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ON THE ENDOMORPHISM RING OF A SEMI-INJECTIVE
MODULE

S. WONGWAI

Abstract. Let R be a ring. A right R-module M is called quasi-principally (or

semi-) injective if it is M -principally injective. In this paper, we show: (1) The

following are equivalent for a projective module M : (a) Every M -cyclic submodule
of M is projective; (b) Every factor module of an M -principally injective module

is M -principally injective; (c) Every factor module of an injective R-module is M -
principally injective. (2) The endomorphism ring S of a semi-injective module is
regular if and only if the kernel of every endomorphism is a direct summand. (3)

For a semi-injective module M , if S is semiregular, then for every s ∈ S\J(S), there
exists a nonzero idempotent α ∈ Ss such that Ker(s) ⊂ Ker(α) and Ker(s(1−α)) 6=
0. The converse is also considered.

1. Introduction

Let R be a ring. A right R-module M is called principally injective if every
R-homomorphism from a principal right ideal of R to M can be extended to an
R-homomorphism from R to M . This notion was introduced by Camillo [2] for
commutative rings. In [7], Nicholson and Yousif studied the struture of principally
injective rings and gave some applications. In [9], Sanh and others extended this
notion to modules. A right R-module N is called M-principally injective if
every R-homomorphism from an M -cyclic submodule of M to N can be extended
to M. In [10], Tansee and Wongwai introduced the dual notion, a right R-module
N is called M -principally projective if every R-homomorphism from N to an
M -cyclic submodule of M can be lifted to an R-homomorphism from N to M. A
module M is called quasi-principally (or semi-) projective if it is M -principally
projective. Dual to this module and following Wisbauer [12] we consider a semi-
injective module.

Throughout this paper, R is an associative ring with identity. Let M be a right
R-module, the endomorphism ring of M is denoted by S = EndR(M). A module
N is called M -generated if there is an epimorphism M (I) → N for some index
set I. If I is finite, then N is called finitely M-generated. In particular, a
submodule N of M is called M-cyclic submodule of M if it is isomorphic to
M/X for some submodule X of M. By the notation N ⊂⊕ M (N ⊂e M) we mean

Received September 18, 2000; revised March 15, 2001.

2000 Mathematics Subject Classification. Primary 16D50, 16D70, 16D80.
Key words and phrases. Semi-injective modules, Endomorphism rings.



28 S. WONGWAI

that N is a direct summand (an essential submodule) of M. We denote the socle
and the singular submodule of M by Soc(M) and Z(M) respectively, and that
J(M) denotes the Jacobson radical of M .

2. Principal Injectivity

Definition 2.1. [9] Let M be a right R-module. A right R-module N is called
M-principally injective if every R-homomorphism from an M -cyclic submodule
of M to N can be extended to M. Equivalently, for any endomorphism s of M ,
every homomorphism from s(M) to N can be extended to a homomorphism from
M to N . N is called principally injective if it is R-principally injective.

Lemma 2.2. Let M and N be R-modules. Then N is M -principally injective if
and only if for each s ∈ S = EndR(M), HomR(M,N)s = {f ∈ HomR(M,N) :
f(Ker(s)) = 0}.

Proof. Clearly, HomR(M,N)s ⊂ {f ∈ HomR(M,N) : f(Ker(s)) = 0}. Let
f ∈ HomR(M,N) such that f(Ker(s)) = 0. This leads to Ker(s) ⊂ Ker(f).
Then there is an R-homomorphism ϕ : s(M) → N such that ϕs = f. Since N is
M -principally injective, there exists an R-homomorphism t : M → N such that
tı = ϕ where ı : s(M) → M is the inclusion map. Hence f = ts and therefore
f ∈ HomR(M,N)s.

Conversely, let ϕ : s(M) → N be an R-homomorphism. Then ϕs ∈
HomR(M,N) and ϕs(Ker(s)) = 0. By assumption, we have ϕs = us for some
u ∈ HomR(M,N). This shows that N is M -principally injective. �

Example 2.3. Let R =
(
F F
0 F

)
where F is a field, MR =

(
F F
0 0

)
and NR =

(
0 0
0 F

)
.

Then
(1) N is not M -injective.
(2) N is M -principally injective.

Proof. (1) Define ϕ :
(

0 F
0 0

)
→
(

0 0
0 F

)
with ϕ(

(
0 1
0 0

)
) =

(
0 0
0 1

)
. It is clear that ϕ is

an R-isomorphism. For any homomorphism α :
(
F F
0 0

)
→
(

0 0
0 F

)
with α(

(
1 0
0 0

)
) =(

0 0
0 x

)
for some x ∈ F, then α(

(
a b
0 0

)
) = α[

(
1 0
0 0

)(
a b
0 0

)
] =

(
0 0
0 x

)(
a b
0 0

)
=
(

0 0
0 0

)
for every(

a b
0 0

)
∈
(
F F
0 0

)
, so that α = 0. Therefore N is not M -injective.

(2) It follows from (1) that
(

0 F
0 0

)
is not M -cyclic submodule of M. Hence only

0 and M are M -cyclic submodules of M , thus N is M -principally injective. �

Clearly, every X-cyclic submodule of X is an M -cyclic submodule of M for
every M -cyclic submodule X of M. Thus we have the following

Proposition 2.4. N is M -principally injective if and only if N is X-principally
injective for every M -cyclic submodule X of M . In particular, if X is a direct
summand of M and N is M -principally injective, then N is both X-principally
injective and M/X-principally injective.
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Proposition 2.5. Let M and N be R-modules. Then M is N -principally projec-
tive and every N -cyclic submodule of N is M -principally injective if and only if
N is M -principally injective and every M -cyclic submodule of M is N -principally
projective.

Proof. (⇒) Let f be an endomorphism of N , X an M -cyclic submodule of M
and let g : X → f(N) be an R-homomorphism. Then g is extended to an R-
homomorphism h : M → f(N) so h is lifted to an R-homomorphism t : M → N.
Thus tı is lifted g where ı : X →M is the inclusion map.

(⇐) Let ϕ : s(M) → t(N) be an R-homomorphism where s, t are endomor-
phisms of M and N, respectively. Then ϕ lifts to an R-homomorphism ϕ̂ : s(M)→
N and so ϕ̂ is extended to an R-homomorphism α : M → N, it is clear that tα is
an extension of ϕ. �

A ring R is called a left (resp. right) PP -ring if each of its principal left (resp.
right) ideal is projective. This is equivalent to the fact that, for each a ∈ R there
is an idempotent e such that `R(a) = Re (resp. rR(a) = eR).

Theorem 2.6. The following are equivalent for a projective module M :
(1) Every M -cyclic submodule of M is projective;
(2) Every factor module of an M -principally injective module is M -principally

injective;
(3) Every factor module of an injective R-module is M -principally injective.

Proof. (1)⇒ (2) Let N be an M -principally injective module, X a submodule
of N and let ϕ : s(M) → N/X be an R-homomorphism. By (1), there exists
an R-homomorphism ϕ̂ : s(M) → N such that ϕ = ηϕ̂ where η : N → N/X
is the natural epimorphism. Since N is M -principally injective , there exists an
R-homomorphism t : M → N which is an extension of ϕ̂ to M. Then ηt is an
extension of ϕ to M.

(2)⇒ (3) Clear.
(3)⇒ (1) Let t(M) be an M -cyclic submodule of M, h : A→ B an epimorphism

and let α : t(M)→ B be R-homomorphism. Embed A in an injective module E.
Then B ' A/Ker(h) is a submodule of E/Ker(h); we may view α : t(M) →
E/Ker(h), which by hypothesis we can extend to α̂ : M → E/Ker(h). Since M is
projective, α̂ can be lifted to g : M → E. It is clear that g(t(M)) ⊂ A. Therefore
we have lifted α. �

Corollary 2.7.[12, Exercises 39.17(4)] The following are equivalent for a ring R:
(1) R is a right PP -ring;
(2) Every factor module of a principally injective module is principally injective;
(3) Every factor module of an injective R-module is principally injective.

Definition 2.8. A right R-module M is called semi-injective if it is M -princip-
ally injective.
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In general, we have:
injective =⇒ quasi-injective =⇒ semi-injective =⇒ direct-injective.

Recall that an R-module M is said to be direct-injective if for any direct
summand D of M, every monomorphism f : D → M splits. Direct-projective
modules are defined dually. A submodule N of M is called a fully invariant
submodule of M if s(N) ⊂ N for every s ∈ S.

3. The Endomorphism Ring and its Jacobson Radical

Write

4 = {s ∈ S : ker(s) ⊂e M}, and ♦̂ = {s ∈ S : Ker(1 + ts) = 0 for all t ∈ S}.
It is known that 4 is an ideal of S [5, Lemma 3.2]. Since Ker(s)∩Ker(1+ ts) = 0,
4 ⊂ ♦̂. It is well-known that, for a quasi-continuous module M , M is continuous if
and only if S/4 is regular and J(S) = 4 [5, Proposition 3.15]. We now investigate
when J(S) = 4.

Following [12], an R-module M is called π-injective if, for all submodules
U and V of M with U ∩ V = 0, there exists f ∈ S with U ⊂ Ker(f) and
V ⊂ Ker(1 − f). A module M is called a self-generator if it generates all its
submodules.

Proposition 3.1. Let M be semi-injective.
(1) J(S) = ♦̂.
(2) If S is local, then J(S) = {s ∈ S : Ker(s) 6= 0}.
(3) If S/4 is regular, then J(S) = 4.
(4) If S/J(S) is regular, then S/4 is regular if and only if J(S) = 4.
(5) If Ims ⊂e M where s ∈ S, then any monomorphism t : s(M) → M can be

extended to a monomorphism in S.
(6) If M is uniform, then S is a local ring and J(S) = 4.
(7) For s ∈ S, if M is uniform and s is left invertible, then s is invertible.
(8) M is uniform if and only if S is local and M is π-injective.
(9) If M is uniform, then Z(SS) ⊂ J(S).

Proof. (1) For any s ∈ J(S) and t ∈ S, g(1 + ts) = 1M for some g ∈ S. Thus
Ker(1 + ts) = 0, and hence J(S) ⊂ ♦̂. On the other hand, if Ker(1 + s) = 0,
then `S(Ker(1 + ts)) = S. By Lemma 2.2, we have S = S(1 + ts) which implies
1M = g(1 + ts) for some g ∈ S. It follows that s ∈ J(S).

(2) Since S is local, Ss 6= S for any s ∈ J(S). If Ker(s) = 0, then α : s(M)→M
given by α(s(m)) = m for any m ∈ M is an R-homomorphism. Since M is semi-
injective, let β ∈ S be an extension of α to M. It follows that βs = 1M so Ss = S,
which is a contradiction. This shows that J(S) ⊂ {s ∈ S : Ker(s) 6= 0}. The
other inclusion is clear.

(3) Clearly, 4 ⊂ J(S). If s ∈ J(S), then (1 − sα)s = s − sαs ∈ 4 for some
α ∈ S. Since (1− sα) has a left inverse, s ∈ 4. This show that J(S) ⊂ 4.

(4) This follows from (3).
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(5) Since M is semi-injective, there exists g ∈ S such that gs = ts. Thus
Im(s) ∩Ker(g) = 0. Since Im(s) ⊂e M, Ker(g) = 0.

(6) Since M is direct-injective, S is local provided that M is uniform [12, 41.22].
It follows that J(S) = 4 by (2).

(7) Since s has a left inverse, Ker(s) = 0. Follows from (6) and (2), we have
s 6∈ J(S) hence s is invertible.

(8) The necessity is trivial. For the sufficiency, let U and V be submodules
of M such that U ∩ V = 0. As M is π-injective, we can choose f ∈ S so that
U ⊂ Ker(f) and V ⊂ Ker(1 − f). Note that either f or 1 − f belong to J(S). If
f ∈ J(S), then g(1− f) = 1 for some g ∈ S. Thus Ker(1− f) = 0, and it follows
that V = 0. Otherwise, U = 0.

(9) Let s ∈ Z(SS). Then Ker(s) 6= 0. For any t ∈ S we have Ker(s)∩Ker(1+ts) =
0, then Ker(1 + ts) = 0. Hence s ∈ J(S) by (1). �

Proposition 3.2. Suppose M is a semi-injective and π-injective module. If S is
semiperfect, then M =

⊕n
i=1 Ui, where Ui is uniform and semi-injective for each i.

Proof. Since S is semiperfect and M is semi-injective, M = U1⊕ . . .⊕Un, where
each EndR(Ui) is local. Note that Ui is semi-injective. Each Ui is π-injective
[12,41.20], thus by Proposition 3.1(8) we see that Ui is uniform. �

The following proposition is modified from [1,Lemma 18.21]

Proposition 3.3. If Soc(M) ⊂e M, then
(1) 4 = `S(Soc(M)), and
(2) S/4 is embedded in EndR(Soc(M)) as a subring.

Proof. (1) Let s ∈ 4. Then soc(M) ⊂ Ker(s), it follows that s(Soc(M)) = 0.
If, on the other hand, s(Soc(M)) = 0, then Ker(s) ⊂e M and s ∈ 4.

(2) For each s ∈ S, let θ(s) be a map from Soc(M) into itself defined by(
θ(s)

)
(x) = s(x). Since Soc(M) is fully invariant in M, it follows that θ(s) ∈

EndR(Soc(M)) and θ : S → EndR(Soc(M)) is a ring homomorphism. Clearly,
Ker(θ) = 4 and the proof is complete. �

Corollary 3.4. If M is semi-injective and a self-generator and if Soc(M) ⊂e M,
then

(1) J(S) = `S(Soc(M)), and
(2) S/J(S) ' EndR(Soc(M)).

Proof. (1) As M is semi-injective and a self-generator, we have J(S) = 4 by
[9, Theorem 2.13].

(2) Since M is semi-injective, every R-homomorphism in EndR(Soc(M)) can be
extended to an R-homomorphism in S. By (1) and Proposition 3.3(2), it follows
that S/J(S) is isomorphic to EndR(Soc(M)) as rings. �

Proposition 3.5. Let M be a semi-injective module.
(1) If Im(s) is a simple right R-module, s ∈ S, then Ss is a simple left S-module.
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(2) If s1(M) ⊕ · · · ⊕ sn(M) is direct, s1, ..., sn ∈ S, then S(s1 + · · · + sn) =
Ss1 + · · ·+ Ssn.

Proof. (1) Let A be a nonzero submodule of Ss and 0 6= αs ∈ A. Then Sαs ⊂ A.
Since Im(s) is simple, Ker(α)∩ Im(s) = 0. Define g : αs(M)→M by g(αs(m)) =
s(m) for every m ∈ M. It it obvious that g is an R-homomorphism. Since M
is semi-injective, there exists a homomorphism h ∈ S such that h(αs) = g(αs).
Therefore h(αs) = s so s ∈ Sαs. It follows that Sαs = Ss and hence A = Ss.

(2) Let α1s1 + · · · + αnsn ∈ Ss1 + · · · + Ssn. For each i, define ϕi : (s1 +
· · · + sn)(M) → M by ϕi((s1 + · · · + sn)(m)) = si(m) for every m ∈ M . Since
s1(M) ⊕ · · · ⊕ sn(M) is direct, ϕi is well-defined, so it is clear that ϕi is an
R-homomorphism. Then there exists an R-homomorphism ϕ̂i ∈ S which is an
extension of ϕi. Then si = ϕi(s1 + · · ·+ sn) = ϕ̂i(s1 + · · ·+ sn) ∈ S(s1 + · · ·+ sn)
for every i = 1, ..., n. Consequently, α1s1 + · · · + αnsn ∈ S(s1 + · · · + sn). Hence
Ss1 + · · ·Ssn ⊂ S(s1 + · · ·+ sn). The other inclusion always holds. �

We call a module M a duo module if every submodule of M is fully invari-
ant. M is said [11] to have the summand intersection property (SIP) if the
intersection of two direct summands is again a direct summand. The module M
is said [4] to have the summand sum property (SSP) if the sum of any two
summands of M is again a summand.

We prove a similar result here for a semi-injective module M , with the (SIP)
and (SSP). Note that every direct summand of M is of the form s(M) for some
s ∈ S.

Proposition 3.6. Every duo and semi-injective module has the (SIP) and (SSP).

Proof. Write M = s(M) ⊕ K and M = t(M) ⊕ L. Since M is duo, s(M) =
s(t(M) ⊕ L) = st(M) + s(L) ⊂ (s(M) ∩ t(M)) + (s(M) ∩ L) = (s(M) ∩ t(M)) ⊕
(s(M) ∩ L) ⊂ s(M). Then s(M) ∩ t(M) ⊂⊕ M . Now we write M = s(M) ∩
t(M)⊕N. Then t(M) = t(M) ∩ (s(M) ∩ t(M)⊕N) = s(M) ∩ t(M)⊕ t(M) ∩N
by the Modular law. So s(M) + t(M) = s(M) + (s(M) ∩ t(M) ⊕ t(M) ∩ N) =
s(M) + t(M) ∩ N = s(M) ⊕ t(M) ∩ N. Since s(M) and t(M) ∩ N are direct
summands, s(M) + t(M) is a direct summand of M by (C3). �

Following [6] a ring R is called semiregular if R/J(R) is regular and idempo-
tents can be lifted modulo J(R). Equivalently, R is semiregular if and only if for
each element a ∈ R, there exists e2 = e ∈ Ra such that a(1− e) ∈ J(R).

Theorem 3.7. For a semi-injective module M, if S is semiregular, then (∗) holds,
where (∗) is the conditon

(∗): For every s ∈ S \ J(S), there exists a nonzero idempotent α ∈ Ss such that
Ker(s) ⊂ Ker(α) and Ker(s(1− α)) 6= 0.

If, in addition, S is local, then the converse is true.
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Proof. Let s ∈ S \ J(S). Then there exists α2 = α ∈ Ss such that s(1 − α) ∈
J(S). Then α 6= 0 and Ker(s) ⊂ Ker(α). If Ker(s(1−α)) = 0, then gs(1−α) = 1M
for some g ∈ S by the semi-injectivity of M. It follows that α = 0, a contradiction.

The converse follows from Proposition 3.1(2). �
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