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A STRATEGY FOR PROVING RIEMANN HYPOTHESIS

M. PITKÄNEN

Abstract. A strategy for proving Riemann hypothesis is suggested. The van-
ishing of the Rieman Zeta reduces to an orthogonality condition for the eigenfunc-
tions of a non-Hermitian operator D+ having the zeros of Riemann Zeta as its
eigenvalues. The construction of D+ is inspired by the conviction that Riemann
Zeta is associated with a physical system allowing conformal transformations as its
symmetries. The eigenfunctions of D+ are analogous to the so called coherent states
and in general not orthogonal to each other. The states orthogonal to a vacuum
state (which has a negative norm squared) correspond to the zeros of the Riemann
Zeta. The induced metric in the space V of states which correspond to the zeros of
the Riemann Zeta at the critical line Re[s] = 1/2 is hermitian and hermiticity re-
quirement actually implies Riemann hypothesis. Conformal invariance in the sense
of gauge invariance allows only the states belonging to V . Riemann hypothesis
follows also from a restricted form of a dynamical conformal invariance in V .

1. Introduction

The Riemann hypothesis [6, 7] states that the non-trivial zeros (as opposed to
zeros at s = −2n, n ≥ 1 integer) of Riemann Zeta function obtained by analytically
continuing the function

ζ(s) =
∞∑

n=1

1
ns

(1)

from the region Re[s] > 1 to the entire complex plane, lie on the line Re[s] = 1/2.
Hilbert and Polya conjectured a long time ago that the non-trivial zeroes of Rie-
mann Zeta function could have spectral interpretation in terms of the eigenvalues
of a suitable self-adjoint differential operator H such that the eigenvalues of this
operator correspond to the imaginary parts of the nontrivial zeros z = x + iy of ζ.
One can however consider a variant of this hypothesis stating that the eigenvalue
spectrum of a non-hermitian operator D+ contains the non-trivial zeros of ζ. The
eigenstates in question are eigenstates of an annihilation operator type operator
D+ and analogous to the so called coherent states encountered in quantum physics
[4]. In particular, the eigenfunctions are in general non-orthogonal and this is a
quintessential element of the the proposed strategy of proof.
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In the following an explicit operator having as its eigenvalues the non-trivial
zeros of ζ is constructed.

a) The construction relies crucially on the interpretation of the vanishing of ζ as
an orthogonality condition in a hermitian metric which is is a priori more general
than Hilbert space inner product.

b) Second basic element is the scaling invariance motivated by the belief that
ζ is associated with a physical system which has superconformal transformations
[3] as its symmetries.

The core elements of the construction are following.
a) All complex numbers are candidates for the eigenvalues of D+ (formal her-

mitian conjugate of D) and genuine eigenvalues are selected by the requirement
that the condition D† = D+ holds true in the set of the genuine eigenfunctions.
This condition is equivalent with the hermiticity of the metric defined by a function
proportional to ζ.

b) The eigenvalues turn out to consist of z = 0 and the non-trivial zeros of ζ
and only the eigenfunctions corresponding to the zeros with Re[s] = 1/2 define a
subspace possessing a hermitian metric. The vanishing of ζ tells that the ’phys-
ical’ positive norm eigenfunctions (in general not orthogonal to each other), are
orthogonal to the ’unphysical’ negative norm eigenfunction associated with the
eigenvalue z = 0.

The proof of the Riemann hypothesis by reductio ad absurdum results if one
assumes that the space V spanned by the states corresponding to the zeros of ζ in-
side the critical strip has a hermitian induced metric. Riemann hypothesis follows
also from the requirement that the induced metric in the spaces subspaces Vs of V
spanned by the states Ψs and Ψ1−s does not possess negative eigenvalues. Con-
formal invariance in the sense of gauge invariance allows only the states belonging
to V . Riemann hypothesis follows also from a restricted form of a dynamical
conformal invariance in V .

2. Modified form of the Hilbert-Polya conjecture

One can modify the Hilbert-Polya conjecture by assuming scaling invariance and
giving up the hermiticity of the Hilbert-Polya operator. This means introduction
of the non-hermitian operators D+ and D which are hermitian conjugates of each
other such that D+ has the nontrivial zeros of ζ as its complex eigenvalues

D+Ψ = zΨ.(2)

The counterparts of the so called coherent states [4] are in question and the eigen-
functions of D+ are not expected to be orthogonal in general. The following
construction is based on the idea that D+ also allows the eigenvalue z = 0 and
that the vanishing of ζ at z expresses the orthogonality of the states with eigen-
value z = x + iy 6= 0 and the state with eigenvalue z = 0 which turns out to have
a negative norm.
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The trial
D = L0 + V, D+ = −L0 + V

L0 = t
d

d t
, V =

d log(F )
d (log(t))

= t
dF

d t

1
F

(3)

is motivated by the requirement of invariance with respect to scalings t → λt and
F → λF . The range of variation for the variable t consists of non-negative real
numbers t ≥ 0. The scaling invariance implying conformal invariance (Virasoro
generator L0 represents scaling which plays a fundamental role in the superconfor-
mal theories [3]) is motivated by the belief that ζ codes for the physics of a quan-
tum critical system having, not only supersymmetries [1], but also superconformal
transformations as its basic symmetries (see the chapter “Riemann Hypothesis”
of [5]).

3. Formal solution of the eigenvalue equation for operator D+

One can formally solve the eigenvalue equation

D+Ψz =
[
−t

d

d t
+ t

dF

d t

1
F

]
Ψz = zΨz.(4)

for D+ by factoring the eigenfunction to a product:

Ψz = fzF.(5)

The substitution into the eigenvalue equation gives

L0fz = t
d

d t
fz = −zfz(6)

allowing as its solution the functions

fz(t) = tz.(7)

These functions are nothing but eigenfunctions of the scaling operator L0 of the
superconformal algebra analogous to the eigenstates of a translation operator. A
priori all complex numbers z are candidates for the eigenvalues of D+ and one
must select the genuine eigenvalues by applying the requirement D† = D+ in the
space spanned by the genuine eigenfunctions.

It must be emphasized that Ψz is not an eigenfunction of D. Indeed, one has

DΨz = −D+Ψz + 2V Ψz = zΨz + 2V Ψz.(8)

This is in accordance with the analogy with the coherent states which are eigen-
states of annihilation operator but not those of creation operator.

4. D+ = D†
condition and hermitian form

The requirement that D+ is indeed the hermitian conjugate of D implies that the
hermitian form satisfies

〈f |D+g〉 = 〈Df |g〉.(9)
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This condition implies

〈Ψz1 |D+Ψz2〉 = 〈DΨz1 |Ψz2〉.(10)

The first (not quite correct) guess is that the hermitian form is defined as an
integral of the product Ψz1Ψz2 of the eigenfunctions of the operator D over the
non-negative real axis using a suitable integration measure. The hermitian form
can be defined by continuing the integrand from the non-negative real axis to the
entire complex t-plane and noticing that it has a cut along the non-negative real
axis. This suggests the definition of the hermitian form, not as a mere integral
over the non-negative real axis, but as a contour integral along curve C defined so
that it encloses the non-negative real axis, that is C

a) traverses the non-negative real axis along the line Im[t] = 0− from
t = ∞ + i0− to t = 0+ + i0−,

b) encircles the origin around a small circle from t = 0+ + i0− to t = 0+ + i0+,
c) traverses the non-negative real axis along the line Im[t] = 0+ from

t = 0+ + i0+ to t = ∞ + i0+.
Here 0± signifies taking the limit x = ±ε, ε > 0, ε → 0.

C is the correct choice if the integrand defining the inner product approaches
zero sufficiently fast at the limit Re[t] → ∞. Otherwise one must assume that
the integration contour continues along the circle SR of radius R → ∞ back
to t = ∞ + i0− to form a closed contour. It however turns out that this is
not necessary. One can deform the integration contour rather freely: the only
constraint is that the deformed integration contour does not cross over any cut
or pole associated with the analytic continuation of the integrand from the non-
negative real axis to the entire complex plane.

Scaling invariance dictates the form of the integration measure appearing in
the hermitian form uniquely to be d t/t. The hermitian form thus obtained also
makes possible to satisfy the crucial D+ = D† condition. The hermitian form is
thus defined as

〈Ψz1 |Ψz2〉 = − K

2πi

∫
C

Ψz1Ψz2

d t

t
.(11)

K is a real numerical constant which can be fixed by requiring that the states
corresponding to zeros at the critical line have unit norm: with this choise the
vacuum state corresponding to z = 0 has negative norm.

The possibility to deform the shape of C in wide limits realizes conformal in-
variance stating that the change of the shape of the integration contour induced by
a conformal transformation, which is nonsingular inside the integration contour,
leaves the value of the contour integral of an analytic function unchanged. This
scaling invariant hermitian form is indeed a correct guess. By applying partial
integration one can write

〈Ψz1 |D+Ψz2〉 = 〈DΨz1 |Ψz2〉 −
K

2πi

∫
C

d t
d

d t

[
Ψz1(t)Ψz2(t)

]
.(12)

The integral of a total differential comes from the operator L0 = td/d t and must
vanish. For a non-closed integration contour C the boundary terms from the
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partial integration could spoil the D+ = D† condition unless the eigenfunctions
vanish at the end points of the integration contour (t = ∞ + i0±).

The explicit expression of the hermitian form is given by

〈Ψz1 |Ψz2〉 = − K

2πi

∫
C

d t

t
F 2(t)tz12 ,

z12 = z1 + z2.(13)

It must be emphasized that it is Ψz1Ψz2 rather than eigenfunctions which is con-
tinued from the non-negative real axis to the complex t-plane: therefore one indeed
obtains an analytic function as a result.

An essential role in the argument claimed to prove the Riemann hypothesis is
played by the crossing symmetry

〈Ψz1 |Ψz2〉 = 〈Ψ0|Ψz1+z2〉(14)

of the hermitian form. This symmetry is analogous to the crossing symmetry
of particle physics stating that the S-matrix is symmetric with respect to the
replacement of the particles in the initial state with their antiparticles in the final
state or vice versa [4].

The hermiticity of the hermitian form implies

〈Ψz1 |Ψz2〉 = 〈Ψz2 |Ψz1〉.(15)

This condition, which is not trivially satisfied, in fact determines the eigenvalue
spectrum.

5. How to choose the function F?

The remaining task is to choose the function F in such a manner that the or-
thogonality conditions for the solutions Ψ0 and Ψz reduce to the condition that ζ
or some function proportional to ζ vanishes at the point −z. The definition of ζ
based on analytical continuation performed by Riemann suggests how to proceed.
Recall that the expression of ζ converging in the region Re[s] > 1 following from
the basic definition of ζ and elementary properties of Γ function [7] reads as

Γ(s)ζ(s) =
∫ ∞

0

d t

t

exp(−t)
[1 − exp(−t)]

ts.(16)

One can analytically continue this expression to a function defined in the entire
complex plane by noticing that the integrand is discontinuous along the cut ex-
tending from t = 0 to t = ∞. Following Riemann it is however more convenient
to consider the discontinuity for a function obtained by multiplying the integrand
with the factor

(−1)s ≡ exp(−iπs).

The discontinuity Disc(f) ≡ f(t)− f(t exp(i2π)) of the resulting function is given
by

Disc
[

exp(−t)
[1 − exp(−t)]

(−t)s−1

]
= −2i sin(πs)

exp(−t)
[1 − exp(−t)]

ts−1.(17)
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The discontinuity vanishes at the limit t → 0 for Re[s] > 1. Hence one can
define ζ by modifying the integration contour from the non-negative real axis to
an integration contour C enclosing non-negative real axis defined in the previous
section.

This amounts to writing the analytical continuation of ζ(s) in the form

−2iΓ(s)ζ(s) sin(πs) =
∫

C

d t

t

exp(−t)
[1 − exp(−t)]

(−t)s−1.(18)

This expression equals to ζ(s) for Re[s] > 1 and defines ζ(s) in the entire complex
plane since the integral around the origin eliminates the singularity.

The crucial observation is that the integrand on the righthand side of Eq. 18 has
precisely the same general form as that appearing in the hermitian form defined
in Eq. 13 defined using the same integration contour C. The integration measure
is d t/t, the factor ts is of the same form as the factor tz1+z2 appearing in the
hermitian form, and the function F 2(t) is given by

F 2(t) =
exp(−t)

1 − exp(−t)
.

Therefore one can make the identification

F (t) =
[

exp(−t)
1 − exp(−t)

]1/2

.(19)

Note that the argument of the square root is non-negative on the non-negative
real axis and that F (t) decays exponentially on the non-negative real axis and
has 1/

√
t type singularity at origin. From this it follows that the eigenfunctions

Ψz(t) approach zero exponentially at the limit Re[t] → ∞ so that one can use the
non-closed integration contour C.

With this assumption, the hermitian form reduces to the expression

〈Ψz1 |Ψz2〉 = − K

2πi

∫
C

d t

t

exp(−t)
[1 − exp(−t]

(−t)z12

=
K

π
sin(πz12)Γ(z12)ζ(z12).(20)

Recall that the definition z12 = z1 + z2 is adopted. Thus the orthogonality of the
eigenfunctions is equivalent to the vanishing of ζ(z12).

6. Study of the hermiticity condition

In order to derive information about the spectrum one must explicitely study what
the statement that D† is hermitian conjugate of D means. The defining equation
is just the generalization of the equation

A†
mn = Anm.(21)

defining the notion of hermiticity for matrices. Now indices m and n correspond
to the eigenfunctions Ψzi

, and one obtains

〈Ψz1 |D+Ψz2〉 = z2〈Ψz1 |Ψz2〉 = 〈Ψz2 |DΨz1〉 = 〈D+Ψz2 |Ψz1〉 = z2〈Ψz2 |Ψz1〉.
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Thus one has

G(z12) = G(z21) = G(z12)
G(z12) ≡ 〈Ψz1 |Ψz2〉.(22)

The condition states that the hermitian form defined by the contour integral is
indeed hermitian. This is not trivially true. hermiticity condition obviously deter-
mines the spectrum of the eigenvalues of D+.

To see the implications of the hermiticity condition, one must study the be-
haviour of the function G(z12) under complex conjugation of both the argument
and the value of the function itself. To achieve this one must write the integral

G(z12) = − K

2πi

∫
C

d t

t

exp(−t)
[1 − exp(−t)]

(−t)z12

in a form from which one can easily deduce the behaviour of this function under
complex conjugation. To achieve this, one must perform the change t → u =
= log(exp(−iπ)t) of the integration variable giving

G(z12) = − K

2πi

∫
D

du
exp(− exp(u))

[1 − exp(−(exp(u)))]
exp(z12u).(23)

Here D denotes the image of the integration contour C under t → u = log(−t). D
is a fork-like contour which
a) traverses the line Im[u] = iπ from u = ∞ + iπ to u = −∞ + iπ ,
b) continues from −∞ + iπ to −∞− iπ along the imaginary u-axis (it is easy to
see that the contribution from this part of the contour vanishes),
c) traverses the real u-axis from u = −∞− iπ to u = ∞− iπ,

The integrand differs on the line Im[u] = ±iπ from that on the line Im[u] = 0
by the factor exp(∓iπz12) so that one can write G(z12) as integral over real u-axis

G(z12) = −K

π
sin(πz12)

∫ ∞

−∞
du

exp(− exp(u))
[1 − exp(−(exp(u)))]

exp(z12u).(24)

From this form the effect of the transformation G(z) → G(z) can be deduced.
Since the integral is along the real u-axis, complex conjugation amounts only to
the replacement z21 → z12, and one has

G(z12) = −K

π
× sin(πz21)

∫ ∞

−∞
d u

exp(− exp(u))
[1 − exp(−(exp(u)))]

exp(z12u)

=
K

K
× sin(πz21)

sin(πz12)
G(z12).(25)

Thus the hermiticity condition reduces to the condition

G(z12) =
K

K
× sin(πz21)

sin(πz12)
× G(z12).(26)

The reality of K guarantees that the diagonal matrix elements of the metric are
real.
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For non-diagonal matrix elements there are two manners to satisfy the hermitic-
ity condition.

a) The condition

G(z12) = 0(27)

is the only manner to satisfy the hermiticity condition for x1 +x2 6= n, y1−y2 6= 0.
This implies the vanishing of ζ:

ζ(z12) = 0 for 0 < x1 + x2 < 1.(28)

In particular, this condition must be true for z1 = 0 and z2 = 1/2 + iy. Hence the
physical states with the eigenvalue z = 1/2+ iy must correspond to the zeros of ζ.

b) For the non-diagonal matrix elements of the metric the condition

exp(iπ(x1 + x2)) = ±1(29)

guarantees the reality of sin(πz12) factors. This requires

x1 + x2 = n.(30)

The highly non-trivial implication is that the the vacuum state Ψ0 and the zeros
of ζ at the critical line span a space having a hermitian but not necessarily positive
definite metric. Note that for x1 = x2 = n/2, n 6= 1, the diagonal matrix elements
of the metric vanish.

7. Various assumptions implying Riemann hypothesis

As found, the general strategy for proving the Riemann hypothesis, originally
inspired by superconformal invariance, leads to the construction of a set of eigen-
states for an operator D+, which is effectively an annihilation operator acting in
the space of complex-valued functions defined on the real half-line. Physically the
states are analogous to coherent states and are not orthogonal to each other. The
quantization of the eigenvalues for the operator D+ follows from the requirement
that the metric, which is defined by the integral defining the analytical continu-
ation of ζ, and thus proportional to ζ (〈s1, s2〉 ∝ ζ(s1 + s2)), is hermitian in the
space of the physical states.

The nontrivial zeros of ζ are known to belong to the critical strip defined by
0 < Re[s] < 1. Indeed, the theorem of Hadamard and de la Vallee Poussin [2]
states the non-vanishing of ζ on the line Re[s] = 1. If s is a zero of ζ inside the
critical strip, then also 1 − s as well as s and 1 − s are zeros. Hilbert space inner
product property is not required so that the eigenvalues of the metric tensor can
be also negative. The problem is whether there could be also unphysical zeros of
ζ outside the critical line Re[s] = 1/2 but inside the critical strip 0 < Re[s] < 1.

Before continuing it is convenient to introduce some notations. Denote by V
the subspace spanned by Ψs corresponding to the zeros s of ζ inside the critical
strip, by Vcrit the subspace corresponding to the zeros of ζ at the critical strip,
and by Vs the space spanned by the states Ψs and Ψ1−s. The basic idea behind
the following proposals is that the basic objects of study are the spaces V , Vcrit

and Vs.
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7.1. How to restrict the metric to V ?

One should somehow restrict the metric defined in the space spanned by the
states Ψs labelled by a continuous complex eigenvalue s to the space V inside the
critical strip spanned by a basis labelled by discrete eigenvalues. Very naively,
one could try to do this by simply putting all other components of the metric to
zero so that the states outside V correspond to gauge degrees of freedom. This
is consistent with the interpretation of V as a coset space formed by identifying
states which differ from each other by the addition of a superposition of states
which do not correspond to zeros of ζ.

An more elegant manner to realize the restriction of the metric to V is to Fourier
expand states in the basis labelled by a complex number s and define the metric in
V using double Fourier integral over the complex plane and Dirac delta function
restricting the labels of both states to the set of zeros inside the critical strip:

〈Ψ1)|Ψ2)〉 =
∫

dµ(s1)
∫

dµ(s2)Ψ
1)

s1
Ψ2)

s2
G(s2 + s1)δ(ζ(s1))δ(ζ(s2))

=
∑

ζ(s1)=0,ζ(s2)=0

Ψ
1)

s1
Ψ2)

s2
G(s2 + s1)

1√
det(s2) det(s1)

,

d µ(s) = dsds, det(s) =
∂(Re [ζ(s)] , Im [ζ(s)])

∂(Re [s] , Im [s])
.(31)

Here the integrations are over the critical strip. det(s) is the Jacobian for the
map s → ζ(s) at s. The appearence of the determinants might be crucial for
the absence of negative norm states. The result means that the metric GV in V
effectively reduces to a product

GV = DGD,

D(si, sj) = D(si)δ(si, sj),

D(si, sj) = D(si)δ(si, sj)

D(s) =
1√

det(s)
.(32)

In the sequel the metric G will be called reduced metric whereas GV will be
called the full metric. In fact, the symmetry D(s) = D(s) holds true by the
basic symmetries of ζ so that one has D = D and GV = DGD. This means that
Schwartz inequalities for the eigen states of D+ are not affected in the replacement
of GV with G. The two metrics can be in fact transformed to each other by a
mere scaling of the eigenstates and are in this sense equivalent.

7.2. Riemann hypothesis from the hermicity of the metric in V

The mere requirement that the metric is hermitian in V implies the Riemann
hypothesis. This can be seen in the simplest manner as follows. Besides the
zeros at the critical line Re[s] = 1/2 also the symmetrically related zeros inside
critical strip have positive norm squared but they do not have hermitian inner
products with the states at the critical line unless one assumes that the inner
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product vanishes. The assumption that the inner products between the states at
critical line and outside it vanish, implies additional zeros of ζ and, by repeating
the argument again and again, one can fill the entire critical interval (0, 1) with
the zeros of ζ so that a reductio ad absurdum proof for the Riemann hypothesis
results. Thus the metric gives for the states corresponding to the zeros of the
Riemann Zeta at the critical line a special status as what might be called physical
states.

It should be noticed that the states in Vs and Vs have non-hermitian inner
products for Re[s] 6= 1/2 unless these inner products vanish: for Re[s] > 1/2 this
however implies that ζ has a zero for Re[s] > 1.

7.3. Riemann hypothesis from the requirement that the metric in Vs

does not possess negative eigenvalues

The requirement that the induced metric in the space Vs does not possess
negative eigenvalues implies also Riemann hypothesis. The explicit expression for
the norm of a Re[s] = 1/2 state with respect to the full metric Gind

V reads as

Gind
V (1/2 + iyn, 1/2 + iyn) = D2(1/2 + iy)Gind(1/2 + iyn, 1/2 + iyn),

Gind(1/2 + iyn, 1/2 + iyn) = −K

π
sin(π)Γ(1)ζ(1).(33)

Here Gind is the metric in Vs induced from the reduced metric G. This expression
involves formally a product of vanishing and infinite factors and the value of ex-
pression must be defined as a limit by taking in Im[z12] to zero. The requirement
that the norm squared defined by Gind equals to one fixes the value of K:

K = − π

sin(π)ζ(1)
= 1.(34)

The components Gind in Vs are given by

Gind(s, s) = − sin(2πRe[s])Γ(2Re[s])ζ(2Re[s])
π

,

Gind(1 − s, 1 − s) = − sin(2π(1 − Re[s]))Γ(2 − 2Re[s])ζ(2(1 − [Re[s]))
π

,

Gind(s, 1 − s) = Gind(1 − s, s) = 1.(35)

The determinant of the metric Gind
V induced from the full metric reduces to the

product

det(Gind
V ) = D2(s))D2(1 − s) × Det(Gind).(36)

Since the first factor is positive definite, it suffices to study the determinant of
Gind. At the limit Re[s] = 1/2 Gind formally reduces to

(
1 1
1 1

)
.
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This reflects the fact that the states Ψs and Ψ1−s are identical. The actual metric
is of course positive definite. For Re[s] = 0 the Gind is of the form( −1 1

1 0

)
.

The determinant of Gind is negative so that the eigenvalues of both the full metric
and reduced metric are of opposite sign. The eigenvalues for Gind are given by
(−1 ±√

5)/2.
The determinant of Gind in Vs as a function of Re[s] is symmetric with respect

to Re[s] = 1/2, equals to −1 at the end points Re[s] = 0 and Re[s] = 1, and
vanishes at Re[s] = 1/2. Numerical calculation shows that the sign of the deter-
minant of Gind inside the interval (0, 1) is negative for Re[s] 6= 1/2. Thus the
diagonalized form of the induced metric has the signature (1,−1) except at the
limit Re[s] = 1/2, when the signature formally reduces to (1, 0). Thus Riemann
hypothesis follows if one can show that the metric induced to Vs does not allow
physical states with a negative norm squared. This requirement is physically very
natural. It must be however emphasized that it is not clear whether the restriction
of the metric to Vcrit has only non-negative eigenvalues.

7.4. Riemann hypothesis and conformal invariance

The basic strategy for proving Riemann hypothesis has been based on the at-
tempt to reduce Riemann hypothesis to invariance under conformal algebra or
some subalgebra of the conformal algebra in V or Vs. That this kind of algebra
should act as a gauge symmetry associated with ζ is very natural idea since con-
formal invariance is in a well-defined sense the basic symmetry group of complex
analysis.

Consider now one particular strategy based on conformal invariance in the space
of the eigenstates of D+.

a) The conformal generators are realized as operators

Lz = tzD+(37)

act in the eigenspace of D+ and obey the standard conformal algebra without cen-
tral extension [3]. D+ itself corresponds to the conformal generator L0 acting as a
scaling. Conformal generators obviously act as dynamical symmetries transform-
ing eigenstates of D+ to each other. What is new is that now conformal weights z
have all possible complex values unlike in the standard case in which only integer
values are possible. The vacuum state Ψ0 having negative norm squared is anni-
hilated by the conformal algebra so that the states orthogonal to it (non-trivial
zeros of ζ inside the critical strip) form naturally another subspace which should
be conformally invariant in some sense. Conformal algebra could act as gauge
algebra and some subalgebra of the conformal algebra could act as a dynamical
symmetry.

b) The definition of the metric in V involves in an essential manner the mapping
s → ζ(s). This suggests that one should define the gauge action of the conformal
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algebra as

Ψs → Ψζ(s) → LzΨζ(s) = ζsΨζ(s)+z

→ ζsΨζ−1(ζ(s)+z).(38)

Clearly, the action involves a map of the conformal weight s to ζ(s), the action
of the conformal algebra to ζ(s), and the mapping of the transformed conformal
weight z + ζ(s) back to the complex plane by the inverse of ζ. The inverse image
is in general non-unique but in case of V this does not matter since the action
annihilates automatically all states in V . Thus conformal algebra indeed acts as
a gauge symmetry. This symmetry does not however force Riemann hypothesis.

c) One can also study the action of the conformal algebra or its suitable sub-
algebra in Vs as a dynamical (as opposed to gauge) symmetry realized as

Ψs → LzΨs = sΨs+z.(39)

The states Ψs and Ψ1−s in Vs have nonvanishing norms and are obtained from
each other by the conformal generators L1−2Re[s] and L2Re[s]−1. For Re[s] 6= 1/2
the generators L1−2Re[s], L2Re[s]−1, and L0 generate SL(2, R) algebra which is
non-compact and generates infinite number of states from the states of Vs. At
the critical line this algebra reduces to the abelian algebra spanned by L0. The
requirement that the algebra naturally associated with Vs is a dynamical sym-
metry and thus generates only zeros of ζ leads to the conlusion that all points
s + n(1 − 2Re[s]), n integer, must be zeros of ζ. Clearly, Re[s] = 1/2 is the only
possibility so that Riemann hypothesis follows. In this case the dynamical sym-
metry indeed reduces to a gauge symmetry.

There is clearly a connection with the argument based on the requirement that
the induced metric in Vs does not possess negative eigenvalues. Since SL(2, R) al-
gebra acts as the isometries of the induced metric for the zeros having Re[s] 6= 1/2,
the signature of the induced metric must be (1,−1).

d) One could even try to prove that the entire subalgebra of the conformal
algebra spanned by the generators with conformal weights n(1− 2Re[s]) acts as a
symmetry generating new zeros of ζ. If this holds, Re[s] = 1/2 is the only possi-
bility so that Riemann hypothesis follows. In this case the dynamical conformal
symmetry indeed reduces to a gauge symmetry.

Since L1−2Re[s] acts as an infinitesimal isometry leaving the matrix element
〈Ψ0|Ψs〉 = 0 invariant, one can in spirit of Lie group theory argue that also the
exponentiated transformations exp(tL1−2Re[s]) have the same property for all val-
ues of t. The exponential action leaves Ψ0 invariant and generates from Ψs a
superposition of states with conformal weights s+n(1−2Re[s]), which all must be
orthogonal to Ψ0 since t is arbitrary. Therefore Re[s] = 1/2 is the only possibility.

7.5. Conclusions

To sum up, it seems that a promising approach for proving Riemann hypoth-
esis is to demonstrate that the metric induced to V is hermitian. The hermitic-
ity property reduces to the requirement that the dynamical conformal algebra
naturally spanned by the states in Vs reduces to the abelian algebra defined by
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L0 = D+. If infinitesimal isometries for the matrix elements 〈Ψ0|Ψs〉 = 0 gen-
erated by L1−2Re[s] can be exponentiated, Riemann hypothesis follows. Contrary
to the original physics motivated expectations, the metric defined by G (nor GV )
does not seem to be positive definite in V unless one poses additional conditions
to the allowed superpositions of the eigenstates. This is due to the exponential
increase of the moduli of the matrix elements G(1/2+iy1, 1/2+iy2) for large values
of |y1 − y2| implying the failure of the Schwartz inequality when y12 = y1 − y2 is
large.

Acknowledgment. I want to express my deep gratitude to Dr. Matthew
Watkins for providing me with information about Riemann Zeta and for generous
help, in particular for reading the earlier versions of the work and pointing out
several inaccuracies and errors. I am also grateful for Prof. Masud Chaichian and
Doc. Claus Montonen for encouraging comments and help.

References

1. Berry M. V. and Keating J. P., Supersymmetry and Trace Formulae: Chaos and Disorder,
(I. V. Lerner, J. P. Keating, and D. E. Khmelnitskii eds.) Kluwer, New York, 1999, 355–367.

2. Edwards H. M., Riemann’s Zeta Function, Academic Press, New York, 1974, 68–76.
3. Itzykson C., Saleur H. and Zuber J-B. (eds.), Conformal Invariance and Applications to

Statistical Mechanics Word Scientific, Singapore, 1988.
4. Itzykson C. and Zuber J-B., Quantum Field Theory, McGraw-Hill Inc., New York, 1980,

p. 549.
5. Pitkänen M., Topological Geometrodynamics

(online book at http://www.physics.helsinki.fi/∼matpitka/tgd.html, 2001.
6. Riemann B., Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Monat. der

Königl. Preuss. Akad. der Wissen. zu Berlin aus der Jahre 1859, 671–680; also, Gesammelte
math. Werke und wissensch. Nachlass, 2. Aufl. 1892, 145–155.

7. Titchmarch E. C., The Theory of the Riemann Zeta Function, 2nd ed. revised by R. D.
Heath-Brown, Oxford Univ. Press, Oxford, 1986.

M. Pitkänen, Department of Physical Sciences, High Energy Physics Division, PL 64, FIN-00014,
University of Helsinki, Finland., current address: Kadermonkatu 16, 10900, Hanko, Finland.,
e-mail : matpitka@rock.helsinki.fi,
http:www.physics.helsinki.fi/∼matpitka


