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STRICTLY ERGODIC PATTERNS AND ENTROPY
FOR INTERVAL MAPS

J. BOBOK

Abstract. Let M be the set of all pairs (T, g) such that T ⊂ R is compact,
g : T → T is continuous, g is minimal on T and has a piecewise monotone extension
to conv T . Two pairs (T, g), (S, f) from M are equivalent – (T, g) ∼ (S, f) – if the
map h : orb(minT, g) → orb(min S, f) defined for each m ∈ N0 by h(gm(min T )) =
= fm(min S) is increasing on orb(min T, g). An equivalence class of this relation
is called a minimal (oriented) pattern. Such a pattern A ∈ M∼ is strictly ergodic
if for some (T, g) ∈ A there is exactly one g-invariant normalized Borel measure
µ satisfying supp µ = T . A pattern A is exhibited by a continuous interval map
f : I → I if there is a set T ⊂ I such that (T, f |T ) = (T, g) ∈ A. Using the fact that
for two equivalent pairs (T, g), (S, f) ∈ A their topological entropies ent(g, T ) and
ent(f, S) equal we can define the lower topological entropy entL(A) of a minimal
pattern A as that common value. We show that the topological entropy ent(f, I) of
a continuous interval map f : I → I is the supremum of lower entropies of strictly
ergodic patterns exhibited by f .

0. Introduction

Let F : X → X be a continuous map of a compact metric space X into itself,
µ be a Borel probability F -invariant measure. Denote by entµ(F ), resp. ent(F )
the measure-theoretic (with respect to µ), resp. topological entropy of F . The
following variational principle plays an important role in the theory of dynamical
systems.

Theorem 0.1. [DGS] Let X and F be as above. Then

ent(F ) = sup{entµ(F ) : µ is F -invariant and ergodic }.
It is known that in some particular cases Theorem 0.1 can be strengthened.

For instance, in his paper [G] Ch. Grillenberger has proved that the topological
entropy of symbolic dynamics on t symbols can be achieved by measure-theoretic
entropies of strictly ergodic subsystems (measures) – we recall this result in Propo-
sition Ap.2. Since there exist minimal dynamical systems with positive entropy
that are not strictly ergodic [DGS], Grillenberger’s Theorem does not hold in
general.

Received March 3, 2003.
2000 Mathematics Subject Classification. Primary 26A18, 37A05, 37B40, 37E05.
Key words and phrases. Interval map, strictly ergodic pattern, topological entropy.

The author was supported by GA of Czech Republic, contract 201/00/0859.



112 J. BOBOK

Our goal is to show that in the case of one-dimensional dynamics given by an
interval map such a generalization works. Using Proposition Ap.2, Misiurewicz’s
Theorem describing the connection between the entropy and horseshoes for interval
maps – see Proposition Ap.4 – and our result on minimal patterns exhibited by
an interval map – Proposition Ap.3 – we are able to show that the topological
entropy of an interval map is the supremum of lower entropies (cf. Definition 2.3)
of strictly ergodic patterns.

Our main result is the following (see Section 1 for definitions).

Theorem 3.1. If g is from C(I) then

ent(g, I) = sup{ entL(A) : A ∈ E∼ is exhibited by g }.
The paper is organized as follows:
In Section 1 we give some basic notation and definitions.
Section 2 is devoted to the lemmas used throughout the paper.
In Section 3 we prove the main result Theorem 3.1.
Finally, in Appendix we recall the known needed propositions useful when prov-

ing our result.

1. Notation and definitions

By R, N, N0 we denote the sets of real, natural and nonnegative integer numbers
respectively. We also use the notation Ns = {0, 1, . . . , s − 1}, s ∈ N.

We work with dynamical systems (X, F ) where X is a compact metric space
and F is mapping X into itself continuously. The set of all such maps will be
denoted by C(X). For F ∈ C(X) we define Fn inductively by F 0 = F and (for
n ≥ 1) Fn = F ◦ Fn−1.

Let (X, F ) be a dynamical system (or briefly a system). A set J ⊂ X is
F -invariant if F (J) ⊂ J . As usually, the orbit orb(J, F ) of J is a set {F i(J) : i ∈
N0} and the ω-limit set ω(J, F ) of J is equal to

⋂
m≥0

⋃
n>m F i(J). We write

orb(x, F ), resp. ω(x, F ) if J = {x}. A point x ∈ X is called periodic (fixed) if
Fn(x) = x for some n ∈ N ( n = 1 ). The orbit orb(x, F ) of a periodic x is called
a cycle. A set J ⊂ X is minimal if for each x ∈ J , ω(x, F ) = J .

We say that a dynamical system (T, g) is a pair if T ⊂ R. By conv T we denote
the convex hull of a set T . For a pair (T, g) we define a map gT ∈ C(conv T )
by gT |T = g and gT |J affine for any interval J ⊂ conv T such that J ∩ T = ∅.
A pair (T, g) is said to be piecewise monotone if there are k ∈ N and points
min T = c0 < c1 < · · · < ck < ck+1 = maxT such that gT is monotone on each
[ci, ci+1], i ∈ Nk+1.

In the sequel we use some notions from ergodic theory [DGS]. Let (X, F ) be a
system and µ be a Borel probability measure on X . We say that µ is F -invariant
if µ(F−1(K)) = µ(K) for any Borel K ⊂ X and we denote M(F ) the set of all
F -invariant measures. A measure µ ∈ M(F ) is called ergodic if for any Borel set
K ⊂ X satisfying F (K) ⊂ K we have either µ(K) = 0 or µ(K) = 1. The set of all
ergodic measures from M(F ) is denoted by Me(F ). The support of a measure µ,
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denoted by suppµ, is the smallest closed set K ⊂ X such that µ(K) = 1. A system
(X, F ) will be called strictly ergodic if M(F ) = Me(F ) = {µ} and suppµ = X .

We denote M the set of all piecewise monotone minimal pairs. All strictly
ergodic pairs in M ( see Lemma 2.1(ii) ) are denoted by E .

Minimal pattern Pairs (T, g), (S, f) ∈ M are said to be equivalent – we denote
this equivalence by ∼ – if the map h : orb(minT, g) → orb(min S, f) defined for
each m ∈ N0 by h(gm(min T )) = fm(minS) is increasing on orb(minT, g). An
equivalence class A ∈ M∼ of this relation is called a minimal (oriented) pattern
or briefly a pattern. If A is a pattern and (T, g) ∈ A we say that the pair (T, g)
has pattern A and we use the symbol [(T, g)] to denote the pattern A. If (T, g) is
a cycle then [(T, g)] is called a periodic pattern.

In the sequel we denote I a compact subinterval of R. A map f ∈ C(I) has
a pair (T, g) ∈ M if f |T = g. In this case we say that f exhibits the pattern
A = [(T, g)] and we often write (T, f) ∈ A.

Definition 1.1. [Bow] Let (X, F ) be a dynamical system, let ρ be a metric
on X . A set E ⊂ X is (n, ε)-separated (with respect to F ) if, whenever x, y ∈ E,
x 6= y then max

0≤i≤n−1
ρ(F i(x), F i(y)) > ε.

For a closed set K ⊂ X we denote s(n, ε, K) the largest cardinality of any
(n, ε)-separated subset of K. Put

ent(F, K) = lim
ε→0+

lim sup
n→∞

1
n

log s(n, ε, K).

The quantity ent(F, K) is called the topological entropy of F with respect to K.
In general ent(F, K) ≤ ent(F, X). In the case when K = X we briefly speak about
topological entropy of F .

We use symbolic dynamics [DGS]. For s ∈ N consider the set Ns as a
space with the discrete topology, denote by Γs the infinite product metric space∏∞

i=0 Xi, where Xi = Ns for all i. The continuous shift map σ : Γs → Γs is defined
by (σ(γ))i = γi+1, i ∈ N0. It is well known [DGS, Prop. 16.11] that for Γ ⊂ Γs

closed

ent(σ, Γ) = lim
n→∞

1
n

log #Γ(n),

where Γ(n) = {γ(n) = (γ0, . . . , γn−1) : γ ∈ Γ}. In particular, ent(σ, Γs) = log s.

2. Lemmas

In the first lemma we recall needed properties of minimal systems. The state-
ment(i) holds for any compact metric space X and F ∈ C(X).

Lemma 2.1.
(i) If (X, F ) is minimal and µ ∈ M(F ) then either X is finite and then µ

is atomic or X is infinite and then µ is nonatomic. In any case suppµ = X.
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(ii) Let (T, g) be a strictly ergodic pair with M(g) = {µ}. Then it is minimal
and for any a, b ∈ T with a ≤ b and x ∈ T ,

µ([a, b]) = lim
n→∞

#{i ∈ Nn : gi(t) ∈ [a, b]}
n

.

Proof. See [DGS]. �

Lemma 2.2. Let (T, g), (S, f) ∈ M be equivalent pairs. The following is true.
(i) (T, g) is strictly ergodic iff (S, f) is strictly ergodic.
(ii) ent(g, T ) = ent(f, S).

Proof. The conlusion is clear for cycles. Thus, suppose that both pairs are
infinite. First we prove (i). Denote x = minT , resp. y = min S. Consider four
sequences {mk}, {nk}, {ok}, {pk} of positive integers such that {gmk(x)}, {gok(x)}
are increasing, {gnk(x)}, {gpk(x)} are decreasing,

a = lim
k→∞

gmk(x) ≤ lim
k→∞

gnk(x) = band c = lim
k→∞

gok(x) ≤ lim
k→∞

gpk(x) = d.

and (a, b)∩T = ∅. Since (T, g) and (S, f) are equivalent, the map h : orb(x, g) →
orb(y, f) defined for each m ∈ N0 by h(gm(x)) = fm(y) is increasing on orb(x, g)
hence we have for suitable α, β, γ, δ ∈ S the relations

α = lim
k→∞

fmk(y) ≤ lim
k→∞

fnk(y) = βand γ = lim
k→∞

fok(y) ≤ lim
k→∞

fpk(y) = δ

and (α, β) ∩ S = ∅. Moreover, the equivalence of (T, g) and (S, f) gives that for
each t ∈ [a, b], s ∈ [α, β] and n ∈ N

#{i ∈ Nn : gi(t) ∈ [c, d]} = #{i ∈ Nn : f i(s) ∈ [γ, δ]}.
Now the conclusion follows from Lemma 2.1(ii).

It was shown in [Bo, Lemmas 2.3–4] that the pairs (T, g) and (S, f) have a
common (2, 1)-factor. Using Proposition Ap.1 we obtain the property (ii). �

Recall that by E we denote the subset of M of all strictly ergodic pairs. Using
Lemma 2.2 we can define the following.

Definition 2.3. A pattern A ∈ E∼ is called a strictly ergodic pattern. For
A ∈ M the value entL(A) = ent(g, T ), (T, g) ∈ A is called the lower topological
entropy of pattern A.

Remark. In the literature [ALM], the topological entropy ent(A) of a periodic
pattern A is defined as the value ent(gT ) for any cycle (T, g) ∈ A. By this definition
there are periodic patterns with positive entropy. Using the results from [Bo], the
same approach can be applied in order to define ent(A) for any A ∈ M∼. Our
Definition 2.3 of lower entropy differs; for every A ∈ M∼ we have ent(A) ≥
≥ entL(A) and entL(A) = 0 whenever A is periodic.

As above, we denote I a compact subinterval of R.

Definition 2.4. Let f ∈ C(I) and s ∈ N. We say that f has an s-horseshoe if
there are pairwise disjoint closed subintervals J0, . . . , Js−1 of I such that⋂s−1

i=0 f(Ji) ⊃
⋃s−1

i=0 Ji.
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For two closed sets K, L ⊂ R we write K < L if max K < min L. Let f ∈ C(I)
has an s-horseshoe for some s ∈ N \ {1}. Then there are pairwise disjoint closed
subintervals [ai, bi] of I such that

[a0, b0] < · · · < [as−1, bs−1]and

s−1⋂
i=0

f([ai, bi]) ⊃
s−1⋃
i=0

[ai, bi].

Clearly for each i ∈ Ns we can find points xi, yi ∈ [ai, bi] such that f(xi) = a0

and f(yi) = bs−1. In general we do not know if xi < yi or xi > yi. But the
following easy lemma is true. We let its proof to the reader.

Lemma 2.5. Let f ∈ C(I) and s ∈ N\{1}, put t = [ s
2 ]. If f has an s-horseshoe

then f has also a t-horseshoe created by intervals [x0, y0] < · · · < [xt−1, yt−1]
satisfying f(xi) = x0 and f(yi) = yt−1 for each i ∈ Nt. In particular, x0, yt−1 are
fixed points of f .

For t ∈ N \ {1} let us consider a system (Yt, G) defined as follows: let X ⊂ R

be a union of t pairwise disjoint closed intervals J0 = [x0, y0] < · · · < Jt−1 =
= [xt−1, yt−1]. Consider a map F affine on each Ji and satisfying F (xi) = x0 and
F (yi) = yt−1 for each i ∈ Nt. If we put

Yt =
∞⋂

i=0

F−i(J0 ∪ · · · ∪ Jt−1)and G = F |Yt,

then (Yt, G) is a dynamical system. The following lemma can be considered to
belong to folklore knowledge. For the sake of completeness we present its proof.
For the definition of topological conjugacy – see Appendix.

Lemma 2.6. The systems (Yt, G) and (Γt, σ) are topologically conjugate.

Proof. By its definition, F (Ji) = X for each i ∈ Nt. We know that F is affine
on each Ji. Clearly, the slope of F on each Ji has to be greater than 1. It implies
that to each γ ∈ Γt there exists exactly one point x(γ) ∈ Yt ⊂ X satisfying
F j(x(γ)) = Gj(x(γ)) ∈ Jγj , j ∈ N0. Using the properties of F , it is easy to verify
that the map h defined by h(γ) = x(γ) is a conjugacy of (Yt, G) and (Γt, σ). �

3. Main result

Our goal in this section is to use lemmas developed in the previous section and
results from Appendix to prove the main theorem. As above, we denote I a
compact subinterval of R.

Theorem 3.1. If g is from C(I) then

ent(g, I) = sup{ entL(A) : A ∈ E∼ is exhibited by g }.
Proof. If ent(g, I) = 0 then from Definition 1.1 follows entL(A) = 0 for any

A ∈ M∼ exhibited by g. Thus, the conclusion holds in this case.
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Assume that ent(g, I) > 0 is finite. Fix an ε positive. By Proposition Ap.4 for
suitable s, n ∈ N the map f = gn has an s-horseshoe satisfying

1
n

log
[s

2

]
> ent(g, I) − ε.(1)

Put t = [ s
2 ]. By virtue of Lemma 2.5 there is a t-horseshoe of f created by pairwise

disjoint closed subintervals Ji of I such that

J0 = [x0, y0] < · · · < Jt−1 = [xt−1, yt−1] and
t−1⋂
i=0

f(Ji) ⊃
t−1⋃
i=0

Ji,

f(xi) = x0 and f(yi) = yt−1 for each i ∈ Nt. It implies that if we put
S =

⋃t−1
i=0{xi, yi} then f(S) = {x0, yt−1} ⊂ S.

Hence, Proposition Ap.3 can be applied to f = gn and the finite f -invariant
set S. Moreover, combining (1) and Proposition Ap.2 we can consider a strictly
ergodic set Φ ⊂ Γt such that

1
n

ent(σ, Φ) > ent(g, I) − ε.(2)

Put X = J0∪· · ·∪Jt−1 and define a map F : X → X by F |Ji = fS . Using the same
procedure as before Lemma 2.6 we obtain a system (Yt, G). We know from Lemma
2.6 that the systems (Yt, G) and (Γt, σ) are topologically conjugate. If h : Γt → Yt

is a corresponding conjugacy, the set h(Φ) = T ⊂ Yt ⊂ X is strictly ergodic in
(Yt, G) and ent(σ, Φ) = ent(G, T ). Since by the previous G|T = F |T = fS |T ,
the pair (T, fS) is also strictly ergodic. Using Proposition Ap.3 and Lemma 2.2
we can see that there is a set T ? ⊂ conv S such that the strictly ergodic pair
(T ?, f = gn) is from [(T, fS)]. Fix x ∈ T ? and consider the ω-limit set ω(x, g).
It can be easily verified that T ? ⊂ ω(x, g) and the pair (ω(x, g), g) is strictly
ergodic. Denote A = [(ω(x, g), g)] ∈ E∼. Summarizing, from Definitions 1.1 and
2.3, the equality n ent(g, ω(x, g)) = ent(gn, T ?) [DGS], Lemma 2.2, the equality
ent(G, T ) = ent(σ, Φ) and the property (2) we obtain the relations

ent(g, I) ≥ entL(A) = ent(g, ω(x, g)) =
1
n

ent(gn, T ?)

=
1
n

ent(G, T ) > ent(g, I) − ε.

Since ε > 0 was arbitrary the conclusion of our theorem for ent(g) ∈ (0,∞)
follows.

Let ent(g) = ∞. By virtue of Proposition Ap.4, for fixed K ∈ R we can consider
s, n ∈ N such that 1

n log
[

s
2

]
> K. Now we can proceed analogously as above. This

proves the theorem. �

4. Appendix

We refer the reader to Introduction for other notions used here.
A dynamical system (S, f) is a factor of (T, g) if there is a continuous surjective

factor map h : T → S such that h ◦ g = f ◦ h. That factor is a (n, 1)-factor for
n ∈ N if for each s ∈ S it holds 1 ≤ # h−1(s) ≤ n. In the case when n = 1 we
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say that systems (T, g) and (S, f) are topologically conjugate and h is a
conjugacy.

The following theorem is well known.

Proposition Ap.1. [Bow] If (S, f) is a factor of (T, g) then

ent(f, S) ≤ ent(g, T ) ≤ ent(f, S) + sup
s∈S

ent(g, h−1({s})).

In particular, if it is an (n, 1)-factor for some n ∈ N then ent(g, h−1({s})) = 0 for
each s ∈ S hence ent(g, T ) = ent(f, S).

The following proposition presents a strong result concerning the topological
entropy of strictly ergodic subsystems of Γt.

Proposition Ap.2. [G] Let t ∈ N. For any δ positive there is a strictly ergodic
set Φ in Γt such that ent(σ, Φ) > −δ + log t.

In order to investigate properties of minimal patterns exhibited by interval
maps we need some method that will help us to recognize that a fixed map f ∈
C(I) exhibits a minimal pattern A ∈ M∼. The following statement satisfies this
requirement.

Proposition Ap.3. [Bo] Let f ∈ C(I), assume there is an f -invariant compact
set S ⊂ I. Then for fS ∈ C(conv S) and T ⊂ conv S such that (T, fS) ∈ M there
is T ∗ ⊂ conv S for which (T ∗, f) ∈ [(T, fS)].

The last result of this section has a crucial meaning when proving an analog
of Proposition Ap.2 for interval maps. Concerning fixed f ∈ C(I) with positive
topological entropy one can ask the presence of horseshoe. The following is true.

Proposition Ap.4. [M] Let f ∈ C(I). If ent(f, I) ∈ (0,∞] then there exist
sequences {nl}∞l=1 and {sl}∞l=1 of positive integers such that the map fnl has an
sl-horseshoe and

lim
l→∞

1
nl

log sl = ent(f, I).
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