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ERGODIC DYNAMICAL SYSTEMS CONJUGATE TO THEIR
COMPOSITION SQUARES

G. R. GOODSON

Abstract. We investigate the question of when an ergodic automorphism T is

conjugate to its composition square T 2, i.e., when does there exist an automor-
phism S with the property that ST = T 2S. This is a non–generic property of
automorphisms which seems to be quite exceptional. The situation for ergodic au-

tomorphisms having discrete spectrum and automorphisms having the weak closure
property is investigated.

0. Introduction

Let T be an invertible measure–preserving transformation (automorphism) defined
on a standard Borel probability space (X,F, µ). We investigate the question of
when T is isomorphic to its composition square T 2. If the conjugating automor-
phism is S, i.e., ST = T 2S, properties of S are also investigated. There are some
well known cases of automorphisms conjugate to their squares. For example, the
map arising from the horocycle flow and the Bernoulli shift of infinite entropy.
Maps having finite non–zero entropy cannot have this property because of the
identity h(T 2) = 2h(T ). Consequently, we are mainly interested in maps hav-
ing zero entropy. It was shown by del Junco (1981) that the property of being
conjugate to its square, is a non–generic property of automorphisms.

In Section 2 we give some basic results concerning automorphisms conjugate to
their squares. In particular we show that if T is conjugate to T 2 and C(T ) is abelian
then C(T ) = C(T 2). In Section 3 we consider the situation for transformations
having the weak closure property. This includes the rank one transformations and,
in particular, ergodic transformations having discrete spectrum. In this case, if
T is conjugate to its square, every member of the centralizer of T , C(T ), has a
unique square root in C(T ). It is an open problem whether or not there exists a
weakly mixing transformation having rank one and conjugate to its square.

In Section 4 we consider the situation for ergodic automorphisms having discrete
spectrum. The Discrete Spectrum Theorem tells us that T is conjugate to T 2 if
they have the same eigenvalue group and they are both ergodic. New necessary
and sufficient conditions for ergodic T with discrete spectrum to be conjugate to its
square are given, and properties of the conjugating automorphism S are studied.
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It is shown that S can be mixing. Much of our exposition generalizes to the case
where there are automorphisms S and T satisfying ST = T pS for some p > 1.
I wish to thank the referee for some helpful suggestions.

1. Preliminaries

By a dynamical system we mean a 4–tuple (X,F, µ, T ) consisting of an automor-
phism T : (X,F, µ) → (X,F, µ) defined on a non-atomic standard Borel proba-
bility space. The identity automorphism will be denoted by I. The group of all
automorphisms Aut(X) of (X,F, µ), becomes a completely metrizable topological
group when endowed with weak convergence of transformations (Tn → T if for
all A ∈ F, µ(T−1

n (A)4T−1(A)) + µ(Tn(A)4T (A)) → 0 as n → ∞). Denote by
C(T ) the centralizer of T , i.e., the set of those members of Aut(X) which commute
with T (more generally it is usual to define C(T ) to be those measure–preserving
transformations which commute with T , but it will be convenient to assume that
C(T ) is a group).

If S is measure–preserving and ST = T 2S then STn = T 2nS for n ∈ Z and
SnT = T 2n

Sn for all n ∈ Z+.

2. Basic Results

It was shown by del Junco (1981) that the property of being conjugate to the
composition square is non–generic in Aut(X), and in fact it is difficult to find
examples with this property. If T is ergodic, then T 2 has to be ergodic, so −1
cannot be an eigenvalue of T .

If Sn = I for some n ∈ Z+, then the equation SnT = T 2n

Sn implies that
T 2n−1 = I. This is impossible for T aperiodic (T is aperiodic if the set
{x ∈ X : Tnx = x} has µ–measure zero for each n ∈ Z+). We improve on
this result slightly in Proposition 1 below, where we show that for T aperiodic,
S is necessarily aperiodic.

Proposition 1. If ST = T 2S for automorphisms S and T with T aperiodic,
then S is aperiodic.

Proof. Set A = {x ∈ X : Sx = x}, then if x ∈ A,n ∈ Z, STnx = T 2nSx =
= T 2nx, so Tnx /∈ A for otherwise Tnx = T 2nx or Tnx = x, which is impossible
(mod 0) for T aperiodic. Consequently A∩ TnA = ∅ for all n ∈ Z, and we deduce
that TnA ∩ TmA = ∅ for all m 6= n in Z.

We have shown that the sets TnA, n ∈ Z are pairwise disjoint, so if µ(A) > 0
we get a contradiction, since T is measure preserving and µ(X) = 1.

Similarly, if we put An = {x ∈ X : Snx = x}, using SnTm = T 2nmSn, we again
deduce that µ(An) = 0 for all n ∈ Z+, so that S is aperiodic. �

Although S has to be aperiodic, it need not be ergodic even when T is ergodic,
as we shall see for discrete spectrum T . On the other hand, if S is ergodic we
obtain:
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Proposition 2. Suppose that S and T are automorphisms with ST = T 2S. If
S is ergodic, then either T is aperiodic or Tn = I for some n > 0 odd.

Proof. Suppose that T is not aperiodic, then there exists n > 0 for which

An = {x ∈ X : Tnx = x} has µ(An) > 0.

If x ∈ An, then TnS−1x = S−1T 2nx = S−1x, so that S−1x ∈ An, i.e., An is S−1

invariant, and S ergodic implies Tn = I. If the order of T is even, say n = 2m,
then STm = T 2mS = S which gives Tm = I, a contradiction. �

In a similar way to above, it can be shown that if ST = T 2S where S is ergodic,
but T is not ergodic, then S has a proper factor.

Proposition 3. Suppose that T is an automorphism for which KT = T 2K for
some automorphism K. Define a map

Φ : C(T ) → C(T 2) by Φ(S) = KSK−1,

then

(a) Φ is a continuous group isomorphism.

(b) T has a square root in C(T ), conjugate to T .

(c) If C(T ) is abelian, then Φ is independent of the conjugating automorphism K
and C(T ) = C(T 2). Furthermore, T has a unique square root in C(T ) conjugate
to T .

Proof. (a) Let S ∈ C(T ), then

Φ(S)T 2 = KSK−1T 2 = KSTK−1 = KTSK−1 = T 2KSK−1 = T 2Φ(S),

so that Φ(S) ∈ C(T 2).
Clearly Φ is one–to–one, and it is a homomorphism since

Φ(RS) = KRSK−1 = KRK−1KSK−1 = Φ(R)Φ(S).

Φ is onto, for if R ∈ C(T 2), set S = K−1RK, then Φ(S) = R and S ∈ C(T ).
The continuity of Φ is a consequence of the continuity of multiplication in a

topological group.

(b) Since Φ : C(T ) → C(T 2) is a group isomorphism with C(T ) ⊆ C(T 2), there is
an S ∈ C(T ) with Φ(S) = T , i.e., KSK−1 = T , or S = K−1TK, so that

S2 = K−1TKK−1TK = K−1KT = T,

i.e., S is a square root of T which is conjugate to T .

(c) Suppose that KiT = T 2Ki for i = 1, 2, then K−1
2 K1 ∈ C(T ), and since C(T )

is abelian
(K−1

2 K1)S = S(K−1
2 K1) ∀S ∈ C(T ),

or K1SK−1
1 = K2SK−1

2 , which says that Φ is independent of the conjugating map.
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Since Φ is independent of the conjugating map K, the square root S of T from
(b) above is the unique square root which is conjugate to T . Write S = T

1
2 , then

for R ∈ C(T )

Φ(R)T = KRK−1T = KRT
1
2 K−1 = KT

1
2 RK−1 = TKRK−1 = TΦ(R),

(since C(T ) is abelian), so that Φ(R) ∈ C(T ) and it follows that C(T ) = C(T 2).
�

Examples 1. An irrational rotation Tα : [0, 1) → [0, 1), Tαx = x + α(mod 1),
cannot be conjugate to its square as Tα and T 2

α have distinct eigenvalue groups.
Necessary and sufficient conditions for an ergodic automorphism having discrete
spectrum to be conjugate to its square are given in Section 4.

2. The square root of T in the above proposition need not be unique. For
example, suppose that KT = T 2K and S2 = T , then T × T is also conjugate to
its square and S × S is a square root. However, R(x, y) = (y, Tx) is also a square
root of T ×T which is not isomorphic to S×S. In fact T may have more than one
square root in C(T ) (even when C(T ) is abelian), only one of which is conjugate
to T .

3. Maps having a certain type of “trivial” centralizer cannot be conjugate to
their squares. Substitutions and many Morse automorphisms have a centralizer
which is an abelian group of the form {Tnσk : n ∈ Z, 0 ≤ k ≤ m − 1}, where
σm = I. If C(T ) is a finitely generated abelian group, then T cannot be conjugate
to its square:

Proposition 4. Suppose that T is an automorphism whose centralizer is a
finitely generated abelian group, then T cannot be conjugate to its square unless
Tm = I for some m ∈ Z+.

Proof. By Proposition 3 there are unique transformations {Ti}∞i=0 in C(T ) such
that T0 = T and for each i > 0

T 2
i = Ti−1.

But since C(T ) is a finitely generated abelian group, these Ti cannot all be distinct,
so either T = I, or for some i 6= j, Ti = Tj , which would imply that for some
m > 1, Tm = I. �

4. We give a new construction of an automorphism conjugate to its square.
Start with a weakly mixing transformation T : X → X on a Lebesgue probability
space as usual. We assume that T has an infinite square root chain (i.e. T

1
2 , T

1
4

etc., all exist). Define T̃ : Ω → Ω where Ω = Π∞−∞X by

T̃ (. . . , x−1,
∗
x0, x1, x2, . . .) = (. . . , T

1
2 x−1,

∗
Tx0, T

2x1, T
4x2, . . .).

If S : Ω → Ω is the left shift map

S(. . . , x−1,
∗
x0, x1, x2, . . .) = (. . . , x0,

∗
x1, x2, . . .),

then we can check that ST̃ = T̃ 2S. The map T̃ may be realized as a homeomor-
phism of the Hilbert cube [0, 1]Z.
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5. We now show that finite rank mixing maps cannot be conjugate to their
squares. This will follow from a slightly more general result concerning locally
rank one maps which have no partial rigidity. It is known that if T has local rank
one and is mixing, then T has finite joining rank (King 1988). Using the results
of King and Thouvenot (1991) concerning the centralizer of such maps, it can be
seen that they cannot be conjugate to their squares. More generally:

Theorem 1. If T has local rank one with no partial rigidity, then T cannot be
conjugate to its square.

Proof. We use a result from Goodson and Ryzhikov (1997): If T has local rank
one with constant β > 0, and no partial rigidity and if S ∈ C(T ), then there exists
p ∈ Z+, p < 1/β with Sp = Tm for some m ∈ Z.

Now if KT = T 2K, then S1 = K−1TK ∈ C(T ), and inductively defining
Sn+1 = K−1SnK ∈ C(T ), we see that S2n

n = T and that there is no smaller
p < 2n satisfying Sp

n = Tm for any m ∈ Z. Choosing n so that 2n > 1/β, we
obtain a contradiction. �

3. Maps with the Weak Closure Property

Suppose that T is rank one and there is an automorphism S with ST = T 2S.
From the dichotomy of J. King (1986), the centralizer C(T ) of T is either trivial
(C(T ) = {Tn : n ∈ Z}), or T is rigid (there is a sub–sequence kn of integers such
that T kn → I as n →∞), so the centralizer is uncountable. Now if C(T ) is trivial,
with T 2 conjugate to T , T 2 must also have rank one, so must also have a trivial
centralizer, which is impossible as T ∈ C(T 2). Consequently, T must be rigid.

Let WC(T ) denote the weak closure of the powers of the ergodic transformation
T , i.e., the closure in Aut(X) of the set {Tn : n ∈ Z}. We say that T has the weak
closure property if WC(T ) = C(T ). It is known (King (1986)) that any rank one
map has the weak closure property, so any ergodic transformation having discrete
spectrum has the weak closure property. It is clear that if T has this property,
then C(T ) is an abelian group. King (1986) also showed that if T 2 is rank one
then C(T ) = C(T 2).

Proposition 5. Suppose that T and K are automorphisms with KT = T 2K,
and Φ : C(T ) → C(T 2) is the group isomorphism defined by Φ(S) = KSK−1,
then:
(a) Φ(WC(T )) = WC(T 2).
(b) Φ(S) = S2 for all S ∈ WC(T ).

Proof. (a) If S ∈ WC(T ), then S = limi→∞ Tni , for some sequence ni, so Φ(S) =
limi→∞Φ(Tni) = limi→∞ T 2ni , therefore Φ(S) ∈ WC(T 2).

On the other hand, if R ∈ WC(T 2), then R = limi→∞ T 2ni , so that

K−1RK = lim
i→∞

K−1T 2niK = lim
i→∞

Tni ∈ WC(T )

and Φ(K−1RK) = R, so the result follows.
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(b) If S ∈ WC(T ), then there is a sequence ni with Tni → S as i → ∞, so also
T 2ni → S2. It follows that both Φ(Tni) = T 2ni → S2 and Φ(Tni) → Φ(S), and
hence Φ(S) = S2. �

Next we show that if T has the weak closure property with T conjugate to T 2,
then C(T ) = C(T 2) and the map Φ is independent of the conjugating map K and
may be written as Φ : C(T ) → C(T ), Φ(S) = S2, a continuous isomorphism of
the group C(T ). It follows that every member of the group C(T ) has a unique
square root in C(T ). In particular, T has a unique infinite square root chain:
T → T 1/2 → T 1/4 → . . .. A group with the property that every element has a
square root is said to be 2–divisible.

Theorem 2. Let T be conjugate to T 2 and Tn 6= I for any n ∈ Z−{0}. Suppose
that T has the weak closure property, then the map Φ : C(T ) → C(T ), Φ(S) = S2

is a group automorphism. Consequently, every member of the uncountable abelian
group C(T ) has a unique square root in C(T ) which is conjugate to its square.

Proof. If T has the weak closure property, then

WC(T 2) ⊆ WC(T ) = C(T ) ⊆ C(T 2) = Φ(C(T )) = Φ(WC(T )) = WC(T 2),

so we must have equality throughout. It follows that T 2 has the weak closure prop-
erty and C(T 2) = C(T ). The previous theorem implies that Φ(S) = KSK−1 = S2

defines an isomorphism from C(T ) to C(T 2) which may be regarded as an auto-
morphism of the group C(T ). Consequently, given S ∈ C(T ), there exists a unique
R ∈ C(T ) such that R2 = S, i.e., every member of C(T ) has a unique square root
in C(T) which is conjugate to its square. �

Remark. Although every member of C(T ) has a unique square root in C(T ),
a given S ∈ C(T ) may have other square roots. For example, suppose that T is
ergodic with discrete spectrum and also conjugate to T 2. Then T has the weak
closure property and is conjugate to its inverse, i.e., there exists an automorphism
S with ST = T−1S. Now I ∈ C(T ) with unique square root I in C(T ). However,
I has other square roots since for example S2 = I and clearly S /∈ C(T ) (see
Goodson (1999)). However, if T has simple spectrum (for example if T is of rank
one), then every root of T is in C(T ) because they are “functions of T”, so that
T itself will have a unique square root in this case.

The proof of the next result, which tells us that if T is conjugate to its square
and has the weak closure property, then all conjugations are isomorphic, does not
generalize to the situation where T is conjugate to T 3.

Proposition 6. If T has the weak closure property, then all conjugations between
T and T 2 are isomorphic.

Proof. Suppose that S1 and S2 are two conjugating maps between T and T 2,
then S−1

2 S1 ∈ C(T ), and since T has the weak closure property

S−1
2 S1 = lim

i→∞
Tni
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for some subsequence ni. Now since S1T
ni = T 2niS1, we deduce, on taking the

weak limit, that

S1(S−1
2 S1) = (S−1

2 S1)2S1,

or S2(S1S
−1
2 ) = (S1S

−1
2 )S1, so that S1 and S2 are isomorphic via the conjugating

map S1S
−1
2 . �

Examples. 1. We apply the above results to show that a Z2–extension (or any
Zn–extension, n even) which has the weak closure property cannot be conjugate
to its square.

Proposition 7. Suppose that Tφ is a Zn–extension (n even), of an automor-
phism T . If Tφ has the weak closure property, then it cannot be conjugate to its
square.

Proof. Let σ : X × Zn → X × Zn be the flip map: σ(x, j) = (x, j + 1), then
σ ∈ C(Tφ) and σn = I, n = 2m with σm 6= I.

Now from the previous theorem, if Tφ is conjugate to its square it has a unique
square root S in C(Tφ). But σn/2S is also a square root of Tφ in C(Tφ), contra-
dicting the uniqueness. �

In the above Proposition, if it is only assumed that C(Tφ) is abelian, the above
argument will not work as Tφ may have other square roots in C(Tφ) (but not
necessarily conjugate to Tφ).

2. M. Lemańczyk (1985) has shown a dichotomy for Morse automorphisms
which are two point extensions of maps having rational discrete spectrum. They
are either of rank one, so have the weak closure property, and cannot be conju-
gate to their squares by the above proposition, or they have centralizers which are
finitely generated abelian groups, so again cannot be conjugate to their squares
(Proposition 4). More general types of Morse automorphisms and also substitu-
tions of constant length, typically have centralizers which are finitely generated
abelian groups, so cannot be conjugate to their squares.

The situation for a 3–point extension having the weak closure property is not
clear since the requirement that the map σ(x, j) = (x, j + 1) with σ3 = I be
conjugate to its square (and have a square root) does not lead to a contradiction
(since for example if τ = σ2, then τ2 = σ).

4. Ergodic Automorphisms Having Discrete Spectrum
and Conjugate to their Squares

Throughout this section we assume that T is an ergodic automorphism having
discrete spectrum, i.e., there is a complete orthonormal basis of eigenfunctions
fn(x), n ∈ Z for L2(X, µ). Recall the result of Halmos, that T has a square root
S (i.e., S2 = T ) if and only if −1 is not an eigenvalue of T . The issue for the
existence of a conjugating map between T and T 2 is related, but a little more
complex:
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The discrete spectrum theorem of Halmos and von Neumann (see Halmos
(1956)), tells us that we can represent T as a rotation on a compact abelian group,
T : G → G say, defined by T (g) = a + g for some a ∈ G. If we set S(g) = 2g then
we see that ST = T 2S since

ST (g) = S(a + g) = 2a + 2g, and T 2S(g) = T 2(2g) = 2a + 2g.

It does not follow that T and T 2 are conjugate, as S need not be onto or one–to–
–one (modulo sets of measure zero). If S is onto, then T 2 is a factor of T , and if
S is both one–to–one and onto, then T and T 2 are conjugate.

For example, letS1 be the unit circle in the complex plane and define T : S1→S1

by T (z) = az where a ∈ S1 is not a root of unity. Then T is ergodic, and S(z) = z2

is onto but not one–to–one. Now ST = T 2S, so that T 2 is a factor of T , but they
are not conjugate as they have a different eigenvalue group. In this example S is
also ergodic (in fact mixing).

In order to study transformations having discrete spectrum, we shall need the
following consequences of the discrete spectrum theorem.

Proposition 8. Let T be ergodic with discrete spectrum and suppose that S is
an automorphism satisfying ST = T 2S. Then T can be represented as a rotation
T : G → G, T (g) = a + g on a compact abelian group and S can be represented as
S : G → G, S(g) = b + 2g for some a, b ∈ G.

The above proposition is implicit in the work of Halmos and von Neumann. We
use this to prove the following:

Theorem 3. Suppose ST = T 2S where T is ergodic with discrete spectrum. S
is ergodic if and only if T has no eigenvalues of finite order.

Proof. Represent S and T on a compact abelian group G by T (g) = a + g and
S(g) = b + 2g.

Suppose that for some n > 1, ω, a primitive nth root of unity is an eigenvalue
for T and there exists χ ∈ Ĝ (the character group of G) such that χ(Tg) = ωχ(g)
for g ∈ G. n has to be odd, for otherwise −1 is an eigenvalue for T , contradicting
the ergodicity of T 2.

Then χn(Tg) = χn(g) and T ergodic implies χn = 1. Set

f(g) =
n−1∑
k=1

χk−1(b)χk(g) = χ(g) + χ(b)χ2(g) + . . . + χn−2(b)χn−1(g),

then since χ(Sg) = χ(b)χ2(g), we have

f(Sg) =
n−1∑
k=1

χk−1(b)χk(Sg) =
n−1∑
k=1

χk−1(b)χk(b)χ2k(g)

=
n−1∑
k=1

χ2k−1(b)χ2k(g) = f(g)

since n has to be odd. But f 6= constant because χ, χ2, . . . , χn−1 are orthogonal
eigenfunctions, so that S is not ergodic.
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Conversely suppose that T has no eigenvalues of finite order. If f(Tg) = λf(g),
then

f ◦ Sn(Tg) = f(T 2n

Sng) = λ2n

f(Sng),
so if f is an eigenfunction of T , then f ◦Sn is also, but corresponding to a distinct
eigenvalue, so they must be orthogonal. Thus if χ ∈ Ĝ, χ(Tg) = χ(a)χ(g), then
〈Ŝn(χ), χ〉 = 0 for all n ∈ Z, n 6= 0. It follows that S has countable Lebesgue
spectrum and hence is mixing, and the result follows. �

An immediate consequence of the above proof is the following:

Corollary 1. If ST = T 2S where T is ergodic having discrete spectrum, but with
no eigenvalues of finite order, then S has countable Lebesgue spectrum, and so is
mixing.

Below we give an example of such a mixing conjugation S. Recall that since
an ergodic discrete spectrum transformation has the weak closure property, all
conjugations between T and T 2 are isomorphic (in fact del Junco (1976) showed
that any ergodic discrete spectrum transformation has rank one). First we give
necessary and sufficient conditions for an ergodic discrete spectrum transformation
to be conjugate to its square.

Theorem 4. Suppose that T is ergodic with discrete spectrum and eigenvalue
group Λ, then T is conjugate to T 2 if and only if the map φ : Λ → Λ, φ(λ) = λ2

is a group automorphism.

Proof. Suppose T is ergodic with discrete spectrum and conjugate to T 2. Then
T 2 is also ergodic with discrete spectrum. Moreover, the eigenvalue groups Λ(T )
and Λ(T 2) satisfy

Λ(T 2) = [Λ(T )]2.
(that is Λ(T 2) = {λ2 : λ ∈ Λ(T )}). Thus the map σ : Λ(T ) → Λ(T 2) defined
by σ(λ) = λ2 is an onto homomorphism. If it were not one-to-one, then for some
λ ∈ Λ(T ) − {1}, λ2 = 1, or λ = −1. But if −1 were an eigenvalue of T , then T 2

would not be ergodic.
Conversely, we may assume that T is a rotation on a compact abelian group

G with eigenvalue group Λ for which the map φ : Λ → Λ, φ(λ) = λ2 is a group
automorphism. If φ̂ is the induced map on the character group Λ̂, then φ̂ may
be identified with S : G → G, S(g) = g2, again an automorphism of G (written
multiplicatively). We then see that ST = T 2S, and the result follows. �

Examples. 1. Fix 0 < θ < 2π for which einθ 6= 1 for all n ∈ Z− {0}. Set

Λ = {einθ/2m

: n ∈ Z,m = 1, 2, . . .}.
Λ is a countable subgroup of the circle, so by the discrete spectrum theorem there
is an ergodic automorphism T : G → G (G a compact abelian group) having
discrete spectrum, and which has Λ as its eigenvalue group.

If we define φ : Λ → Λ, by φ(λ) = λ2, then φ is a group automorphism. It
follows from the previous theorem that T is conjugate to its square and that any
conjugating automorphism is mixing.
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2. Let G = the group of 3–adic integers, and T the adding machine

T (g) = g + 1,

where 1 = (1, 0, 0, . . .). Then the map S(g) = 2g is a group automorphism of G
which conjugates T to T 2 (S is not ergodic in this case, but is aperiodic).

T can be realized as a rank one (rational discrete spectrum) transformation
whose eigenvalues are the 3nth roots of unity.

3. An example of ST = T 2S with S ergodic and T aperiodic, but not ergodic
can be given by taking T0 to be ergodic with discrete spectrum, but no eigenvalues
of finite order, and S0 to be mixing with S0T0 = T 2

0 S0, then T = T0 × T0 is not
ergodic, but is aperiodic, and S = S0×S0 is mixing, so S and T have the required
properties.
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