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CRITICAL POINT THEORY FOR NONSMOOTH ENERGY
FUNCTIONALS AND APPLICATIONS

N. HALIDIAS

Abstract. In this paper we prove an abstract result about the minimization of
nonsmooth functionals. Then we obtain some existence results for Neumann prob-
lems with discontinuities.

1. Introduction

In this paper we consider elliptic problems with multivalued nonlinear boundary
conditions. We do not assume that the right-hand side is Carathéodory but we
impose some monotonicity conditions. We set the energy functional which is not
defined everywhere and it is not locally Lipschitz. Let us introduce the problem.

(1)

 −div(||Dx(z)||p−2Dx(z)) = f(z, x(z)) a.e. on Z

− ∂x

∂np
(z) ∈ ∂j(z, τ(x)(z)) a.e. on Γ, 2 ≤ p <∞.

Here D = grad, ∂x
∂np

(z) = ||Dx(z)||p−2(Dx(z), n(z))RN , where n(z) denotes the
exterior normal vector to Γ at z.

Many authors have considered elliptic problems with discontinuous nonlinear-
ities. Most of them studied Dirichlet problems (see for example Stuart-Tolland
[13], Ambrosetti-Badialle [1]). As far as we know this is the first result of this
type for Neumann problems with multivalued boundary conditions.

First we give an abstract minimization result and then we state and prove
the existence theorems. At section 2 we give some definitions and we prove the
minimization theorem.

2. Preliminaries and abstract results

Let X be a real Banach space and Y be a subset of X. A function f : Y → R is
said to satisfy a Lipschitz condition (on Y ) provided that, for some nonnegative
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scalar K, one has
|f(y)− f(x)| ≤ K||y − x||

for all points x, y ∈ Y . Let f be Lipschitz near a given point x, and let v be any
other vector in X. The generalized directional derivative of f at x in the direction
v, denoted by fo(x; v) is defined as follows:

fo(x; v) = lim sup
y→x
t↓0

f(y + tv)− f(y)
t

where y is a vector in X and t a positive scalar. If f is Lipschitz of rank K near x
then the function v → fo(x; v) is finite, positively homogeneous, subadditive and
satisfies |fo(x; v)| ≤ K||v||. In addition fo satisfies fo(x;−v) = (−f)o(x; v). Now
we are ready to introduce the generalized gradient which is denoted by ∂f(x) as
follows:

∂f(x) = {w ∈ X∗ : fo(x; v) ≥< w, v > for all v ∈ X}.
Some basic properties of the generalized gradient of locally Lipschitz functionals
are the following:

(a) ∂f(x) is a nonempty, convex, weakly compact subset of X∗ and ||w||∗ ≤ K
for every w in ∂f(x).

(b) For every v in X, one has

fo(x; v) = max{< w, v >: w ∈ ∂f(x)}.

If f1, f2 are locally Lipschitz functions then

∂(f1 + f2) ⊆ ∂f1 + ∂f2.

Moreover, (x, v) → fo(x; v) is upper semicontinuous and as function of v alone,
is Lipschitz of rank K on X.

Let us mention the mean-value theorem of Lebourg.

Theorem 1 (Lebourg). Let x and y be points in X, and suppose that f is
Lipschitz on an open set containing the line segment [x, y]. Then there exists a
point u ∈ (x, y) such that

f(y)− f(x) ∈< ∂f(u), y − x > .(2)

Let R : X → R ∪ {∞} be such that R = Φ + ψ where Φ : X → R be a locally
Lipschitz functional while ψ : X → R ∪ {+∞} is a lower semicontinuous, convex
but not defined everywhere functional.

A point x in X is said to be a critical point of R if x ∈ D(ψ) and if it satisfies
the inequality

Φo(x; y − x) + ψ(y)− ψ(x) ≥ 0 for every y ∈ X.(3)

A number c ∈ R is said critical value if R−1(c) contains a critical point. Following
Szulkin [16] we use the same notation for:

K = {x ∈ X : x is a critical point},

Rc = {x ∈ X : R(x) ≤ c}, Kc = {x ∈ K : R(x) = c}.
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Proposition 1. If R is as above, each local minimum is necessarily a critical
point of R.

Proof. Let x be a local minimum of R. Using convexity of ψ, it follows

0 ≤ R((1− t)x+ ty)−R(x) = Φ(x+ t(y − x))− Φ(x) +
+ψ((1− t)x+ ty)− ψ(x) ≤ Φ(x+ t(y − x))− Φ(x) + t(ψ(y)− ψ(x)).

Divide now with t and letting t→ 0 we obtain (3). Note that Φ is locally Lipschitz
so

lim
t→0

Φ(x+ t(y − x))− Φ(y)
t

≤ Φo(x; y − x).

�

Definition 1. We say that R : X → R ∪ {∞} with R = Φ + ψ satisfies H1 if Φ
is locally Lipschitz and ψ proper, convex and lower semicontinuous.

Let us now state the formulation of our (PS) condition.

(PS) If{xn}is a sequence such that R(xn) → c and

Φo(xn; y − xn) + ψ(y)− ψ(xn) ≥ −εn||y − xn|| for every y ∈ X(4)

where εn → 0, then {xn} has a convergent subsequence.

Proposition 2. Suppose that R satisfies H1, (PS). Then, Kc is compact.

Proof. Following Szulkin [16] it remains to show that if xn → x inX then we have
lim(Φo(xn, y−xn)−Φo(x; y−x)) ≤ 0. This is easy to prove since (x, v) → Φo(x; v)
is upper semicontinuous. �

We are ready now to prove our first abstract result.

Theorem 2. If R is bounded below and satisfies (H)1 and (PS), then

c = inf
x∈X

R(x)

is a critical value.

Proof. Again by following Szulkin [16] we have that we can find a sequence {xn}
such that R(xn) ≤ c+ 1

n and

R(w)−R(xn) ≥ (− 1
n

)||w − xn|| for all w ∈ X.

Set w = (1− t)xn + tv, t ∈ (0, 1). Since ψ is convex,

Φ(xn + t(v − xn))− Φ(xn) + t(ψ(v)− ψ(xn)) ≥ (− 1
n

)||v − xn||.

Dividing by t and letting t→ 0 we obtain

Φo(xn, v − xn) + ψ(v)− ψ(xn) ≥ (− 1
n

)||v − xn||.

So by (PS) and proposition (2) xn → x ∈ Kc. �



150 N. HALIDIAS

3. Existence Results

Let f : Z × R → R, then we can define

f1(z, x) = lim inf
x′→x

f(z, x
′
), f2(z, x) = lim sup

x′→x

f(z, x
′
).

Let x ∈W 1,p(Z) satisfies the boundary conditions. Then

Definition 2. We say that x ∈W 1,p(Z) is a solution of type I of problem (1) if
there exists some w ∈W 1,p(Z)∗ such that

w(z) ∈ [f1(z, x(z)), f2(z, x(z))]

and
−div(||Dx(z)||p−2Dx(z)) = w(z) for almost all z ∈ Z.

Definition 3. We say that x ∈W 1,p(Z) is a solution of type II of problem (1) if

−div(||Dx(z)||p−2Dx(z)) = f(z, x(z)) for almost all z ∈ Z.

Let us state our hypotheses for the function f of problem (1).
H(f)1 : f : Z × R → R is a function such that

(i) is N -measurable (i.e. for every x : Z → R measurable, z → f1,2(z, x(z)) is
measurable too).

(ii) there exists h : Z × R → R such that for almost all z ∈ Z h(z, x) → ∞ as
x → ∞ and there exists M > 0 such that −F (z, x) ≥ h(z, |x|) for |x| ≥ M
with F (z, x) =

∫ x

o
f(z, r)dr.

(iii) for almost all z ∈ Z and for all x ∈ R |f(z, x)| ≤ a(z) + c|x|µ−1, µ < p

a ∈ Lµ
′

(Z), c > 0, ( 1
µ + 1

µ′
= 1) and moreover x→ f(z, x) is nonincreasing.

H(j): j : Z×R → R+ = R+∪{∞} is a measurable function such that for almost
all z ∈ Z j(z, ·) is proper, convex and lower semicontinous (i.e. j(z, ·) ∈ Γo(R)).

Theorem 3. If hypotheses H(f)1 holds, then problem (1) has a solution x of
type I.

Proof. Let Φ, ψ : W 1,p(Z) → R defined as follows: Φ(x) = −
∫

Z
F (z, x(z))dz,

ψ(x) = 1
p ||Dx||

p
p +

∫
Γ
j(z, τ(x(z))dσ. Here dσ denotes the surface (Hausdorff)

measure on Γ and τ is the trace operator. Then the energy functional is R(x) =
Φ(x) + ψ(x).

It is clear that Φ is locally Lipschitz and it is easy to prove that ψ is lower
semicontinuous, convex and proper. So R = Φ + ψ satisfies condition (H)1.

Claim 1: R(·) satisfies the (PS)-condition.
Indeed, let {xn}n≥1 ⊆ W 1,p(Z) such that R(xn) → c as n → ∞ and we shall

prove that this sequence is bounded in W 1,p(Z). Suppose not. Then ||xn|| → ∞.
Let yn(z) = xn(z)

||xn|| . Then clearly we have yn
w→ y in W 1,p(Z). From the choice of

the sequence we have

Φ(xn) +
1
p
||Dxn||pp ≤M(5)
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(recall that j(z, ·) ≥ 0). Dividing with ||xn||p the last inequality, we have

−
∫

Z

F (z, x(z))
||xn||p

dz +
1
p
||Dyn||pp ≤

M

||xn||p
.

By virtue of hypothesis H(f)1(iii) we have that F (z,xn(z))
||xn||pp → 0.

So lim sup ||Dyn||pp → 0. Thus, ||Dy|| = 0. So we infer that y = c ∈ R. Since
||yn|| = 1, c 6= 0. So we have that |xn(z)| → ∞. Going back to (5) and using
hypothesis H(f)1(ii) we have a contradiction. So ||xn|| is bounded, i.e xn

w→ x in
W 1,p(Z). It remains to show that xn → x in W 1,p(Z).

Recall that from the choice of the sequence we have that

Φo(xn; y − xn) + ψ(y)− ψ(xn) ≥ −εn||y − xn|| for all y ∈W 1,p(Z).

Choose y = x. Then we have:

Φo(xn;x− xn) + ψ(x)− ψ(xn) ≥ −εn||x− xn||

⇒ Φo(xn;x− xn) +
1
p

(||Dx||pp − ||Dxn||pp)

+
∫

Γ

j(z, τx(z))dσ −
∫

Γ

j(z, τxn(z))dσ ≥ −εn||x− xn||.(6)

So in the limit (in fact lim inf) we have that

lim inf
n→∞

Φo(xn;x− xn) ≤ lim sup
n→∞

Φo(xn;x− xn) ≤ 0

(note that (x, v) → Φo(x; v) is upper semicontinuous). Moreover,∫
Γ

j(z, τx(z))dσ − lim sup
n→∞

∫
Γ

j(z, τxn(z)) ≤

≤
∫

Γ

j(z, τx(z))dσ − lim inf
n→∞

∫
Γ

j(z, τxn(z)) = 0.

Thus finally we obtain

lim sup ||Dxn||pp ≤ ||Dx||pp.

On the other hand since Dxn
w→ Dx in Lp(Z,RN ), from the weak lower semicon-

tinuity of the norm, we have

lim inf ||Dxn||p ≥ ||Dx||p
⇒ ||Dxn||p → ||Dx||p.

The space Lp(Z,RN) being uniformly convex, has the Kadec-Klee property (see
Hu-Papageorgiou [9], definition I.1.72(d)) and so xn → x in W 1,p(Z).
Claim 2 R(·) is bounded from below.

Suppose not. Then there exists some sequence {xn}n≥1 such that R(xn) ≤ −n.
Then we have

Φ(xn) +
1
p
||Dxn||pp ≤ −n
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(recall that j(z, ·) ≥ 0.) By virtue of the continuity of Φ, ||Dx||p we have that
||xn|| → ∞ (because if ||xn|| is bounded then R(xn) is bounded). Dividing with
||xn||p and letting n→∞ we have as before a contradiction (by virtue of hypothesis
H(f)1(iii)). Therefore R(·) is bounded from below.

So by Theorem 2 we have that there exists x ∈ W 1,p(Z) such that (3) holds.
Let ψ1(x) = ||Dx||p

p and ψ2(x) =
∫
Γ
j(z, τ(x)(z))dσ. Then let ψ̂1 : Lp(Z) → R the

extension of ψ1 in Lp(Z). Then ∂ψ1(x) = ∂ψ̂1(x) (see Showalter [14], proposition
5.2 p. 194-195). Let A : W 1,p(Z) →W 1,p(Z)∗ such that

< Ax, y >=
∫

Z

||Dx(z)||p−2(Dx(z), Dy(z))dz for all y ∈W 1,p(Z).

It is easy to prove that the nonlinear operator Â : D(Â) ⊆ Lp(Z) → Lq(Z)
such that

< Âx, y >=
∫

Z

||Dx(z)||p−2(Dx(z), Dy(z))dz for all y ∈W 1,p(Z)

with D(Â) = {x ∈ W 1,p(Z) : Ax ∈ Lq(Z)}, satisfies Â = ∂ψ̂1. Indeed, first we
show that Â ⊆ ∂ψ̂1 and then it suffices to show that Â is maximal monotone.

< Âx, y − x > =
∫

Z

||Dx(z)||p−2(Dx(z), Dy(z)−Dx(z))RNdz

=
∫

Z

||Dx(z)||p−2(Dx(z), Dy(z))RNdz −
∫

Z

||Dx(z)||pdz

≤
∫

Z

(
||Dx(z)||q(p−2)||Dx(z)||q

q
+
||Dy(z)||p

p
)dz − ||Dx||pp

=
||Dx||pp
q

− ||Dx||pp +
||Dy||pp
p

= ψ̂1(y)− ψ̂1(x).

The monotonicity part is obvious using the following inequality,
N∑

j=1

(aj(η)− aj(η
′
))(ηj − η

′

j) ≥ C|η − η
′
|p.

for η, η
′ ∈ RN , with aj(η) = |η|p−2ηj .

The maximality needs more work. Let J : Lp(Z) → Lq(Z) be defined as
J(x) = |x(·)|p−2x(·). We will show later that R(Â+ J) = Lq(Z). Assume for the
moment that this holds. Let v ∈ Lp(Z), v∗ ∈ Lq(Z) be such that

(Â(x)− v∗, x− v)pq ≥ 0

for all x ∈ D(Â). By assumption R(Â + J) = Lq(Z)), so there exists x ∈ D(Â)
such that Â(x) + J(x) = v∗ + J(v) . Using this in the above inequality we have
that

(J(v)− J(x), x− v)pq ≥ 0.
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But J is strongly monotone. Thus we have that v = x and Â(x) = v∗. Therefore
Â is maximal monotone. It remains to show that R(Â + J) = Lq(Z). Note
that Ĵ = J |W 1,p(Z): W 1,p(Z) → W 1,p(Z)∗ is maximal monotone, because is
demicontinuous and monotone. So A+ Ĵ is maximal monotone. But it is easy to
see that the sum is coercive. So is surjective. Therefore, R(A + Ĵ) = W 1,p(Z)∗.
Then for every g ∈ Lq(Z), we can find x ∈W 1,p(Z) such that A(x) + Ĵ(x) = g ⇒
A(x) = g − Ĵ(x) ∈ Lq(Z) ⇒ A(x) = Â(x). Thus, R(Â+ J) =  Lq(Z).

Thus, we have
R(y)−R(x) ≥ 0

for all y ∈W 1,p(Z).
But, note that R is convex, so we have that 0 ≤ ∂R(x). So, we can say that∫

Z

w(z)y(z) =
∫

Z

||Dx(z)||p−2(Dx(z), Dy(z))dz +
∫

Γ

v(z)y(z)dσ(7)

with w(z) ∈ [f1(z, x(z)), f2(z, x(z))] and v(z) ∈ ∂j(z, τ(x(z))), for every
y ∈W 1,p(Z) (see Chang [3]). Let y = φ ∈ C∞o (Z). Then we have∫

Z

w(z)φ(z)dz =
∫

Z

||Dx(z)||p−2(Dx(z), Dφ(z))dz.

But div(||Dx(z)||p−2Dx(z)) ∈ Lq(Z) because w(z) ∈ Lq(Z). Then we have

−div(||Dx(z)||p−2Dx(z)) ∈ [f1(x(z)), f2(x(z))] a.e. on Z.

Going back to (12) and letting y = C∞(Z) and finally using the Green formula 1.6
of Kenmochi [11], we have that − ∂x

∂np
∈ ∂j(z, τ(x)(z)) a.e. on Γ. So x ∈W 1,p(Z)

and is of type I. �

Now, with stronger hypotheses on f we are going to have an existence result of
type II.

H(f)2 : Satisfies H(f)1 and depends only on x, not on z itself.

Theorem 4. If hypotheses H(f)2,H(j) holds, then problem (1) has a solution
x of type II.

Proof. From theorem 3 we know that there exists x ∈ W 1,p(Z) such that
0 ≤ R(y)−R(x) for all y ∈W 1,p(Z). That means

(−Φ)(y)− (−Φ)(x) ≤ ψ(y)− ψ(x).

Note that −Φ, ψ are convex, so for every w ∈ ∂(−Φ)(x) we have that w ∈ ∂ψ(x).
So,

< w, y >≤< Ax, y > + < v, y >

for all y ∈W 1,p(Z) and all w ∈ ∂(−Φ)(x)
with w(z) ∈ [f1(x(z)), f2(x(z))].Choosing now y = s and y = −s with s ∈W 1,p(Z)
we have < w, s >=< Ax, s > + < v, s > for all s ∈ W 1,p(Z) and all w ∈ Lq(Z)
such that w(z) ∈ [f1(x(z)), f2(x(z))].

We will show that λ{z ∈ Z : x(z) ∈ d(f)} = 0 with d(f) = {x ∈ R : f(x+) >
> f(x−)}, that is the set of upward-jumps.
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So let w ∈ ∂(−Φ(x)) and for any t ∈ d(f), set

ρ±(z) = [1− χt(x(z))]w(z) + χt(x(z))[f(x(z)±)](8)

where

(9) χt(s) =
{

1 if s = t
0 otherwise

Then ρ± ∈ Lp(Z) and ρ± ∈ [f1(x), f2(x)]. So∫
Z

ρ±(z)y(z)dz =
∫

Z

(||Dx(z)||p−2(Dx(z), Dy(z))RNdz +
∫

Γ

v(z)y(z)dσ

for all y ∈W 1,p(Z).
So for y = φ ∈ C∞o (Z) we have∫

Z

ρ±(z)φ(z)dz =
∫

Z

(||Dx(z)||p−2(Dx(z), Dφ(z))RNdz.

Thus, ρ+ = ρ− for almost all z ∈ Z. From this it follows that χt(x(z)) = 0 for
almost all z ∈ Z. Since d(f) is countable, and

χ(x(z)) =
∑

t∈D(f)

χt(x(z))

it follows that χ(x(z)) = 0 almost everywhere, (with χ(t) = 1 if t ∈ d(f) and
χ(t) = 0 otherwise).

Now it is clear that x ∈W 1,p(Z) solves problem (1). �
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