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UNBOUNDED BASINS OF ATTRACTION OF LIMIT CYCLES

P. GIESL

Abstract. Consider a dynamical system given by a system of autonomous or-
dinary differential equations. In this paper we provide a sufficient local condition
for an unbounded subset of the phase space to belong to the basin of attraction of
a limit cycle. This condition also guarantees the existence and uniqueness of such a
limit cycle, if that subset is compact. If the subset is unbounded, the positive orbits
of all points of this set either are unbounded or tend to a unique limit cycle.

1. Introduction

Equilibria and periodic orbits are the simplest invariant sets in dynamical systems.
While equilibria are – at least in principle – easy to determine as zeros of the
right hand side of the differential equation there is no straight-forward way to
find periodic orbits in general. Besides the existence and uniqueness of periodic
orbits, one is also interested in their stability properties. Given an asymptotically
stable periodic orbit we can define its basin of attraction consisting of all points
which eventually are attracted by the periodic orbit. Our goal, in this paper, is to
determine unbounded basins of attraction.

There are a number of approaches to prove existence of periodic orbits, e.g. by
perturbation theory or the method of averaging (cf. [4], [9], [16], [17]). In two-
dimensional systems the Poincaré-Bendixson theory can be used to show existence
of periodic orbits. The Bendixson criterion for nonexistence of periodic orbits and
its generalizations (cf. [18]) are tools to prove uniqueness.

Classical results concerning the stability are provided by linearization around
the periodic orbit (cf. [1], [4], [17]). By the Floquet theory a necessary and
sufficient condition for a periodic orbit to be exponentially asymptotically stable
is that all Floquet exponents except for the trivial one have strictly negative real
parts (cf. [11]). This can be shown using a Poincaré map. However, if we cannot
determine the periodic orbit explicitly these theorems cannot be applied directly.
Other criteria using the linearization are given by [6] and [18]. They are special
cases of our results for two-dimensional systems. Stability of periodic orbits can
also be proven by Lyapunov functions (cf. [5], [13], [19]).
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To determine the basin of attraction of an exponentially asymptotically stable
periodic orbit one can use a Lyapunov function, too (cf. [2]). But even if we know
the periodic orbit explicitly it is not easy to find such a Lyapunov function.

Borg [3] gave a sufficient condition for existence and uniqueness of a limit cycle
using a certain contraction property. He showed that if this condition is valid in a
bounded set, then this set belongs to the basin attraction of a unique limit cycle.
Hartman and Olech [10] made first attemps to generalize these ideas to unbounded
sets but they showed existence and uniqueness of a limit cycle only for bounded
sets.

In this paper, we give sufficient conditions for an unbounded set to be part of
the basin of attraction of an exponentially asymptotically stable periodic orbit.
In contrast to most other approaches we do not presume the existence, unique-
ness or stability of the periodic orbit. Instead, these properties are conclusions.
Thus, we use the results both to prove existence and uniqueness of exponentially
asymptotically stable periodic orbits and to determine a part of their basin of
attraction.

Let us first briefly discuss the basic idea of the conditions. Consider the dy-
namical system given by the autonomous ordinary differential equation ẋ = f(x),
where f ∈ C1(Rn, Rn) and n ≥ 2. For each point p of the phase space we define

L(p) := max
‖v‖=1,v⊥f(p)

L(p, v)

with L(p, v) := 〈Df(p) v, v〉.

Here Df denotes the Jacobian of f and 〈., .〉 the Euclidian scalar product.

Figure 1. The meaning of the function L.

v

p + δv
f(p + δv)

p
f(p)

The main condition is L(p) < 0 for a point p of the phase space. This condition
is obviously local and guarantees that trajectories within a certain neighborhood
of p approach the trajectory through p as time increases. Let us give a heuristic
justification of this fact (cf. Figure 1). For example, consider a point p + δv with
v ⊥ f(p), ‖v‖ = 1 and δ > 0 small. A sufficient condition for the trajectories
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through p and p + δv to move towards each other is that

0 > 〈f(p + δv), v〉
≈ 〈f(p) + δDf(p) v, v〉
= δ 〈Df(p) v, v〉︸ ︷︷ ︸

=L(p,v)

, since v ⊥ f(p).

So if L(p) < 0, then the trajectories through p and p+δv move towards each other.
We will assume L(p) < 0 for all points p in a certain positively invariant subset of
the phase space in order to assure that the trajectories through adjacent points of
this subset move towards each other for all future times.

Let us now state the results, shortly discuss their implications and illustrate
them with first examples. At first we give the precise definition of an exponentially
asymptotically stable periodic orbit.

Definition 1.1. Let St be the flow of a dynamical system given by an au-
tonomous ordinary differential equation and let Ω be a periodic orbit. We will
call Ω exponentially asymptotically stable, if it is orbitally stable and there are δ,
µ > 0 such that dist(q, Ω) ≤ δ implies dist(Stq, Ω)eµt t→∞−→ 0.

In Theorem 1.2 we assume conditions for a possibly unbounded subset G of the
phase space. Then one of the following two alternatives holds: either all positive
orbits

⋃
t≥0 Stx0 with initial points x0 ∈ G are unbounded or they all approach a

unique exponentially asymptotically stable periodic orbit as time increases.

Theorem 1.2. Let ∅ 6= G ⊂ R
n be an open and connected set. Let G be a

positively invariant set, which contains no equilibrium. Moreover assume L(p) < 0
for all p ∈ G, where

L(p) := max
‖v‖=1,v⊥f(p)

L(p, v)(1)

L(p, v) := 〈Df(p) v, v〉.(2)

Then either s(p) := supt≥0 ‖Stp‖ = ∞ holds for all p ∈ G or there exists one
and only one periodic orbit Ω ⊂ G. Ω is exponentially asymptotically stable and
its basin of attraction A(Ω) contains G.

Remark 1.3. L(p) is a continuous function with respect to p as we prove in
Proposition A.2.

Note that in Theorem 1.2 we only claim G ⊂ A(Ω). The points of the boundary
of G can still tend to infinity, if the boundary of G is not smooth. We give an
example in Section 3.4. If we have at least one point in G, the positive orbit of
which is bounded, then Theorem 1.2 yields the existence and uniqueness of an
exponentially asymptotically stable periodic orbit in G. If the positively invariant
set G itself is bounded, then also the positive orbits of all points of G are bounded.
Thus, we have the following corollary for compact sets K which has been shown
by Borg [3] under slightly different assumptions. In this case the geometry of the
boundary is not involved and the whole set K belongs to the basin of attraction.
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Corollary 1.4. Let ∅ 6= K ⊂ R
n be a compact, connected and positively in-

variant set, which contains no equilibrium. Moreover assume L(p) < 0 for all
p ∈ K.

Then there exists one and only one periodic orbit Ω ⊂ K. Ω is exponentially
asymptotically stable and its basin of attraction A(Ω) contains K.

Note that the assumptions of Corollary 1.4 are sufficient, but not necessary. In
order to obtain both necessary and sufficient conditions one has to allow a point-
dependent Riemannian metric in (2) instead of the Euclidian metric (cf. [7], [15]
and Example 3.1).

Let us discuss the statement of Theorem 1.2 in more detail. If there is an
unbounded positive orbit in G, then the first alternative yields that all positive
orbits of G are unbounded. If there is one bounded positive orbit in G, the theorem
implies that all positive orbits of G tend to a unique limit cycle. Let us consider
two examples to illustrate these two alternatives.

The system {
ẋ = −x
ẏ = 1

provides an example for the first alternative. Obviously, there is no equilibrium.
Let us choose G = R

2. To check the assumptions of Theorem 1.2, we have to
calculate L(x, y). Note that in two-dimensional systems there is a one-dimensional
family of vectors v ⊥ f(x, y). Since L is quadratic in v we can choose any vector
v ⊥ f(x, y) of positive length and L(x, y; v) has the same sign as L(x, y). Thus we

define L̃(x, y) :=
〈

Df(x, y)
(

f2(x, y)
−f1(x, y)

)
,

(
f2(x, y)
−f1(x, y)

)〉
, which has the same

sign as L(x, y). We calculate L̃(x, y) = −1 < 0. Since all points on the y-axis
have unbounded positive orbits, the first alternative is valid and hence all positive
orbits in R

2 are unbounded.
The following system{

ẋ = x(1 − x2 − y2) − y
ẏ = y(1 − x2 − y2) + x

provides an example for the second alternative. The only equilibrium is the origin.
Choose G = {(x, y) ∈ R

2 | x2 + y2 > 0.5} and denote r =
√

x2 + y2. We have
d
dtr

2 = 2r2(1−r2). Hence, G is positively invariant and there is a bounded positive
orbit. We calculate

L̃(x, y) = r2(2 − 6r2 + 3r4 − r6).

Thus L̃(x, y) < 0 for all (x, y) ∈ G and G belongs to the basin of attraction of an
exponentially asymptotically stable periodic orbit Ω ⊂ G by Theorem 1.2. The
periodic orbit in this case is given by Ω = {(x, y) ∈ R

2 | x2 + y2 = 1}.
Let us describe how the paper is organized. In the second section we prove

Theorem 1.2 and Corollary 1.4. In the third section we give more examples to
illustrate the results, among them the FitzHugh-Nagumo equation. In an appendix
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we prove the continuity of the function L(p) and a sufficient condition for a point
to belong to a limit cycle which is needed in the proof of Theorem 1.2.

2. Proofs of Theorem 1.2 and Corollary 1.4

The proof of Theorem 1.2 proceeds in the following steps and related propositions:
1. Define a time-dependent distance between two trajectories with nearby ini-

tial points and prove that this distance is exponentially decreasing (Proposi-
tions 2.1 to 2.3)

2. Show that the positive orbits with initial points in G are either all unbounded
or all bounded (Proposition 2.4)

3. Show that in the second case the ω-limit sets of all points of G are the same
(Proposition 2.5)

4. Show that this ω-limit set is an exponentially asymptotically stable periodic
orbit (Proposition B.1)

In Proposition 2.1 we define a distance function

d(θ) := ‖ST (p + η) − Sθp‖,
where T = T p+η

p (θ) is a synchronized time. Here we assume that the initial points
p and p + η are sufficiently close, and, moreover, that p + η lies in the hyperplane
p + f(p)⊥. In Proposition 2.2 we extend our results to all points q of a full
neighborhood of p. Our estimates are only valid as long as the trajectory through
p does not leave a certain ball BS(0), because only restricting ourselves to this
compact set we are able to derive uniform bounds. In Proposition 2.3 we assume
in addition that s(p) = supt≥0 ‖Stp‖ ≤ S. Then the orbit stays in BS(0) for all
positive times and hence also the estimates are valid for all positive times.

Proposition 2.1. Let the assumptions of Theorem 1.2 be satisfied. For S > 0
and T0 > 0 there are two positive constants δ and ν such that the following holds
for all p ∈ G, for which ‖Sθp‖ ≤ S for all θ ∈ [0, T0]:
For all η ∈ R

n with η ⊥ f(p) and ‖η‖ ≤ δ
2 , there exists a diffeomorphism

T p+η
p : [0, T0] −→ T p+η

p ([0, T0]) ⊂ R
+
0 which satisfies T p+η

p (0) = 0, 1
2 ≤ Ṫ p+η

p (θ) ≤
≤ 3

2 and (
ST p+η

p (θ)(p + η) − Sθp
)
⊥ f(Sθp)

for all θ ∈ [0, T0]. Moreover, T p+η
p (θ) depends continuously on η, and the distance

function d(θ) = ‖ST p+η
p (θ)(p + η) − Sθp‖ satisfies

d(θ) ≤ e−
ν
4 θ ‖η‖ for all θ ∈ [0, T0].(3)

Proof. Denote GS = G ∩ BS(0). This set is bounded and closed, and thus
compact in R

n. Hence, for the continuous function L (cf. Proposition A.2)
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ν := −maxp∈GS L(p) > 0 exists, so that

L(p) ≤ −ν < 0 for all p ∈ GS .(4)

Df is continuous and thus uniformly continuous on GS . Hence, there exists a
δ1 > 0, so that

‖Df(p) − Df(p + ξ)‖ ≤ ν

2
(5)

holds for all p ∈ GS and all ξ ∈ R
n with ‖ξ‖ ≤ δ1. Since there is no equilibrium

in GS and f and Df are continuous functions on the compact sets GS , (GS)δ1 :=
:= {q | dist(q, GS) ≤ δ1} respectively, there are positive constants ε1 and ε2, such
that the following inequalities hold:

0 < ε1 ≤ ‖f(p)‖ ≤ ε2 for all p ∈ GS(6)

‖Df(q)‖ ≤ ε2 for all q ∈ (GS)δ1 .(7)

We set

δ := min
(

δ1,
ε21
5ε22

)
.(8)

Now fix p ∈ GS and η ∈ R
n with η ⊥ f(p) and ‖η‖ ≤ δ

2 . We synchronize the
time of the trajectories through p and p + η while we define T p+η

p (θ) implicitly by

Q(T, θ, η) := 〈ST (p + η) − Sθp, f(Sθp)〉 = 0.(9)

Q(0, 0, η) = 0 implies T p+η
p (0) = 0. Since ∂T Q(0, 0, η) 6= 0, as we show later,

T p+η
p (θ) is defined by (9) locally near θ = 0 and depends continuously on η by the

implicit function theorem. We will later show by a prolongation argument that,
in fact, T p+η

p is defined for all times θ ∈ [0, T0]. We write now T = T p+η
p . As long

as T (θ) is defined, we set

d :
{

R
+
0 −→ R

+
0

θ 7−→ ‖ST (θ)(p + η) − Sθp‖(10)

d(0) 6= 0 implies d(θ) 6= 0 for all θ ∈ [0, T0]. In this case we set v(θ) :=
:= ST(θ)(p+η)−Sθp

d(θ) . v(θ) is a vector of length one, and it is perpendicular to f(Sθp)
for each θ by (9). Note that the following equation holds

ST (θ)(p + η) − Sθp = d(θ)v(θ).
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We calculate the derivative Ṫ (θ) using the implicit function theorem.

Ṫ (θ) = − ∂θQ(T, θ, η)
∂T Q(T, θ, η)

=
‖f(Sθp)‖2 − 〈ST (p + η) − Sθp, Df(Sθp)f(Sθp)〉

〈f(ST (p + η)), f(Sθp)〉
=

‖f(Sθp)‖2 − d(θ)〈v(θ), Df(Sθp)f(Sθp)〉
〈f(Sθp + d(θ)v(θ)), f(Sθp)〉

=
‖f(Sθp)‖2 − d(θ)〈v(θ), Df(Sθp)f(Sθp)〉

‖f(Sθp)‖2 + d(θ)〈∫ 1

0
Df(Sθp + λd(θ)v(θ)) dλ v(θ), f(Sθp)〉

.

The last equation follows from the mean value theorem. As d(0) = ‖η‖ ≤ δ
2 , the

continuous function d satisfies d(θ) ≤ δ for θ small enough. We will show later
that, however, this inequality holds for all θ ∈ [0, T0].

Since G is positively invariant and ‖Sθp‖ ≤ S for all θ ∈ [0, T0], we have
Sθp ∈ GS for all θ ∈ [0, T0], and therefore Sθp+λd(θ)v(θ) ∈ (GS)δ, supposed that
d(θ) ≤ δ and λ ∈ [0, 1]. Using (7) we can conclude ‖ ∫ 1

0
Df(Sθp+λd(θ)v(θ)) dλ‖ ≤

≤ ε2. Equations (6), (7) and (8) imply

Ṫ (θ) ≤ ‖f(Sθp)‖2 + δε22
‖f(Sθp)‖2 − δε22

≤ ‖f(Sθp)‖2 + ε21
5

‖f(Sθp)‖2 − ε21
5

≤ 1 +
2
5ε21

‖f(Sθp)‖2 − ε21
5

≤ 1 +
2ε21

5ε21 − ε21
=

3
2
.

Similarly we can conclude Ṫ (θ) ≥ 1
2 . In particular we have shown ∂T Q(0, 0, η) 6= 0.

Ṫ (θ) ≥ 1
2 shows that T (θ) is a strictly increasing function. The inverse map θ(T )

satisfies 2
3 ≤ θ̇(T ) ≤ 2. As long as d(θ) ≤ δ and Sθp ∈ GS hold, we can thus define

T (θ) by a prolongation argument.

Next we show that d(θ) tends to zero exponentially. That will imply that we
can define T (θ) for all θ ∈ [0, T0]. We calculate the time derivative of d2(θ) with
respect to θ (cf. (10)) and use v(θ) ⊥ f(Sθp).

d

dθ
d2(θ) = 2

〈
f(ST (θ)(p + η))

dT

dθ
(θ) − f(Sθp), ST (θ)(p + η) − Sθp

〉
= 2d(θ)〈f(Sθp + d(θ)v(θ))Ṫ (θ) − f(Sθp), v(θ)〉
= 2d(θ)〈f(Sθp + d(θ)v(θ)), v(θ)〉Ṫ (θ).(11)
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As ‖λd(θ)v(θ)‖ ≤ δ provided that λ ∈ [0, 1] and d(θ) ≤ δ, which holds for small
θ, (5) implies ‖Df(Sθp + λd(θ)v(θ)) − Df(Sθp)‖ ≤ ν

2 . The mean value theorem
yields with v(θ) ⊥ f(Sθp), (4) and (5)

〈f(Sθp + d(θ)v(θ)), v(θ)〉

= d(θ)
〈∫ 1

0

Df(Sθp + λd(θ)v(θ)) dλ v(θ), v(θ)
〉

= d(θ)
〈∫ 1

0

[Df(Sθp + λd(θ)v(θ)) − Df(Sθp)] dλ v(θ), v(θ)
〉

+ d(θ) 〈Df(Sθp)v(θ), v(θ)〉︸ ︷︷ ︸
≤L(Sθp)≤−ν

≤ −d(θ)ν
2

.

Plugging this into (11) we conclude

d

dθ
d2(θ) ≤ 2 d(θ)

(
−d(θ)ν

2

)
Ṫ (θ) ≤ −d2(θ)ν

2
,

which shows ḋ(θ) ≤ − d(θ)ν
4 and finally

d(θ) ≤ d(0) e−
ν
4 θ ≤ ‖η‖ e−

ν
4 θ ≤ δ

2
e−

ν
4 θ.(12)

This proves (3) and in particular d(θ) ≤ d(0) = ‖η‖ ≤ δ
2 for all θ ∈ [0, T0] and thus

that both T (θ) and d(θ) are defined for all θ ∈ [0, T0] by a prolongation argument.
This concludes the proof of Proposition 2.1. �

In Proposition 2.2 we extend the results of Proposition 2.1 to all points q of a
full neighborhood of p.

Proposition 2.2. Let the assumptions of Theorem 1.2 be satisfied. For S > 0
and T0 > 0 there are two positive constants δ∗ and ν such that the following holds
for all p ∈ G, for which ‖Sθp‖ ≤ S for all θ ∈ [0, T0]:
For all q ∈ R

n with ‖p − q‖ ≤ δ∗ there is a t0 = t0(q) with |t0| ≤ T0
2 and

a diffeomorphism T̃ q
p : [t0, T0] −→ T̃ q

p ([t0, T0]) ⊂ R
+
0 which satisfies T̃ q

p (t0) = 0,
1
2 ≤ ˙̃T q

p (θ) ≤ 3
2 and (

ST̃ q
p (θ)q − Sθp

)
⊥ f(Sθp)

for all θ ∈ [t0, T0]. Moreover, T̃ q
p (θ) depends continuously on q, and the distance

function d̃(θ) := ‖ST̃ q
p (θ)q − Sθp‖ satisfies

d̃(θ) ≤ 3 ‖p− q‖ e−
ν
4 (θ−t0) for all θ ∈ [t0, T0].(13)

Proof. First, we give the idea of the proof. For a given point q in the neigh-
borhood of p we find a point St0p =: p′, such that we can write q = p′ + η with
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η ⊥ f(p′). Then all statements follow by Proposition 2.1. In the proof we use the
notations of Proposition 2.1.

I. Since f is uniformly continuous on the compact set GS , there is a constant
δ2 > 0 so that for all ξ ∈ R

n with ‖ξ‖ ≤ δ2 and all p ∈ GS

‖f(p)− f(p + ξ)‖ ≤ ε1
2

(14)

holds, where ε1 is the constant of (6). Set δ∗ := min
(

δ2
2 , δ

6 , ε1
8 T0

)
, where δ was

defined in (8).
Now we fix a point p ∈ GS and choose a 0 < δ̃ ≤ δ∗. We prove that there

are times −T0
2 ≤ t1 < 0 < t2 ≤ T0

2 with ‖p − St1p‖ = ‖p − St2p‖ = 2δ̃ and
‖p − Stp‖ < 2δ̃ for all t ∈ (t1, t2).

We prove the existence of t1. Since ‖p − Stp‖ is continuous with respect to t,
assuming the opposite means that Sτp ∈ B2δ̃(p) for all τ ∈ [−T0

2 , 0
]

and therefore
Sτp is defined by prolongation for all these τ . This yields

‖p − Stp‖ =
∥∥∥∥
∫ t

0

f(Sτp) dτ

∥∥∥∥
=

∥∥∥∥
∫ t

0

f(p) dτ +
∫ t

0

(f(Sτp) − f(p)) dτ

∥∥∥∥
≥ |t|

(
‖f(p)‖ − ε1

2

)
by (14)

≥ |t|ε1
2

by (6)

for all t ∈ [−T0
2 , 0

]
. For t = −T0

2 we conclude ‖p − ST0
2

p‖ ≥ 2δ∗ ≥ 2δ̃, which is a
contradiction. This proves the existence of t1. To show the existence of t2 we can
argue in a similar way.

II. We show that for all points q ∈ Bδ̃(p) there is a t0 ∈ (t1, t2) ⊂ [−T0
2 , T0

2

]
so

that (q − St0p) ⊥ f(St0p) and ‖q − St0p‖ ≤ 3δ̃ ≤ δ
2 .

We fix q ∈ Bδ̃(p) and define the continuous function a(τ) by a(τ) := ‖q−Sτp‖.
We have a(0) ≤ δ̃ and a(t1) ≥ ‖St1p−p‖−‖p−q‖ ≥ δ̃, a(t2) ≥ δ̃. The intermediate
value theorem yields the existence of t1 ≤ t′1 < t′2 ≤ t2 with a(t′1) = a(t′2).
Thus a2(t′1) = a2(t′2) and there is a t0 ∈ (t′1, t

′
2) with d

dτ a2(t0) = 0. This proves
〈q − St0p, f(St0p)〉 = 0. As ‖q − St0p‖ ≤ ‖q − p‖ + ‖p− St0p‖ ≤ δ̃ + 2δ̃ ≤ 3δ∗ ≤ δ

2
the claim is proven.

III. Choose q with ‖p − q‖ ≤ δ∗ and set δ̃ := ‖p − q‖. By II. there exists a t0(q)
with |t0(q)| ≤ T0

2 such that q = St0p + η, where q − St0p = η ⊥ f(St0p) and
‖η‖ ≤ δ

2 . By Proposition 2.1 and II. we have(
ST q

St0p(θ)q − St0+θp
)

⊥ f (St0+θp)

and ‖ST q
St0p(θ)q − St0+θp‖ ≤ ‖q − St0p‖ e−

ν
4 θ ≤ 3 δ̃ e−

ν
4 θ
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for all θ ∈ [0, T0 − t0]. Mind that δ̃ = ‖p − q‖. Thus, (13) follows by setting
T̃ q

p (t0 + θ) := T q
St0p(θ). �

If the whole positive orbit through p stays in the bounded set BS(0), the state-
ments of Propositions 2.1 and 2.2 hold for all positive times by prolongation. Thus,
we get the following results concerning the ω-limit sets of nearby points.

Proposition 2.3. Let the assumptions of Theorem 1.2 be satisfied. For S > 0
there are three positive constants δ, δ∗ and ν such that the following holds for all
p ∈ G, for which s(p) = supt≥0 ‖Stp‖ ≤ S:
For all η ∈ R

n with η ⊥ f(p) and ‖η‖ ≤ δ
2 , there exists a diffeomorphism

T p+η
p : R

+
0 −→ R

+
0 which satisfies 1

2 ≤ Ṫ p+η
p (θ) ≤ 3

2 and(
ST p+η

p (θ)(p + η) − Sθp
)
⊥ f(Sθp)

for all θ ≥ 0. T p+η
p (θ) depends continuously on η, and the distance function

d(θ) = ‖ST p+η
p (θ)(p + η) − Sθp‖ satisfies

d(θ) ≤ e−
ν
4 θ ‖η‖ for all θ ≥ 0.(15)

Moreover, for the ω-limit sets we have ω(p) = ω(p + η).
For all q ∈ R

n with ‖p − q‖ ≤ δ∗ we have ω(p) = ω(q).
Furthermore, for each τ ≥ 0, there is a θ ≥ 0 such that (16) holds.

‖Sθp − Sτ q‖ ≤ 3 ‖p− q‖.(16)

Also, for each θ ≥ 0, there is a τ ≥ 0 such that (16) holds.

Proof. We define δ as in (8). Using the notations of Proposition 2.1 we have
Stp ∈ GS for all t ≥ 0. Thus, the proof of Proposition 2.1 shows that we can
define T (θ) and d(θ) for all θ ≥ 0 by a prolongation argument, and also (3) holds
for all positive θ, i.e., (15) is proven.

Now we show that all points p + η with η as above have the same ω-limit set as
p itself. Assume w ∈ ω(p). Then we have a strictly increasing sequence θn → ∞
satisfying ‖w − Sθnp‖ → 0 as n → ∞. Because of (15) and Ṫ := Ṫ p+η

p ≥ 1
2

the sequence T (θn) satisfies T (θn) → ∞ and ‖ST (θn)(p + η) − Sθnp‖ = d(θn) ≤
≤ δ

2 exp(− ν
4 θn) → 0 as n → ∞. This proves ST (θn)(p + η) → w and w ∈ ω(p + η).

The inclusion ω(p + η) ⊂ ω(p) follows similarly.
Now we consider the extension of Proposition 2.2. We set δ∗ := min

(
δ2
2 , δ

6

)
.

Then by similar arguments as in the proof of Proposition 2.2 there are times
− 4δ∗

ε1
≤ t1 < 0 < t2 ≤ 4δ∗

ε1
such that the statements of I. hold (cf. the proof of

Proposition 2.2). II. and III. also hold with |t0| ≤ 4δ∗
ε1

. T̃ (θ) and d̃(θ) are defined
for all θ ≥ t0 as in Proposition 2.2. Also, (13) holds for all θ ≥ t0 and in particular
p and q have the same ω-limit set.
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Now we prove (16). For τ ≥ 0 we choose θ = (T̃ q
p )−1(τ). If θ ≥ t0, set τ = T̃ q

p (θ).
In both cases (16) follows by (13). If 0 ≤ θ < t0, then choose τ = 0. We have then

‖Sθp − q‖ ≤ ‖Sθp − p‖ + ‖p − q‖
≤ 2δ̃ + ‖p − q‖

by I. of Proposition 2.2 since [0, t0) ⊂ (t1, t2). �
The next proposition is the main step towards unbounded sets G. Recall the

definition s(p) := supt≥0 ‖Stp‖. We will prove that either s(p) = ∞ for all p ∈ G
or s(p) < ∞ for all p ∈ G. If s(p) = ∞ for all p ∈ G, then the same holds true
for all points of the boundary. In the other case, the same is only true if G has a
boundary, which is given by the graph of a smooth map. In Section 3.4 we give
an example for a dynamical system and a set G which satisfy the assumptions of
Theorem 1.2 with s(p) < ∞ for all p ∈ G, but there is a q ∈ ∂G with s(q) = ∞.

Proposition 2.4. Let the assumptions of Theorem 1.2 be satisfied.
Then either s(p) = ∞ for all p ∈ G or s(p) < ∞ for all p ∈ G.

Proof. Define G∗ := {p ∈ G | s(p) < ∞} and G′ := {p ∈ G | s(p) = ∞}.
Obviously G = G∗ ∪̇G′. If we can prove that both G∗ and G′ are open, we have
either G∗ = ∅ or G′ = ∅ since G is connected. We will show that G∗ is open in
the first, and that G′ is open in the second step. At the end we will deal with the
points of the boundary.

I. In this step we will show: If q ∈ G with s(q) < ∞, then for all q′ with ‖q−q′‖ ≤
≤ δ∗ where δ∗ is chosen as in Proposition 2.3 with S = s(q)

|s(q) − s(q′)| ≤ 3 ‖q − q′‖(17)

holds. This means that s is a continuous function and that if s(q) < ∞ holds for a
point q ∈ G, than this property holds for all points of a neighborhood of q. Hence,
in particular G∗ is an open set.

Choose a point q′ with ‖q − q′‖ ≤ δ∗. First we show that s(q′) < ∞. If this
was not the case, there would be a τ ≥ 0, such that ‖Sτq′‖ ≥ 2 s(q) + 3 ‖q − q′‖.
But by Proposition 2.3, (16) there is a θ ≥ 0 such that ‖Sθq − Sτ q′‖ ≤ 3‖q − q′‖
holds. Then

‖Sθq‖ ≥ ‖Sτq′‖ − ‖Sθq − Sτq′‖
≥ 2 s(q),

which is a contradiction to s(q) = supθ≥0 ‖Sθq‖. Hence, s(q′) < ∞.

Let θn ≥ 0 be a sequence of times such that
∣∣∣s(q) − ‖Sθnq‖

∣∣∣ ≤ 1
n . Then by

Proposition 2.3 there are times τn ≥ 0 such that ‖Sθnq − Sτnq′‖ ≤ 3 ‖q − q′‖.
Hence,

s(q′) ≥ ‖Sτnq′‖
≥ s(q) −

∣∣∣s(q) − ‖Sθnq‖
∣∣∣ − ‖Sθnq − Sτnq′‖

≥ s(q) − 1
n
− 3 ‖q − q′‖.
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Hence, s(q′) ≥ s(q) − 3 ‖q − q′‖. Assume now that τn ≥ 0 is a sequence such
that

∣∣∣s(q′) − ‖Sτnq′‖
∣∣∣ ≤ 1

n . By a similar argument we can show that s(q′) ≤
≤ s(q) + 3 ‖q − q′‖ and thus |s(q′) − s(q)| ≤ 3 ‖q − q′‖.
II. We want to show that G′ is open. Assuming the opposite there is a p′ ∈ G′

such that every neighborhood of p′ contains a point of G∗. Since p′ ∈ G, which is
open, there is a ball Bε(p′) ⊂ G with ε > 0. This is a neighborhood of p′ in G and
thus it contains a point q ∈ G∗. Consider the line γ̃(l) = lp′ + (1 − l)q, l ∈ [0, 1],
with γ̃(0) = q ∈ G∗ and γ̃(1) = p′ 6∈ G∗. Let l∗ be the minimal 0 ≤ l ≤ 1 such that
γ̃(l) 6∈ G∗. This number exists since G∗ is open, and we have 0 < l∗ ≤ 1. Denote
p := γ̃(l∗) ∈ G′ and r := ‖p− q‖ > 0. Now consider the line γ(λ) := λp+(1−λ)q.
We have the following situation: γ(λ) ∈ G∗ for λ ∈ [0, 1) and γ(1) = p ∈ G′.
1. We show the following:

s(γ(λ)) ≤ s(q) + 4r =: s∗ for all λ ∈ [0, 1).(18)

Note that the function h(λ) := s(γ(λ)) − s(q) − 4‖γ(λ) − q‖ is continuous for
all λ ∈ [0, 1) by I. If the claim was wrong, there would be a λ∗ ∈ [0, 1) such that
h(λ∗) > 4(r−‖γ(λ∗)−q‖) ≥ 0. The minimum of h(λ) for λ ∈ [0, λ∗] is nonpositive
since h(0) = 0, and thus it is assumed at λ′ 6= λ∗. In γ(λ′) ∈ G∗ we can choose a
δ∗ according to Proposition 2.3, which depends on S = s(γ(λ′)). If λ∗−λ′ > α > 0
is chosen so small that ‖γ(λ′) − γ(λ′ + α)‖ = rα ≤ δ∗ then by (17)

|s(γ(λ′)) − s(γ(λ′ + α))| ≤ 3 ‖γ(λ′) − γ(λ′ + α)‖ = 3 α r .(19)

Since h assumes its minimum in λ′, we have h(λ′ + α) ≥ h(λ′). Hence,

s(γ(λ′ + α)) − s(γ(λ′)) ≥ 4 (‖γ(λ′ + α) − q‖ − ‖γ(λ′) − q‖)
= 4 αr .

But this is a contradiction to (19). Thus, we have shown (18).
2. Since p ∈ G′, there is a minimal T0 > 0 such that ‖ST0p‖ = 2s∗ where s∗ was
defined in (18). Now choose for this T0 and S := 2s∗ a δ∗ with Proposition 2.2.
Let δ̃ = min

(
δ∗, s∗

6 , r
2

)
. Then (13) of Proposition 2.2 yields for q′ := γ

(
1 − δ̃

r

)
s∗

2
≥ 3 δ̃

= 3 ‖q′ − p‖
≥ ‖ST0p − S

T̃ q′
p (T0)

q′‖
≥ ‖ST0p‖ − s(q′)
≥ 2s∗ − s∗

by (18), which is a contradiction to s∗ > 0. Hence, G′ is open.
Since G is connected and G∗ and G′ are open, either s(p) = ∞ for all p ∈ G or

s(p) < ∞ for all p ∈ G. Now assume that s(p) = ∞ for all p ∈ G and s(p0) < ∞
for a p0 ∈ ∂G. By I. s(p) < ∞ for all ‖p − p0‖ ≤ δ∗ and thus in particular
there is a p ∈ G with this property, which is a contradiction. This proves the
proposition. �
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If s(p) < ∞ for all p ∈ G and p0 ∈ ∂G with s(p0) = ∞ following the above
argumentation we can only show a contradiction, if there is a line γ∗(λ) := λp0 +
(1 − λ)q with γ∗([0, 1)) ⊂ G. In Section 3.4 we give an example where there is no
such line. If, however, the boundary of G is the graph of a smooth map, we can
always find such a line and thus the points of the boundary behave like the inner
points.

Using again the fact that G is connected we can now prove Proposition 2.5
showing that all points of G have the same ω-limit set.

Proposition 2.5. Let the assumptions of Theorem 1.2 be satisfied.
Then either s(p) = ∞ for all p ∈ G. Or ∅ 6= ω(p) = ω(q) =: Ω ⊂ G for all
p, q ∈ G, and Ω is invariant and bounded.

Proof. Either s(p) = ∞ holds for all p ∈ G. Or there is a point p0 ∈ G such that
s(p0) =: S < ∞ by Proposition 2.4. Since for all θ ≥ 0 we have Sθp0 ⊂ G∩BS(0),
which is a compact set, ∅ 6= ω(p0) =: Ω ⊂ G ∩ BS(0), and Ω is invariant and
bounded.

Now consider an arbitrary point p ∈ G. By Proposition 2.4 s(p) < ∞. Thus
by Proposition 2.3 with S = s(p) we have ω(p) = ω(q) for all q in a neighborhood
of p. Hence V1 := {p ∈ G | ω(p) = ω(p0)} and V2 := {p ∈ G | ω(p) 6= ω(p0)} are
open sets. Since G = V1 ∪̇V2, p0 ∈ V1 and G is connected, V2 must be empty and
V1 = G. �

To finally prove Theorem 1.2, it remains to show that Ω is an exponentially
asymptotically stable periodic orbit. Proposition B.1 which is stated and proven
in the appendix gives a sufficient condition under which a point p belongs to an
exponentially asymptotically stable periodic orbit.

Proof of Theorem 1.2. By Proposition 2.5 we either have s(p) = ∞ for all p ∈ G.
Or, by the same proposition, we can choose a point p0 ∈ Ω. Since Ω is invariant
and bounded, s(p0) < ∞. Also, ω(p0) = Ω by Proposition 2.5 if p0 ∈ G. If p0 ∈ ∂G
then by Proposition 2.3 ω(p0) = ω(q) holds for all points q in a neighborhood of
p0 and in particular for a q ∈ G, and then, again by Proposition 2.5, ω(q) = Ω.
Thus we have p0 ∈ Ω = ω(p0) in both cases.

By Proposition 2.3 with S := s(p0) also the other conditions of Proposition B.1
are satisfied with p0, g(θ) := f(Sθp)

‖f(Sθp)‖ and C := 1. Hence, Ω is an exponentially
asymptotically stable periodic orbit and by Proposition 2.5 ω(q) = Ω for all q ∈ G.
Since Ω is asymptotically stable, q ∈ A(Ω) follows for all q ∈ G.

It remains to prove uniqueness. If Ω′ ∈ G is a periodic orbit then for p′ ∈ Ω′

we have s(p′) < ∞, since Ω′ is invariant and bounded. But with the same ar-
gumentation as above, ω(p′) = ω(q) = Ω for a nearby point q ∈ G and hence
Ω′ = Ω. �
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Proof of Corollary 1.4. Note that the connectedness of K does not imply the

connectedness of
◦
K. Hence, we cannot directly apply Theorem 1.2 to G =

◦
K.

Also, we have to show that not only
◦
K but the whole set K is a subset of A(Ω).

Since K is compact and positively invariant, there is a S ≥ 0 such that
K ⊂ BS(0). Hence, Proposition 2.1 to 2.3 hold for G = K. We choose a p0 ∈ K
and then ∅ 6= ω(p0) =: Ω ⊂ K since K is compact. As in Proposition 2.5 we
can show ω(p) = Ω for all p ∈ K. Using Proposition B.1 we show that Ω is an
exponentially asymptotically stable periodic orbit (for details cf. [7]). �

3. Examples

To apply Theorem 1.2 we first calculate the sign of L in the phase space and
then search for a positively invariant set G which lies in the part of the phase
space where L is negative.

In the first section we will apply Theorem 1.2 to the FitzHugh-Nagumo equa-
tion. In the second section we show how to use Theorem 1.2 in order to prove
that the whole set {x ∈ R

2 | L(x) ≤ 0} belongs to the basin of attraction of a
limit cycle. In the third section we consider a three-dimensional system and in
the last section we give a two-dimensional example, where G belongs to the basin
of attraction of a limit cycle, whereas the positive orbits of some points of the
boundary are unbounded.

3.1. FitzHugh-Nagumo equation

The FitzHugh-Nagumo equation was introduced by FitzHugh [8] and Nagumo
[14] as a model for the nerve conduction (cf. (1) and (2) in [8]).


ẋ = c

(
y + x − x3

3
+ z

)
ẏ = −x − a + by

c

(20)

The existence and uniqueness of limit cycles of (20) have been shown recently in
[12] for general parameter values using results on the existence and uniqueness of
limit cycles of Liénard’s equation.

We consider the parameter values a = 0.7, b = 0.8 and c = 3 (cf. [8], Figure 5)
as model for the break reexcitation in the heart muscle (cf. [8], p. 455). We set
z = −0.85. We use the simple transformation x 7→ κx with κ = 0.8 and obtain
the equations 


ẋ = cκ

(
y +

x

κ
− 1

3

(x

κ

)3

+ z

)
ẏ = −1

c

(x

κ
− a + by

)(21)

There is exactly one (unstable) equilibrium at approximatively (0.0395, 0.7516)
which is marked in Figure 2.
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Instead of the function L we calculate the function

L̃(x, y) = (f2(x, y),−f1(x, y))Df(x, y)
(

f2(x, y)
−f1(x, y)

)
which has the same sign as L. Figure 2, left, shows the zero set of L̃ (thick line).
Inside L̃ is positive and outside negative. We denote by G the points outside the
polygone with edges (−0.35, 1.6), (0.55, 1.05), (0.55, 0.45), (0.5, 0.23), (0.4, 0.11),
(0.21, 0.13), (−0.4, 0.35), (−0.5, 1.42), and (−0.41, 1.58). Since G is an open and
connected set, G is positively invariant and L(p) < 0 holds for all points p ∈ G, we
can apply Theorem 1.2. Since the set {(x, y) ∈ R

2 | √
x2 + y2 ≤ 2} is positively

invariant, there is a bounded positive orbit and thus there is a unique limit cycle
in G and G belongs to its basin of attraction. The right hand part of Figure 2
shows the approximated periodic orbit and the set G, which belongs to its basin
of attraction, as we have proven.
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Figure 2. left: the zero set and the sign of L (thick line) and the boundary (thin line) of the
set G which belongs to the basin of attraction of a unique limit cycle; right: the approximated

limit cycle (dotted line) and G for (21).

− +
−

+

−

G

G

3.2. A two-dimensional system with known limit cycle

A problem in applications is to find a positively invariant set G. In this example
we use the orbital derivative of the function L̃ to show that sets of the form
{p ∈ R

2 | L̃(p) < −ν} are positively invariant.
Consider the two-dimensional system


 ẋ =

(
x − 1

2

)
(1 − x2 − y2) − y

ẏ = y(1 − x2 − y2) + x
(22)
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There is exactly one equilibrium at approximatively (−0.2209, 0.2483), which is
marked in Figure 3. Ω = {(x, y) | x2 + y2 = 1} is a periodic orbit. In Figure 3 the
zero set of L̃ is shown as a thick line. Inside L̃ is positive and outside negative.
We claim that G′ := {p 6= (0, 0) | L̃(p) ≤ 0} belongs to the basin of attraction of
the periodic orbit Ω.

Since this set G′ does not satisfy the condition L(p) < 0 for all p ∈ G′ we
cannot apply Theorem 1.2 to G′. Instead, we will apply this theorem to sets of
the form Gν := {p 6= (0, 0) | L̃(p) < −ν} with ν > 0. We first calculate the orbital
derivative g(x, y) := 〈∇L̃(x, y), f(x, y)〉 of L̃ (note that f ∈ C2(R2, R2)). The zero
set of g is plotted in Figure 3 as thin lines. We find that the zero set of L̃ lies in
the region, where g is negative.

–1

–0.5

0

0.5

1

y

–1 –0.5 0.5 1
x

Figure 3. The zero sets and the signs of L̃ (thick line) and g (thin lines) for (22). The set

G′ = {(x, y) ∈ R
2 | L̃(x, y) ≤ 0} is a subset of the basin of attraction of the limit cycle

Ω = {(x, y) ∈ R
2 | x2 + y2 = 1}.

+ −

+ −
+

G′

Choosing Gν := {p 6= (0, 0) | L̃(p) < −ν} for ν > 0 so small, that the boundary
of Gν lies in the region, where g is negative, we can apply Theorem 1.2 to Gν .
We check that the conditions are fulfilled. Gν is open and connected. L is strictly
negative in Gν , because so is L̃. Gν does not contain the equilibrium. Since the
orbital derivative g(x, y) := 〈∇L̃(x, y), f(x, y)〉 is strictly negative for (x, y) ∈ ∂Gν ,
Gν is positively invariant. To show that Gν ⊂ A(Ω) we have to exclude the first
alternative of the theorem. But the points of the periodic orbit which lies in Gν

have bounded positive orbits and thus Gν ⊂ A(Ω).
For a point p ∈ G′ with L̃(p) < 0, we can find a ν > 0 such that p ∈ Gν and

use the above argumentation. If p ∈ G′ with L̃(p) = 0, g(p) < 0 guarantees that
L̃(Stp) < 0 for small t > 0. We can use the above argumentation for Stp, and
hence also ω(p) = ω(Stp) = Ω, i.e. p ∈ A(Ω).
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3.3. A three-dimensional example

In two-dimensional systems the Poincaré-Bendixson theorem already gives a com-
plete characterization of the possible ω-limit sets. Theorem 1.2, however, is valid
in any dimension n ≥ 2 and thus we give a higher-dimensional example. In three-
dimensional systems there is a two-dimensional family of vectors v ⊥ f(x). It is
possible to determine analytically a vector v0 depending on x with f(x) 6= 0 such
that L(x) = max‖v‖=1,v⊥f(x) L(x, v) = L(x, v0). In the following, however, we will
estimate L(x, v) without calculating such a vector v0 explicitly.

Let us consider the following three-dimensional system


ẋ1 = (9 − x2
1 − x2

2 − x2
3)x1 − x2

ẋ2 = (9 − x2
1 − x2

2 − x2
3)x2 + x1 + 0.25

ẋ3 = (−x2
1 − x2

2 − x2
3)x3 + 0.25

(23)

We choose G = {(x1, x2, x3) ∈ R
3 | x2

1 + x2
2 > ρ2, |x3| < z0} with ρ := 2.9 and

z0 := 0.1 and claim that this set is part of the basin of attraction of a unique limit
cycle. We check that the assumptions of Theorem 1.2 are satisfied.

We calculate L(x, v) for ‖v‖ = 1 and denote ‖x‖ =
√

x2
1 + x2

2 + x2
3.

L(x, v) = −‖x‖2 + 9(v2
1 + v2

2) − 2〈x, v〉2

If ‖x‖ > 3, then we have L(x, v) < 0 since v2
1 + v2

2 ≤ 1. Now we consider the case
‖x‖ ≤ 3. We use v ⊥ f(x), i.e.

0 = 〈x, v〉(9 − ‖x‖2) − 9x3v3 + x1v2 − x2v1 + 0.25v2 + 0.25v3.(24)

Hence, using
√

x2
1 + x2

2 ≤ ‖x‖ ≤ 3, we get with (24) for any k1, k2 > 0

−〈x, v〉2[1 + (9 − ‖x‖2)2]
= −(x1v1 + x2v2)2 − 2(x1v1 + x2v2)x3v3 − x2

3v
2
3

− (x1v2 − x2v1)2 − 2(x1v2 − x2v1)[−9x3v3 + 0.25v3 + 0.25v2]
− [−9x3v3 + 0.25v3 + 0.25v2]2

≤ −(x2
1 + x2

2)(v
2
1 + v2

2)

+ 2
√

x2
1 + x2

2

√
v2
1 + v2

2 [10|x3v3| + 0.25|v3| + 0.25|v2|]

≤ −ρ2(v2
1 + v2

2) + 3
(

k1(v2
1 + v2

2) +
1
k1

(10z0 + 0.25)2v2
3

)

+ 3
(

k2(v2
1 + v2

2) +
1
k2

(0.25)2v2
2

)
.

Setting k2 := 1
4
√

26
and k1 := 25k2 we get with v2

2 + v2
3 ≤ 1

−〈x, v〉2[1 + (9 − ‖x‖2)2] ≤
(

3
4

√
26 − ρ2

)
(v2

1 + v2
2) +

3
4

√
26.
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We plug this into the formula for L(x, v).

L(x, v) ≤ −‖x‖2 + 9(v2
1 + v2

2) +
3
2

√
26 − 2ρ2

1 + (9 − ‖x‖2)2
(v2

1 + v2
2)

+
3
2

√
26

1 + (9 − ‖x‖2)2

=
1

1 + (9 − ‖x‖2)2

[
− ‖x‖2[1 + (9 − ‖x‖2)2] +

3
2

√
26

+ (v2
1 + v2

2)
(

9[1 + (9 − ‖x‖2)2] +
3
2

√
26 − 2ρ2

) ]
.

Depending on the sign of 9[1+(9−‖x‖2)2]+ 3
2

√
26−2ρ2 the maximal value of the

right hand side is assumed either for v2
1 + v2

2 = 0 or for v2
1 + v2

2 = 1, respectively.
In the first case

L(x, v) ≤ 1
1 + (9 − ‖x‖2)2

[
−ρ2 +

3
2

√
26

]
< 0

since ρ2 = 8.41. In the second case we have with 9 ≥ ‖x‖2 ≥ x2
1 + x2

2 ≥ ρ2

L(x, v) ≤ 1
1 + (9 − ‖x‖2)2

[
(9 − ‖x‖2)[1 + (9 − ‖x‖2)2] + 3

√
26 − 2ρ2

]
≤ 1

1 + (9 − ‖x‖2)2
[
(9 − ρ2)[1 + (9 − ρ2)2] + 3

√
26 − 16.82

]
< 0.

Thus L is negative in G.
Moreover we have to prove that G is positively invariant. At x3 = |z0| we have

for x2
1 + x2

2 ≥ ρ2

1
2

d

dt
x2

3 = −z2
0‖x‖2 + 0.25x3

≤ −z2
0ρ

2 + 0.25z0 < 0.

We calculate
1
2

d

dt
(x2

1 + x2
2) = (x2

1 + x2
2)(9 − ‖x‖2) + 0.25x2.

At x2
1 + x2

2 = ρ2 and |x3| ≤ z0 we have
1
2

d

dt
(x2

1 + x2
2) ≥ ρ2(9 − ρ2 − z2

0) − 0.25ρ > 0.

To find a bounded positive orbit, we consider the set G̃ := {(x1, x2, x3) ∈ R
3 |

ρ2 ≤ x2
1+x2

2 ≤ R2, |x3| ≤ z0} with R = 4. This bounded set is positively invariant,
because at x2

1 + x2
2 = R2 we have
1
2

d

dt
(x2

1 + x2
2) ≤ R2(9 − R2) + 0.25R < 0.

Hence, Theorem 1.2 yields that there is a unique limit cycle in G and that G
belongs to its basin of attraction.
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3.4. Different behaviour of boundary and inner points

In this section we give an example, where the set G fulfills the conditions of
Theorem 1.2 and the second alternative is valid, i.e. all points of G belong to the
basin of attraction of a periodic orbit, but at the same time there are points of
the boundary, the positive orbits of which tend to infinity.

Let us briefly sketch, how such an example can be constructed. We start with
the two-dimensional system, which reads ṙ = r(1 − r) and φ̇ = −1 in polar
coordinates. Hence, the circle r = 1 is an exponentially asymptotically stable
periodic orbit and its basin of attraction is R

2 \ {0} (cf. Figure 4, above). We
will construct the example by modifying this system. The set G will be the union
of tubes Gk and a set G− which connects the tubes. While all points of G are
attracted by the periodic orbit, G will include a line, the positive orbits of which
are unbounded.

There is a 0 < r0 < 1 such that L is strictly negative for all points with r > r0.
Choose −1 < i0 < −r0 and o0 < −1. The image points after time π and 2π, re-
spectively, are called (o′0, 0) := Sπ(o0, 0), (o′′0 , 0) := S2π(o0, 0), (i′0, 0) := Sπ(i0, 0),
(i′′0 , 0) := S2π(i0, 0). We have o0 < o′′0 . Choose a point (o′′∞, 0) such that o0 <
< o′′∞ < o′′0 and denote its backward image points at times π and 2π, respectively,
by (o′∞, 0) and (o∞, 0), such that Sπ(o∞, 0) = (o′∞, 0) and S2π(o∞, 0) = (o′′∞, 0).
Denote G− := {q = St(x, 0) | i′0 < x < o′∞, t ∈ (0, π]}.

All points (x, 0) with o∞ < x < 0 will be mapped to some points Sπ(x, 0) =
= (x′, 0) with 0 < x′ < o′∞. Choose points ij , oj with j ∈ N such that o0 > i1 >
> o1 > i2 > o2 > . . . > o∞ and limj→∞ oj = o∞ (cf. Figure 4, below). Then for
the image points after time π such that Sπ(oj , 0) = (o′j , 0) and Sπ(ij , 0) = (i′j , 0)
for all j ∈ N we have o′0 < i′1 < . . . < o′∞. We will now smoothly transform
the upper halfplane, but still the points (x, 0) will reach their former destination
points (x′, 0). In particular, (ij , 0) and (oj , 0) will eventually reach the points
(i′j , 0), (o′j , 0) respectively.

Let the positive orbit of (o∞, 0) tend to (o∞,∞) parallel to the y-axis (cf.
Figure 4, below). Let the points (x, 0) for which o∞ < x < i1 holds tend to(
o∞ + |x−o∞|

|i1−o∞|
|i1−o∞|+|i′1−o′

∞|
2 ,∞

)
(dotted line). At the right hand side let the

points (x′, 0) with o′∞ > x′ > i′1 tend to
(
o′∞ − |x′−o′

∞|
|i′1−o′∞|

|i1−o∞|+|i′1−o′
∞|

2 ,∞
)

when
t → −∞. Correcting also the orbits outside these stripes, we can assure that
L(o∞, y) < 0 and L(o′∞, y) < 0 for all y ≥ 0 and also that L is strictly negative
on the two stripes. We can make this change smooth at the points (x, 0) and also
assure L(x, 0) < 0 for all o∞ ≤ x ≤ i1 and i′1 ≤ x ≤ o′∞.

Up to now the points of the stripe (x, 0) with o∞ ≤ x ≤ i1 tend to infinity. We
change the positive orbits so that – as we claimed before – the points (x, 0) with
o∞ < x < 0 reach their original destination points (x′, 0) with 0 < x′ < o′∞. For
all points (x, 0) with o1 < x < i1 we keep the positive orbits up to height y = 1
and then lead them to the points (x̃, 1), which will later reach the points (x′, 0).
We can do that by further contracting the tube, such that L < 0 all the way from
(x, 1) to (x̃, 1). The positive orbits of the points (x, 0) with i1 < x < o0 are also
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Figure 4. Sketch of the construction of a dynamical system and a set G =
⋃∞

k=0 Gk ∪G− such
that G belongs to the basin of attraction of the unit circle which is a limit cycle and there are

points of ∂G the positive orbit of which tend to infinity.

o′′∞ o′′0 i′′0 i′0 o′0

o∞ o0 i0 o′∞

G−

G2

G1

G0

o′′∞ o′′0 i′′0 i′0 o′0
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G−
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changed so that they will reach the points (x′, 0) as before. We can make this
change smooth, which has not been done in the sketch in Figure 4, below.

Now proceed for k = 2, 3, . . . by changing the positive orbits for all points (x, 0)
with ok < x < ik. We keep the positive orbits up to height y = k and then lead
them to the points (x̃, k), which will later reach the points (x′, 0). We can do
that by further contracting the tube, such that L < 0 all the way from (x, k) to
(x̃, k). The positive orbits of the points (x, 0) with ik < x < ok−1 are also changed
so that they will eventually reach the points (x′, 0) as before. We can make this
change smooth. Hence, all points (x, 0) with o∞ < x ≤ o0 reach points (x′, 0) with
o′0 ≤ x′ < o′∞.

We define Gk :=
{
St(x, 0) | 3

4ok + 1
4 ik < x < 1

4ok + 3
4 ik, t ∈ (0, Tk(x)]

}
, where

Tk(x) is the time, when the positive orbit reaches the point STk(x)(x, 0) = (x′, 0),
and k ∈ N. Moreover let us define the set

G0 :=
{

St(x, 0) | 1
2
o0 +

1
2
o′′∞ < x < i0, t ∈ (0, T0(x)]

}

where T0(x) is the time, when the positive orbit reaches the point ST0(x)(x, 0) =
= (x′, 0).

Now set G :=
⋃∞

k=0 Gk ∪ G−. We claim that G satisfies the conditions of
Theorem 1.2. G is open. It is arcwise connected, because two points of Gk and
Gl can be connected by a path leading to G− and back. G contains the half-axes
{(o∞, y) | y ≥ 0} and {(o′∞, y) | y ≥ 0}. As we showed above, L is strictly negative
on G, this set is positively invariant by construction and does not contain the only
equilibrium, which is situated in the origin. Since the periodic orbit r = 1 belongs
to G there is a bounded positive orbit, and, by Theorem 1.2, G belongs to the basin
of attraction of this periodic orbit. However, the points (o∞, y) with y ≥ 0 have
unbounded positive orbits and hence G does not belong to the basin of attraction
of the periodic orbit. Note that for a point p0 = (o∞, y) ∈ ∂G there is no line
γ∗(λ) := λp0 + (1 − λ)q such that γ∗([0, 1)) ⊂ G. This corresponds to the remark
after Proposition 2.4.

Appendix A. Continuity of L

In Proposition A.2 we will show that the function L(p) depends continuously on
p. In order to do so we prove in Lemma A.1 the existence of a linear map Nξ,
which maps the hyperplane f(p)⊥ to f(p + ξ)⊥.

Lemma A.1. Assume f ∈ C1(Rn, Rn). Let D := {x ∈ R
n | f(x) 6= 0} and

fix p ∈ D. There is a δ > 0 such that Bδ(p) := {q ∈ R
n | ‖p − q‖ < δ} ⊂ D.

For each ξ ∈ Bδ(0) there is a linear diffeomorphism Nξ : R
n → R

n which depends
continuously on ξ and satisfies N0 = id, ‖Nξv‖ = ‖v‖ and Nξv ⊥ f(p + ξ) ⇔ v ⊥
f(p).
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Proof. For ξ ∈ Bδ(0) set

f :=
f(p)
‖f(p)‖

f1(ξ) :=
f(p + ξ)
‖f(p + ξ)‖

s(ξ) := 〈f1(ξ), f〉 ∈ [−1, 1]
f2(ξ) := f1(ξ) − s(ξ)f

s(ξ) denotes the cosine of the angle β between f and f1(ξ). If s(ξ) 6= ±1,
{f, f2(ξ)} is an orthogonal basis in the f, f1(ξ)-plane. Now we define Nξv :=

:= v + [(s(ξ) − 1)〈f, v〉 − 〈f2(ξ), v〉] f +
[
− 〈f2(ξ),v〉

1+s(ξ) + 〈f, v〉
]
f2(ξ), if s(ξ) 6= −1,

and Nξv := v − 2〈f, v〉f , if s(ξ) = −1. Nξ rotates in the f, f1(ξ)-plane by β

and keeps the other components. N−1
ξ rotates in the same plane by −β. The

statements of the lemma follow by simple calculations. �

Proposition A.2. Assume f ∈ C1(Rn, Rn). Let D := {x ∈ R
n | f(x) 6= 0}.

Then L :
{

D −→ R

p 7−→ max‖v‖=1,v⊥f(p)〈Df(p)v, v〉 is a continuous function.

Proof. We assume in contradiction that there is a p ∈ D, an ε > 0 and a
sequence ξn with p + ξn ∈ D and ξn → 0, so that |L(p + ξn) − L(p)| ≥ ε for
all n ∈ N. So there is either a subsequence satisfying L(p + ξn) ≥ L(p) + ε or
a subsequence satisfying L(p + ξn) ≤ L(p) − ε. These cases will be dealt with
separately. There is a δ > 0 such that Bδ(p) ⊂ D and we can assume that
ξn ∈ Bδ(0) for all n ∈ N. We consider the linear mapping Mξ := NT

ξ Df(p + ξ)Nξ

with ξ ∈ Bδ(0) (cf. Lemma A.1). Since f is C1 and because of Lemma A.1 Mξ

depends continuously on ξ. Therefore Mξn

n→∞−→ Df(p). Hence, there is a N0 ∈ N,
so that

|vT Mξnv − vT Df(p)v| ≤ ε

2
for all n ≥ N0 and ‖v‖ = 1(25)

1. Case Let ξn be a subsequence with L(p + ξn) ≥ L(p) + ε. Let N ≥ N0.
For L(p + ξN ) there exists by definition a w with w ⊥ f(p + ξN ), ‖w‖ = 1 and
L(p + ξN , w) = L(p + ξN ) ≥ L(p) + ε. Now we set v := N−1

ξN
w. By Lemma A.1 we

have v ⊥ f(p) and ‖v‖ = 1. Moreover,

L(p, v) = vT Df(p)v

≥ vT NT
ξN

Df(p + ξN )NξN v − ε

2
by (25)

= L(p + ξN , w) − ε

2
≥ L(p) +

ε

2

in contradiction to L(p) = max‖v‖=1,v⊥f(p) L(p, v).
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2. Case Now let ξn be a subsequence satisfying L(p + ξn) ≤ L(p) − ε and v be a
vector with ‖v‖ = 1 and v ⊥ f(p) such that L(p, v) = L(p). Let N ≥ N0. Setting
w := NξN v we have w ⊥ f(p + ξN ) and ‖w‖ = 1 by Lemma A.1. Moreover,

L(p) − ε ≥ L(p + ξN )
≥ L(p + ξN , w)

= (NξN v)T Df(p + ξN )NξN v

= vT MξN v

≥ L(p, v) − ε

2
by (25)

= L(p) − ε

2

That is a contradiction and thus we proved the continuity of L(p). �

Appendix B. A sufficient condition for the existence
of a limit cycle

In this appendix we prove Proposition B.1, which gives a more general condition
for a point to belong to an exponentially asymptotically stable periodic orbit
than needed in this paper. This proposition can also be used to prove analogous
results in the time-periodic case, which will be published elsewhere. g(θ) defines
a direction which is not perpendicular to f(Sθp) and changes smoothly. In the
proof of Theorem 1.2 we choose g(θ) = f(Sθp)

‖f(Sθp)‖ .

Proposition B.1. Let p ∈ ω(p) where ω denotes the ω-limit set, and let p be no
equilibrium point. Assume there is a continuous map g : R

+
0 → R

n with ‖g(θ)‖ = 1
and 〈g(θ), f(Sθp)〉 > 0 for all θ ≥ 0. Moreover assume that there are constants
δ, ν > 0 and C ≥ 1 such that for all η ∈ R

n with η ⊥ g(0) and ‖η‖ ≤ δ there is a
diffeomorphism T p+η

p : R
+
0 −→ R

+
0 , such that T p+η

p (θ) depends continuously on η

and satisfies 1
2 ≤ Ṫ p+η

p (θ) ≤ 3
2 ,

〈ST p+η
p (θ)(p + η) − Sθp, g(θ)〉 = 0(26)

and ‖ST p+η
p (θ)(p + η) − Sθp‖ ≤ Ce−νθ‖η‖(27)

for all θ ≥ 0.
Then p is a point of an exponentially asymptotically stable periodic orbit.

Proof. The proof consists of four parts. First we choose new coordinates in
order to characterize the behavior of solutions near p, which will be determined
by f(p). In the second step we define the hyperplane H = p + g(0)⊥ and the
operator π which maps nearby points to H along orbits. In the third step we
define a Poincaré-like map P from the compact set U0 into itself, where U0 is a
subset of the hyperplane H . We prove that the map is contracting and thus we
can show the existence of a periodic orbit in the fourth step.
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I. New coordinates
We will define a new coordinate system centered in p. We define by y the

amount in g(0)-direction and by x the vectorial amount perpendicular to g(0).
The hyperplane H := p + g(0)⊥ consists of precisely the points q, where y(q) = 0.
We define for arbitrary q ∈ R

n

y(q) := 〈q − p, g(0)〉 ∈ R(28)

x(q) := q − p − y(q)g(0) ∈ g(0)⊥.(29)

Then we can express q = p+ y(q)g(0)+x(q) and ‖q− p‖2 = |y(q)|2 + ‖x(q)‖2. We
write the vectors f(q) also in the new coordinates. We set

λ(q) := 〈f(q) − f(p), g(0)〉 ∈ R(30)

u(q) := f(q) − f(p) − λ(q)g(0) ∈ g(0)⊥.(31)

Thus we can write

f(q) = f(p) + λ(q) g(0) + u(q).(32)

Set α0 := 〈g(0), f(p)〉 > 0. As f is continuous in p, there is a 0 < δ1 ≤ δ such that
for all q ∈ Bδ1(p) the following inequalities hold

|λ(q)| ≤ 1
2
α0(33)

‖u(q)‖ ≤ ‖f(p)‖.(34)

Inside the ball Bδ1(p) orbits only can move within a cone. This is shown in the
next lemma.

Lemma B.2. Let Stq ∈ Bδ1(p) hold for all t ∈ [0, τ̃ ] with a constant τ̃ > 0.
Then for all t ∈ [0, τ̃ ] and all τ1, τ2 with 0 ≤ τ1 ≤ τ2 ≤ τ̃ the following inequalities
hold:

1
2
α0 ≤ d

dty(Stq) ≤ 3
2
α0(35)

1
2
α0(τ2 − τ1) ≤ y(Sτ2q) − y(Sτ1q) ≤ 3

2
α0(τ2 − τ1)(36)

and ‖x(Sτ2q) − x(Sτ1q)‖ ≤ k0

(
y(Sτ2q) − y(Sτ1q)

)
,(37)

where k0 := 4 ‖f(p)‖
α0

.

Proof. Writing Stq = p + y(Stq) g(0) + x(Stq) we conclude

f (Stq) =
d

dt
Stq

=
d

dt
y (Stq) · g(0) +

d

dt
x (Stq) .(38)

As x (Stq) ⊥ g(0) for all t ∈ [0, τ̃ ], we have d
dtx (Stq) ⊥ g(0) for all t ∈ [0, τ̃ ], too.

Multiplying (38) with g(0) yields because of (32)

α0 + λ (Stq) =
d

dt
y (Stq) .
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Now we can conclude (35) by (33). Since
∫ τ2

τ1

d
dty (Stq) dt = y (Sτ2q) − y (Sτ1q),

(36) is shown.
Multiplying (38) by d

dtx (Stq) we get with d
dtx (Stq) ⊥ g(0)∥∥∥∥ d

dt
x (Stq)

∥∥∥∥2

=
〈

f(Stq),
d

dt
x (Stq)

〉

=
〈

f(p) + u(Stq),
d

dt
x (Stq)

〉
by (32), i.e.,∥∥∥∥ d

dt
x(Stq)

∥∥∥∥ ≤ ‖f(p)‖ + ‖u(Stq)‖.(39)

Hence,

‖x(Sτ2q) − x(Sτ1q)‖ =
∥∥∥∥
∫ τ2

τ1

d

dt
x(Stq) dt

∥∥∥∥
≤

∫ τ2

τ1

∥∥∥∥ d

dt
x(Stq)

∥∥∥∥ dt

≤
∫ τ2

τ1

(‖f(p)‖ + ‖u(Stq)‖) dt by (39)

≤ 2(τ2 − τ1)‖f(p)‖ by (34)
≤ k0

(
y(Sτ2q) − y(Sτ1q)

)
by (36) .

This proves (37) and the lemma. �

II. Correction to the hyperplane H

Orbits through points in a small ball around p intersect the hyperplane H :=
:= p+g(0)⊥ once in a short time interval. This enables us to define the projection
π on H in the following lemma.

Lemma B.3. Set ε0 := 2‖f(p)‖ +
1
2
α0 and δ2 :=

1
2

δ1

2ε0
α0

+ 1
.

We define the continuous map

π :
{

Bδ2(p) −→ H := p + g(0)⊥

q 7−→ π(q)(40)

by π(q) = St∗(q)q with a continuous function t∗(q) satisfying |t∗(q)| ≤ 2δ2

α0
=: t0

for all q ∈ Bδ2(p).
For p∗ ∈ H ∩ Bδ1(p) we have

‖π(q) − p∗‖ ≤ (k0 + 1)‖q − p∗‖ .(41)

Proof. We show that for q ∈ Bδ2(p) the continuous function y(Sτ q) vanishes
for some τ = t∗. We prove this using (36) and show afterwards that t∗ is close
enough to zero so that Sτq remains in Bδ1(p) for all τ between 0 and t∗.
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We consider only the case y(q) ≤ 0. As long as Sτ q ∈ Bδ1(p) with τ ≥ 0, (36)
implies y(Sτq) ≥ y(q) + τ

2 α0. For τ̃ = − 2
α0

y(q) ≥ 0 we have y(Sτ̃q) ≥ 0. Note
that |τ̃ | ≤ 2

α0
δ2 = t0. The intermediate value theorem implies the existence of a

t∗ ∈ [0, τ̃ ] satisfying y(St∗q) = 0. As y(Sτq) is monotonously increasing in τ by
Lemma B.2, t∗ is unique. By the implicit function theorem we can define t∗(q) by
y(St∗(q)q) = 0. As y and St are continuous functions, so is t∗, which also proves
the continuity of π.

Now we check that Sτq remains in Bδ1(p) for all τ ∈ [0, τ̃ ]. Assuming the
opposite, there is a τ0 ∈ [0, τ̃ ] with ‖Sτ0q − p‖ = δ1 and ‖Sτq − p‖ < δ1 for all
τ ∈ [0, τ0). By (32), (33) and (34) we have ‖f(q)‖ ≤ 2‖f(p)‖ + 1

2α0 = ε0 for all
q ∈ Bδ1(p). This yields

δ1 = ‖Sτ0q − p‖
≤

∥∥∥∥
∫ τ0

0

f(Sτq) dτ

∥∥∥∥ + ‖q − p‖
≤ |τ̃ |ε0 + δ2

≤ δ2

(
2ε0
α0

+ 1
)

=
δ1

2
,

which is a contradiction.
To finally prove (41) we have by (28)

y(q) = 〈q − p, g(0)〉
= 〈q − p∗, g(0)〉 + 〈p∗ − p, g(0)〉︸ ︷︷ ︸

=0

.

Hence, |y(q)| ≤ ‖q − p∗‖. (37) implies

‖x(π(q)) − x(q)‖ ≤ k0 |y(q)| ≤ k0‖q − p∗‖.
We conclude

‖π(q) − p∗‖ = ‖x(π(q)) − x(p∗)‖
≤ ‖x(π(q)) − x(q)‖ + ‖x(q) − x(p∗)‖
≤ (k0 + 1)‖q − p∗‖.

This completes the proof of Lemma B.3. �

III. A Poincaré-like map

We have p ∈ ω(p). Thus, there is a T ∗ ≥ 3t0 + 2 ln[2C(k0+1)]
ν , so that ST∗p ∈

∈ Bδ∗(p), where δ∗ := δ2
2(k0+1) . Lemma B.3 shows that there is a T1 ∈ [T ∗ − t0,

T ∗ + t0] so that p1 := ST1p = π(ST∗p) satisfies p1 ∈ H and ‖p1 − p‖ ≤ δ2
2 by (41).

Note that T1 ≥ 2
(
t0 + ln[2C(k0+1)]

ν

)
≥ ln[2C(k0+1)]

ν . Set δ3 := 2‖p1 − p‖ ≤ δ2 ≤
≤ δ1 ≤ δ. By assumption (27) a point q of the compact set U0 := H ∩ Bδ3(p)
will reach a point q1 := ST q

p (T1)q which satisfies ‖q1 − p1‖ ≤ Ce−νT1‖q − p‖ ≤
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≤ δ3
2(k0+1) < δ2 (cf. the definition of T1). By Lemma B.3 the point π(q1) fulfills

π(q1) ∈ H and by (41) ‖π(q1) − p1‖ ≤ (k0 + 1)‖q1 − p1‖ ≤ δ3
2 .

Hence, we can define a continuous Poincaré-like map

P :

{
U0 −→ U0

q 7−→ π
(
ST q

p (T1)q
)(42)

It is a return map, but not necessarily the first return to the hyperplane H . To
prove P (U0) ⊂ U0 we calculate ‖P (q)−p‖ ≤ ‖P (q)−p1‖+‖p1−p‖ ≤ δ3

2 + δ3
2 . P is

continuous, because so are π, St and T q
p . By definition of π we have P (q) = Sτ(q)q

for a continuous map τ with τ(q) ≥ T1
2 − t0 ≥ ln[2C(k0+1)]

ν > 0 for all q ∈ U0. In
Lemma B.4 we will show that the diameter of P k(U0) =: Uk decreases.

Lemma B.4. We define the compact sets Uk ⊂ H for all k ∈ N by
Uk := P k(U0) and the points pk := P k(p) ∈ Uk.

Then the following statements hold for all k ∈ N.

Uk ⊂ Uk−1(43)

diamUk ≤ δ3

2k−1
.(44)

Proof. (43) follows easily from U1 = P (U0) ⊂ U0. Indeed, for k ≥ 2 we have
P k(U0) = P k−1P (U0) ⊂ P k−1(U0). The sets Uk are compact by induction, be-
cause they are images of the compact set Uk−1 under the continuous map P .

In order to prove (44) we give a new characterization of Uk. We show that we
reach the same points no matter whether we apply π after each return or only
once at the end. We make this precise.

The points pk belong to the positive orbit through p. So we define Tk satisfying
pk = P (pk−1) = STk

pk−1 for all k ∈ N, denoting p0 := p. From above we know
Tk ≥ ln[2C(k0+1)]

ν . We define

Vk := {ST q
p (

∑
k
i=1 Ti)

q | q ∈ U0}.
We claim P k(q) = π(qk) for all q ∈ U0 and all k ∈ N, where qk := ST q

p (
∑k

i=1 Ti)
q.

In particular we have Uk = π(Vk).
Fix a k ∈ N. We already know π(pk) = pk = P k(p) and pk ∈ Uk ∩ π(Vk) which

is the claim for q = p. Moreover, we have Uk, π(Vk) ⊂ H , and all points of both
Uk and π(Vk) can be written as Sτi(q)q with q ∈ U0 and a continuous function τ1,
τ2 respectively. We will use this to prove the above claim. For q ∈ U0 we consider

Q(τ, q) = 〈Sτ q − p, g(0)〉.
We have Q(

∑k
i=1 Ti, p) = 〈pk − p, g(0)〉 = 0 and ∂τQ(τ, q) = 〈f(Sτ q), g(0)〉 ≥

≥ α0
2 > 0 for all Sτ q ∈ Bδ1(p) by (32) and (33). In particular ∂τQ(

∑k
i=1 Ti, p) 6= 0,

so the implicit function theorem yields a unique continuous function τ(q) near p
such that Q(τ(q), q) = 0, which is equivalent to Sτ(q)q ∈ H . As τ1 and τ2 are
such functions, they have to coincide near p. By prolongation we get τ1 = τ2 on
U0 ⊂ Bδ1(p). Thus for qk = ST q

p (
∑k

i=1 Ti)
q we have P k(q) = π(qk).
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In order to prove (44) we consider a point q ∈ U0. Setting qk := ST q
p (

∑
k
i=1 Ti)

q

we have P k(q) = π(qk), as we have shown above. (27) yields ‖qk − pk‖ ≤
≤ Ce−ν

∑ k
i=1 Ti‖q − p‖ ≤ Cδ3

[2C(k0+1)]k . Note that C, (k0 + 1) ≥ 1. This yields
‖P k(q) − pk‖ = ‖π(qk) − pk‖ ≤ (k0 + 1) δ3

2k(k0+1)
for all k ∈ N by (41). As

diamUk = max
q′,q′′∈U0

‖P k(q′) − P k(q′′)‖

≤ max
q′∈U0

‖P k(q′) − pk‖ + max
q′′∈U0

‖pk − P k(q′′)‖

≤ 2
δ3

2k
,

(44) is proven. �

IV. The periodic orbit
In Lemma B.4 we have constructed a sequence of compact sets Uk with de-

creasing diameter, so we know that there is one and only one point p̃ which lies
in all Uk, k ∈ N0. Since P (p̃) lies in all Uk as well, p̃ is a fixed point of P . Hence,
there is a time T > 0 with ST p̃ = p̃, and thus p̃ is a point of a periodic orbit Ω.
Let T be the minimal period. Since p̃ = p + η with η ⊥ g(0) and ‖η‖ ≤ δ, by
assumption (27) the ω-limit sets of p and p̃ are equal. This is shown as in the proof
of Proposition 2.3. Thus p ∈ ω(p) = ω(p̃) = Ω and p is a point of the periodic
orbit Ω.

Finally we show that the periodic orbit Ω := {Sθp | θ ∈ [0, T ]} is exponentially
asymptotically stable. Define the set H0 := H ∩ Bδ(p), PθH0 := {ST q

p (θ)q |
q ∈ H0} and E :=

⋃
θ∈[0,T ] PθH0. Obviously the points of E are attracted by Ω

exponentially fast (cf. (27)). We show now that the trajectory of each point of a
neighborhood of Ω meets a point of E in a finite time.

Lemma B.5. Define δm := minq∈H,‖q‖=δ,θ∈[0,T ]

∥∥∥ST q
p (θ)q − Sθp

∥∥∥ > 0.
There are δ′2, t

′
0 > 0 such that for each q ∈ R

n with dist(q, Ω) ≤ δ′2 there is a t with
|t| ≤ t′0 such that Stq = Sθp + η with θ ∈ [0, T ], ‖η‖ ≤ δm and 〈η, g(θ)〉 = 0.

Proof. We define new coordinates like in I., but this time for all points Sθp,
θ ∈ [0, T ]. We call these coordinates yθ(q), xθ(q), λθ(q) and uθ(q). Since [0, T ]
is a compact set, fM := maxθ∈[0,T ] ‖f(Sθp)‖, αm := minθ∈[0,T ]〈g(θ), f(Sθp)〉 > 0
and αM := maxθ∈[0,T ]〈g(θ), f(Sθp)〉 > 0 exist. Choose δ′1 > 0 such that we have
|λθ(q)| ≤ 1

2αm and ‖uθ(q)‖ ≤ fM for all q such that there is a θ ∈ [0, T ] with

‖q − Sθp‖ ≤ δ′1. Set k′
0 := 4

αm
fM , ε′0 := 2fM + 1

2αm, δ′2 := min
(

1
2

δ′
1

2ε′0
αm

+1
, δm

k′
0+1

)
and t′0 := 2δ′

2
αm

.
Given a point q with dist(q, Ω) ≤ δ′2, choose a time θ ∈ [0, T ] such that

q ∈ Bδ′
2
(Sθp). Lemma B.2 holds in the following form (cf. the proof of Lemma B.2):

Lemma B.6. Fix θ ∈ [0, T ]. Let Stq ∈ Bδ′
1
(Sθp) hold for all t ∈ [0, τ̃ ] with a

constant τ̃ > 0.
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Then for all t ∈ [0, τ̃ ] and all τ1, τ2 with 0 ≤ τ1 ≤ τ2 ≤ τ̃ the following inequalities
hold:

1
2
αm ≤ d

dtyθ(Stq) ≤ 1
2
αm + αM

1
2
αm(τ2 − τ1) ≤ yθ(Sτ2q) − yθ(Sτ1q) ≤

(
1
2
αm + αM

)
(τ2 − τ1)

and ‖xθ(Sτ2q) − xθ(Sτ1q)‖ ≤ k′
0

(
yθ(Sτ2q) − yθ(Sτ1q)

)
.

Lemma B.3 also holds in a modified form, defining π′
θ : Bδ′

2
(Sθp) → Sθp+g(θ)⊥.

Thus we can write π′
θ(q) = St′(q)q = Sθp+η with η ⊥ g(θ) and |t′(q)| ≤ t′0. By the

equivalent of (41) we have ‖η‖ ≤ (k′
0 + 1)δ′2 ≤ δm. This proves Lemma B.5. �

We have PθH0 ⊃ {Sθp+η | ‖η‖ ≤ δm, η ⊥ g(θ)} for all θ ∈ [0, T ]. Hence, Lemma
B.5 shows that for all points q of the neighborhood Ωδ′

2
we have

Stq ∈ ⋃
θ∈[0,T ] PθH0 ⊂ E for a |t| ≤ t′0. This shows that the periodic orbit is ex-

ponentially asymptotically stable and concludes the proof of Proposition B.1. �
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