorphic to a right ideal of the r-maximal
simple atomic ring F(V ). The assertion follows.

(ii) By [11, Theorem II.3.5], there exist left vector spaces V ′ over ∆′ and V ′′ over
∆′′ and isomorphisms ϕ′ : R′ → F(V ′) and ϕ′′ : R′′ → F(V ′′). Letting ψ′ = ϕ′|R
and ψ′′ = ϕ′′|R, we get that Rψ′ is a right ideal of F(V ′) and Rψ′′ is a right ideal
of F(V ′′). By [11, Theorem I.3.4], there exist t-subspaces U ′ of V ′? and U ′′ of
V ′′? such that Rψ′ = FU ′(V ′) and Rψ′′ = FU ′′(V ′′). The mapping χ = ψ′

−1
ψ′′

is an isomorphism of FU ′(V ′) onto FU ′′(V ′′). In view of [11, Theorem I.5.12],
χ is induced by a semilinear isomorphism (ω, a) of V ′ onto V ′′ with an adjoint
b : U ′′ → U ′. But then ζ(ω,a) : c → a−1ca is a semilinear isomorphism of F(V ′)
onto F(V ′′). Hence the mapping ϕ′ζ(ω,a)ϕ

′′−1 is an isomorphism of R′ onto R′′

whose restriction to R equals

ψ′(ζ(ω,a) |FU′ (V ′))ψ
′′−1 = ψ′χψ′′

−1 = ψ′ψ′
−1
ψ′′ψ′′

−1

the identity map on R since ζ(ω,a) extends χ. Therefore ϕ′ζ(ω,a)ϕ
′′−1 is an R-

isomorphism of R′ onto R′′. �
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We conclude by considering direct finiteness of M(R) where R is an r-maximal
simple atomic ring.

Proposition 7.5. Let R =M(I,∆,Λ;P ) be r-maximal. Then M(R) is directly
finite if and only if I is finite.

Proof. According to [11, Theorem II.3.5], we have R ∼= F(V ) for a left vector
space V over ∆ with |Λ| = dimV , so by Theorem 5.9, we obtain that M(R) ∼=
L(U). Suppose that I is infinite. Then so is Λ and hence V is infinite dimensional.
The same idea as in the proof of Proposition 5.10 produces here two linear trans-
formations ϕ and ψ with the property that ϕψ = ιV 6= ψϕ. Hence L(V ) is not
directly finite.

Necessity of the condition now follows by contrapositive. Sufficiency follows
from [5, Proposition 5.2]. �

Proposition 7.5 is a faithful analogue of Proposition 5.10. The general case,
namely when is M(M(I,∆,Λ;P )) directly finite remains open.
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