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ON STANDARD BASIS AND MULTIPLICITY OF
(X —Y? X°—yd)

E. BODA anp R. FARNBAUER

ABSTRACT. Let [ = (X —Y? X°¢—Y49).k[X,Y] be an ideal of dimension zero
in polynomial ring in two variables. In this note a formula for standard basis of
I with respect of anti-graded lexicographic order is derived. As a consequence the
discussion on the common points of the plane curves V(X® —Y?) and V(X¢ —Y%)
is given.

INTRODUCTION

Let A = k[X1, X, ..., X,,] be a polynomial ring over a field k and let > be a linear
ordering on A (precisely on the set of monomials z® =: X7 X572 ... X3"). Any
total ordering on A that is compatible with multiplication and that satisfies 1 > X
for all : = 1,...,n is called a local order on A. One of the local orderings on A is
the anti-graded lexzicographic order, (alex, for short) which is defined as follows:

Let a,0 € Zgo. We say that £ >aiex 2 if

o= ai<|B]=)_ B;
=1 i=1

or
|a] = |B| and in the difference o — 3 the left-most nonzero entry is positive.

Let now f = 3 c,x® be a polynomial in A, where ¢, € k. The leading term of f

with respect to t(llle alex ordering on A is the product c,x® where z¢ is the largest
monomial of f. We shall use the notation Lt(f) for the leading term of f. Suppose
that I is an ideal of A. Consider the ideal Lt(I) generated by leading terms from
I. The ideal Lt(I) will be said to be a leading ideal of I. One of the intriguing
questions, which can be raised here, is to find a basis of Lt(I). In Theorem 2 we
give a solution to this problem.
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Definition. Let I be an ideal of A = k[X1, Xo, ..., X,] which is contained in
M =:(X1,Xs,...,X,)A. Let > denote a local order in A. A standard basis of T
is the set {g1, g2,...,9¢} of polynomials of I such that

Lt(1) = (Lt(g1), Lt(g2), - - -, Lt(g:)) A

There is an effective method how to find a standard basis for an ideal in terms
of S-polynomials (Buchberger’s Criterion):

Having nonzero polynomials f and g in M =: (X1, Xo,...,X,)A, we can con-
sider Lt(f) = ca®, Lt(g) = dz” and 27, the least common multiple of z® and 2.

An S-polynomial of f and g is the polynomial

S(f.0) = rof —
9) =t = [~ =9
Lt(f)"  Lt(g)

Now let I' = {f1, fo,..., ft} be a set of polynomials of A = k[X1, X, ..., X}]

(with the local order). Then every polynomial f € A can be expressed as:

f=afitafot+. .. +afe+r

with a;,r € A and either 7 = 0 or no monomial of r is divisible by any
Lt(f1), Lt(f2),...,Lt(f:). The polynomial r is called a remainder of f on division
by I' and marked by F

Now we can formulate the well-known Buchberger’s Criterion for standard basis
of any ideal:

Aset ' = {g1,92,...,9:+} of polynomials of I is a standard basis of I if and only

if for all pairs g;, g; of I' it holds

T
S(9i,9;) =0.
see [C, Chap. 4],
In the next part of this note we use Buchberger’s Criterion for producing stan-
dard basis of one class of zero dimensional ideals.

STANDARD BASIS OF THE IDEAL (X® —Y? X¢—Y4).

Assume that (X¢ —Y? X¢—Y?). R is an ideal of dimension zero in polynomial
ring R := k[X,Y]. (Dimension zero is equivalent to the statement ad # bc.) We
shall derive a standard basis of (X¢—Y? X¢—Y9). R in anti-graded lexicographic
order of R.

Without loss of generality we can suppose a > b and d > ¢, or a > b and ¢ > d.

Theorem 1. Let ¢ = (X% — Y X¢— YY) be an ideal in R of dimension zero.
Let a > b and d > c. Then a standard basis of q is {Y? — X, X¢ — Y9},

Proof. Set F =YY% - X G =Y%— X¢and I = {F,G}. For the S-polynomial
of F' and G it holds

S(F,G) = Y — X¢ and hence S (F,G)" = 0.
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Let us continue with the rest case a > b and ¢ > d. In addition, we can assume

b b
that b > d. If k& denotes the integral part of L then we get 0 < i k<1.

b
It is easy to see that for the decimal part i k the following statement holds:

Lemma 1. There is only one integer n € N,n > 2 such that

1 b 1

-l _ k< Z
a)n+%<z k;_n,or
1< k<1-
b) n<d k<

n+1’

Before formulating the main result we bring a list of important polynomials:
F=X*-Y?
G=X°c-Y1
H = Xkcyb—kd _ Xe
K — x(n+Da—nke _ );'(k+l)cy(n+1)b7(k(n+1)+1)d’
T = X(kJrl)c _ Xnaf(nfl)kcy(nkJrl)dfnb’ (*)
U= X(n—1)(k+1)c—(n—2)aynb—(nk+(n—1))d _ X’Qa—kc7
V= x n(k+1l)c—(n—1)a _ X2a7kcy((n+1)k+n)d7(n+1)b’

W= X¢a. y (k+1)d—b _ x (k+1)c
Theorem 2. Let q = (X*—Y? X°¢—Y?) be an ideal in R of dimension zero,
b
and let a > b, ¢ > d, b > d. Assume that k is the integral part of p and that n is

b
the integer assigned to i k as given in Lemma 1. Then there are five possibilities
for a standard basis of q. More precisely,
(i) If be < ad, then the standard basis of q is
(F,G,H,T) or (F,G,H,U,V,IW)!
according to integer n satisfying the relation a) or b) in Lemma 1, respec-
tively.
(ii) If ad < bcThen the standard basis of q is
(Fa Ga H)7
whenever a — kc < b — kd. In addition, if a — k¢ > b — kd, then the standart
basis if q is
(F,G,H,K,T) or (F,G,H,U W)
with respect to integer n given by respective cases a) or b) in Lemma 1.

Proof. Part (i). Suppose that integer n satisfies the following relation

! < b k< L
n+1 " d —n
We shall apply Buchberger’s Criterion. Let us calculate S-polynomials and their

remainders of all pairs of {F, G, H,T} =T.

ISe the list (*) of polynomials



18 E. BODA anp R. FARNBAUER

For F and G we have S(F,G) = X¢Y"~4— X Sinced < bforalli=1,...,k—1
and b — kd < a — kc, we get

S(F,G) = G(X°yb=2d 4 x2yb=3d L 4 x(h-Deyb-kd) 4 p
so S(F,Q)" =o.
Let us take F' and H.

S(F,H) = XY™ - xaxhe
Gy (h=Dd 4 xey(k=2)d
+X(k—1)c)Xa ,

and therefore S (F, H)" = 0. ConsiderG and H.

S(G,H) _ Xay(kJrl)dfb _ X(k+1)c
_ H(Xa—kcy(Qk-‘rl)d—Qb + X2(L—2kcy(3k+1)d—3b ..
_‘_X(nfl)af(n72)kcy(nk+1)d7nb) +T,

so S (G, H)" = 0. Now, take H and T.
S(H, T) _ Xnaf(nfl)kc(Y((nf1)k+1)d7(n71)b _ X((nfl)kJrl)cf(nfl)a)
— H(Xna—nkcy(nk—i-l)d—nb) + T(Xa—kc)

and S (T, H )F = 0. Because the leading terms of pairs F', T" and G, T are relatively
prime, it holds

S(F,T) =5 (G,T)" =o.
and T' is a standard basis.
1 b 1
Consider now 1— — < -—-k<1——— and ' =:{F,G,H,U,V,W}.
n d n+1
S(F,G)" =5 (F,H)" =8(G,H)" =0 by the same argument as above.
S(F, V)" = 8(G, V)" =0 because the leading terms are relatively prime. For
the rest pairs we have
S(F, W) — X(k+1)Cy2b7(k+1)d _ X2a
_ H(XCYb_d 4 Xa—(k—l)cy(k—l)d + X?a—(?k—l)cy(?k—l)d—b 4.
+Xma7(mkfl)cy(mkfl)df(mfl)b)_’_
+W(Xma—(mk—l)cy((m—l)k—2)d—(m—2)b+
+X(ma7((mfl)k72)c)7ay((m72)k73)d7(m73)b + .. )

m=k,soS(F,W)" =o.
S(F, U) — X2a7kcy(n(k+1)71)d7(n71)b _ X(kJrl)(nfl)cf(nfB)a
— G(XQa—kcy(n(k+1)—2)d—(n—1)b 4o
+X2a7(lcf(m72))cy(n(k+1)7m)d7(n71)b)_’_
+W(Xa—(k—(m—1))cy((n—1)(k+1)—m)d—(n—2)b+
+chy((n—2)(k+1)—m)d—(n—3)b + .. )

m=k+1,s0S(F,U)" =0.
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S(G, W) _ X(k-‘rl)cyb—kd o Xa-‘rc _ HXC

so S (G, W)" =o.
S(G, U) — X2a7kcyn((k+1)d7b) _ X(nk+n7k)cf(n72)a
W(Xa—kcy(n—1)(k+1)d—(n—1)b + ch(n—Q)(k+1)d—(n—2)b+
+X(k+2)cfay(n73)(k+1)d7(n73)b + .. )

so S(G,U)" =o.

S(H, W) X(k+1)cy2b—2kd—d _ X2(L—kc

_ W(X(k+1)cfay3b73kd72d) LU

S(H, U) — X2a—kcy(n—1)((k+1)d—b) _ X(nk—2k+n—1)c—(n—3)a
W(Xafkcy(n72)((k+1)d7b) + ch(n73)((k+1)d7b)+
+X(k+2)c—ay(n—4)((k+1)d—b) +... )

so S (H,U)" =o.

S(H, V) X2a7kcyn((k+1)d7b) . X(nk+n7k)cf(2fn)a

W(xa—kcy(n—l)((k-‘rl)d—b) +ch(n—2)((k+1)d—b)+
+X(k+2)cfay(n73)((k+1)d7b) + .. )

so S (H,V)' =o.

S(VV, U) — Xn(kJrl)cf(nfl)a _ Y((nJrl)k+n)d7(n+1)bX2a7kc -V
so S (W,U)" = 0.
S(W, V) _ W(Xafkcy((nJrl)lH»n)df(n+1)b) + YX(k-H)c—a
so S(W, V)" =o.
S(U7 V) _ X?a—kcy(k-‘rl)d—b _ Xa-‘rc _ W(xa—kc)
so S (U, V) =o.

The remainders of all S-polynomials are equal zero and this completes proof of
the part (i).
The proof of the part (ii) is similar. O

One of the applications of standard basis relates to the multiplicity theory. Let
Q be any primary ideal in Rjs belonging to a maximal ideal in Rp; (Rps denotes
the localization of polynomial ring R by the ideal M =: (X,Y)-R). Let eo(Q; Ry)
denote the leading term of the Hilbert-Samuel polynomial dimy(Ra/Q™ ! - Ray).
For the Samuel multiplicity of @ in Rps (see [Z-S]). Since ring Ry is a two-
dimensional Cohen-Macaulay local ring, for the ideal ) generated by two elements
(parameter ideal) holds

eo(Q; Ry) = dimg (R /@ - Rar).
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We can apply these notions to our ideal I. Ry = (X — Y? X¢ —Y%). Ry. For
the calculation of Samuel multiplicity of (X% — Y?* X¢ — Y9). Ry is important
this proposition:

Lemma 2. Let J € R = k[X,Y] be an ideal contained in mazimal ideal
M = (X,Y)-R. Let Lt(J) be the leading ideal of J with respect to the local order
in R. Then

dimk(RM/J . RM) = dimk(RMLt(J) RM)

Proof. See [C, Chap. 4, $ 3, Cor. 4. 5]. O
As an application we give another proof of the main theorem of [B-O].
Theorem 3. ey((X® —Y*, X —Y%)-Ry; Ry,) = min{a-d,b-c}.

Proof. By Lemma 4 and the formula above the Samuel multiplicity of
(X — Yt X¢ —Y9) . Ry is equal to the length of the (M —primary) leading
ideal g =Lt((X*—-Y? X°¢—Y4%). Ry ). In the case of Theorem 1 is ¢ = (X¢,Y?)
and therefore [(q) = bc < ad.

In the case of Theorem 3.
(i) if be< ad, then

q= (Yd7Xkcyb—kd,X(k+1)c)
for n according a) of Lemma 1 or

qg= (Yd X keyb—kd Xay(k+1)d—b X(n—l)(k+1)c—(n—2)aynb—(nk+(n—1))d
Xn(k—i—l)c—(n—l)a)

for n according b) of Lemma 1.
(ii) if ad < be, then
g= (VX
if a—kec<b-—kd,or
g = (Y, Xkeyb—kd xna—(n—Dkey (nk+1)d—nb x (n+1)a—nke)
if a — ke > b — kd for n according a) of Lemma 1 or
g = (v, Xkeyb—hd xay(+1)d-b x2a—key

if @ — ke > b — kd for n according a) of Lemma 1.

For the calculation of the length of ¢ we have
l(q) l((X(kJ'_l)C,Yd,XkCYb_kd))
= (k4 1)e(b— kd)+ kdc — ke(b — kd)
b-c
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l(q) — l((Xn(k+1)c—(n—1)a7yd, X(n—l)(k+1)c—(n—2)aynb—(nk+(n—1))d,
Xay(k+1)d7kacyb7kd))
= (n(k+1ec—(n—1)a)(nb— (nk+ (n—1))d)+
+((n=1)(k+1)c— (n—2)a)
((k+1)d—b) +a(b—kd) + dkc — (n — 1)(k + 1)c — (n — 2)a)
(nb—(nk+(n—1))d) —a((k+1)d —b— ke(b— kd)
= bc

in (i) and

o) = HE¥"XM)=ad

l(q) _ l((X(n+1)a—nkc Yd Xkcyb—kd Xna—(n—l)kcy(nk+1)d—nb))
_ l((X(nJFl)a*nkC’ Yd, Xkcybfkd)) _ l((X(nJrl)afnkc’
Yd,XkCYb_kd) . (Xna—(n—l)kcy(nk—i-l)d—nb))
_ l((AX(n-l—l)a—nkc7 Yd, Xkcyb—kd))_
_l((Xafkc, Y(n+1)b7d(k(n+1)+1)))
= (((n+1)a— nkc)(b—kd) + dkc — (a — ke)((n + 1)b— d(k(n + 1) + 1))
= ad

l(q) — l((X2a7kc’deXkcybfkd,Xay(kJrl)dfb))
— l((X2a7kc’Yd7Xkcyb7kd))_
—l((X2a_kC, Yd, Xkcyb—kd) . (Xay(k-i-l)d—b))
— l((X2a7kc, de Xkcybfkd)) _ l((XaikC, Y2b7(2k+1)d)
((2a — ke)(b — kd) + dke — (ke(b — kd))) — ((a — ke)(2b — (2k + 1)d))
= ad

in (ii) (see [B-S] and [L]). O

COMMON POINTS OF V(X% —Y?) AND V(X¢ —Y%).

Let now R := k[X,Y] be a polynomial ring over an algebraic closed field k. In
addition, let V and W be plane algebraic curves of E? defined over k by equations
X*—Y?=0and X¢—Y? =0, respectively. Suppose that the intersection V N
consists only of isolated points (equivalently the ideal I = (X®—Y?* X¢—-Y9). R
is of dimension zero).

How many times meet the curves V and W at origin O?7 Let us denote this
multiplicity number as i(O; V, W). By well known Bezout’s Theorem i¢(O; V, W) =
= eo(I.Rar; Rar) (see [V] for details).

So, as consequence of the main theorem

i(O;V,WW) =min{a-d,b- c}.
which is the multiplicity of V N W at origin O.
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Another question concerns the number of all common points of V N W in E2.
By the construction of Grébner Basis of I (with respect to any monomial order in
R), the leading ideal of I and the length of this ideal we can prove this conjecture:

Conjecture 1. The number of all common points of the curves V. and W in
E? is equal to max{a-d,b- c}.

Last question relates to the common asymptotic directions (points in infinity)
of studying curves. If V' and W are projective closures of V and W in exten-
ded Euclidean plane E? , than we can formulate the classical Bezout’s Theorem:
max {a, b} - max {¢,d} = number of common points of V and W in E2. So we are
able formulate the last conjecture:

Conjecture 2. The number of all common asymptotic directions of the curves
V and W in E? is equal to max{a, b} - max{c,d} —max{a-d,b-c}.
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