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A CLASS OF ALGEBRAIC-EXPONENTIAL CONGRUENCES
MODULO »p

C. COBELI, M. VAJAITU anp A. ZAHARESCU

ABSTRACT. Let p be a prime number, J a set of consecutive integers, Fp the
algebraic closure of F,, = Z/pZ and € an irreducible curve in an affine space
A"(Fp), defined over Fp,. We provide a lower bound for the number of r—tuples
(z,y1,...,yr—1) Withz € 7, y1,...,yr—1 € {0,1,--- ,p — 1} for which (z,y7,...,
y¥_,) (mod p) belongs to €(Fp).

1. INTRODUCTION

In Chapter F, section F9 of his well known book [4] on unsolved problems in
number theory, Richard Guy collected some questions on primitive roots. One
of them, attributed to Brizolis, asks if for a given prime p > 3, there is always
a primitive root ¢ mod p, 0 < g < p, and an integer z, 0 < x < p such that
x = g* ( mod p). This question was answered positively in [2], by showing that
for any € > 0 there is a positive integer p(e) such that for any prime p > p(e)
the number of pairs (x,y) of primitive roots mod p, 0 < x,y < p which are
solutions of the congruence x = y* (mod p), is at least (1 — 6)6’27(10g1+gp)2,
where v denotes Euler’s constant. In the present paper we consider more general
congruences, involving z,y?,...,y%_;, and look for all the solutions, including
those for which y,...,y,._1 are not necessarily primitive roots mod p. We start
with a large prime number p and a set J of consecutive positive integers, of
cardinality |J| < p. Denote by F, the algebraic closure of the field F, = Z/pZ
and let € be an irreducible curve of degree D in an affine space A" (F,). We assume
in the following that € is not contained in any hyperplane and that it is defined
over F,,. Denote as usually by €(F,) the set of points z = (#1,...,2,) on € with
all the components z,..., %, in F;,. The problem is to find integers x € J and
Y1, Yr—1 €{0,1,--+ ,p— 1} such that

(1) (@97, ,yr—1) (mod p) € C(Fy).

The method employed in [2] may be adapted to the present context. The
first idea is to look for points (z,z1,...,2,—1) on the curve € for which x is
relatively prime to p — 1. For any such point (x,z21,...,2.—1) we find a solu-
tion (z,y1,...,yr-1) of (1) by arranging y1,...,yr—1 such that y7 = z; (mod p),

Received September 29, 2001.
2000 Mathematics Subject Classification. Primary 11T99.



114 C. COBELI, M. VAJAITU anp A. ZAHARESCU

1 < j < r—1. To be precise, we choose a positive integer w such that xw =1
(mod p — 1), then set y; = z}” and from Fermat’s Little Theorem one gets yi =
2;"" = zj mod p. We combine this idea with a Fourier inversion technique, similar

to that used in [3]. Consider the sets
A= {('Tvyla'-'vyr—l) €J x erlz 0<y1, - syr—1 <p,

X

(:Cayla"'ayf—l) (mOd p) € Q:(Fp)}
and

B = {("I"azla"-az’r‘fl) eJxZ 0<2z1,...,20—1 <p, (.%‘,p—l) =1,

(337217"'727"71) (mOd p) EQ(FP)}

Our goal is to obtain lower bounds for |A|. By the above remark we know that
|A] > |B|, thus it will be enough to find lower bounds for |B|. We will actually
obtain an asymptotical estimation for |B|. The result is stated in the following
theorem.

Theorem 1. Let p be a prime number, J a set of consecutive positive inte-

gers and € an irreducible curve of degree D in A"(F,), defined over F,, and not
contained in any hyperplane. Then

plp—1
B = |J| ; 1 ) +Op (ao(p— 1)\/1_910gp).

Here ¢(-) is the Euler function and og(p — 1) is the number of positive divisors
of p — 1. As a consequence of Theorem 1 we note the following corollary.

Corollary 1. Let v > 2 and D > 1 be integers and € > 0 a fized real number.
Then there is a positive integer p(r,D,¢€) such that for any prime number p >
p(r, D,€) and any irreducible curve € of degree D in A"(F,), defined over F,, and
not contained in any hyperplane, the number of r—tuples (z,y1,...,Yyr—1) with
0<z,91,....Y—1 <p, (xg,p—1) =1 and (z,97,...,y7_,) (mod p) € &F,) is at

— —2vy__p
least (1 —€)e™ o

2. CHARACTERISTIC FUNCTIONS AND EXPONENTIAL SUMS

Our first step is to get an exact formula for |B| in terms of exponential sums. For
this we introduce the following characteristic function:

)1, ifreJand (z,p—-1)=1
¢J($)_{07 else.

Without any loss of generality, we may assume in the proof of Theorem 1 that
the set of consecutive integers J satisfies 7 C [1, p—1]. Let € be as in the statement
of the theorem. Then the number we are interested in, can be written as

(2) |B| = > ¢, ().

(%,21,..12r—1)EC(Fp)
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Next, using a finite Fourier transform modulo p we write the characteristic function
defined above as

3) ¢y (x) = Y &, (u)ep(ux)

u€eF,

2m
P

where ¢,(t) = e * for any t. The Fourier coefficients ¢ , (u) are given by

A 1
(4) ¢, w) ==Y ¢, (x)ep(—ux).
p zeF,
We substitute the expression (3) in (2) to obtain
(5) Bl= > ¢,(u)S,(u),
uckF,

in which

Se(u) = Z ep(uz) .

(2,21,00,2r—1)EC(Fyp)
The expression (5) is the basic formula that will be used in the proof of Theorem
1. In order to complete the proof we first need estimates for ¢, (u).

3. ESTIMATES FOR THE FOURIER COEFFICIENTS

The Fourier coefficients given by (4) behave differently, depending on whether
their argument is or is not zero modulo p. We have

©) 3 W) —‘J‘wp(fil) + 0 (—00(2_1)) , ifu=0 (mod p)
J u) = 1 1 .
@) (5 2 dl(p—1) W) , Hfuz0 (modp)

where ||-|| denotes the distance to the nearest integer.
In order to prove (6), we use well known properties of the Mobius function to

write
q33<u>:}9 3 epeux):]—l,Zep(fux) S ()

ze€J zeJ d|x
(z,p—1)=1 d|(p—1)
1
= 3 wld) Y ().
pd\(p—l) zeJ
d|z
When u = 0 one has
. 1 . 1 T
05(0) == 3 pld)l{r € Tiddividesa} = 3" u(d) (51 +0()
P a1 dl(p—1)

7 o(4)

P o)
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Employing the equality > dl(p—1) @ = % (see for example [5]), the relation
(6) is proved for u = 0. Let us assume now that v #Z 0 (mod p). The sum
> veg, da ep(—ux) is a geometric progression of ratio ey(—ud). It follows easily
that

(7) Z ep(—ux)| <

1
e T dla [[ud/p|

Using (7) for any divisor d of p — 1, we find that

N 1 1
o (u) < = —_—,
7 2 [[ud/p|

dl(p—1)
which proves (6).
4. PROOF OF THEOREM 1
We split the sum in the main formula (5) into two ranges according as to whether
u =0 or u # 0. We write
(8) Bl=M+E,

where M = ¢ ., (0)|€(F,)| contains the principal contribution, giving the main term
of the estimation for |B|, while the remainder is

B2 Y b Y e,
0£u€eF, (z,21,....2r—1)EC(Fp)

We now turn our attention to the evaluation of M. By the Riemann Hypothesis
for curves over finite fields (Weil [6]), we know that

[€(Fp)| = p+ Op (Vp)-

Then using (6), we obtains

=|J|=——+0p (Vp)-

Next, we estimate the remainder F. Since € is not contained in any hyperplane
it follows for u # 0 that ux is nonconstant along the curve €. Then one may apply
the Bombieri-Weil inequality (see [1], Theorem 6), which gives

|Se (W] <p VP
for u # 0. Therefore, by (6) we see that

plp—1)
p

E= Y ¢,(wS.(u) <p Z Zu d/pll vp

0£u€eF, d|(
<o,(p—1)/p logp.
This completes the proof of Theorem 1.
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